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ABSTRACT 
Categorizing biological information can be subjective and 

ambiguous, which poses challenges for indexing potentially 
useful biological information for design. Therefore, we 
explored collective categorization to study the categorization 
task. After gathering 163 examples of biological 
transformation, we asked four participants to independently 
categorize the examples using self-selected approaches. A 
computational algorithm was used to quantify the relatedness 
between the groups that each participant created. The results 
confirmed that participants had different perspectives in 
interpreting and categorizing biological information. However, 
the collective categorization method could reveal meaningful 
semantics in biological information such as hierarchical, 
synonymous, or causal relations. The relations discovered 
could lead to developing formal representations or learning 
unique patterns in biological phenomena. 

 
1. INTRODUCTION 

One challenge in biomimetic design is developing 
generalized methodologies to identify and apply relevant 
biological analogies. To identify analogies, our research group 
has developed techniques to extract relevant information from 
sources in natural-language format, e.g., text, papers, etc. 
(Shu, 2010). This approach allows designers and researchers 
to access a large amount of readily available biological 
information, rather than require the creation of databases. 

Another approach is to create formal representations to 
support cataloging biological information in databases 
(Chakrabarti et al. 2005, Goel et al. 2009, Nagel et al. 2010). 
The formal representations could help designers comprehend 
the biological information, and also allow machines to reason 
with the information, e.g., to support design-by-analogy. 

The two approaches could well support each other. The 
natural-language approach could identify useful information to 
be entered into databases. The formal representations 
developed could help researchers understand the type of 
information to be captured from natural-language text. 

However, categorizing biological information for entry 
into a database is challenging and subject to researcher bias. In 
addition, modeling complex biological systems with 
representations developed for engineering applications can be 
ambiguous. Evaluating and validating such models present 
challenges as well. 

Therefore, we investigate a new categorization method to 
address the challenges highlighted above. Our approach 
combines categorization results from multiple researchers with 
a computational algorithm to examine relatedness in their 
categorizations. We describe our approach and report benefits 
and challenges observed during the categorization process. 

The biological information collected and categorized 
focused on transformation that occurs in nature. 
Transformation in mechanical products provides unique 
benefits that products otherwise cannot, e.g., an umbrella that 
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folds to enhance portability, an aircraft that changes its wing 
shape to adapt to different modes of flight. A number of 
design researchers (Singh et al. 2009, Camburn et al. 2010, 
Kuhr et al. 2010) have examined existing transformable 
products and developed techniques to assist in designing 
transformable products. In particular, Singh et al. (2009) 
examined transformation in biological systems and were able 
to draw analogies between transformation in nature and 
engineering products. We focused on investigating 
transformation in biological phenomena, with the eventual 
goal of identifying interesting patterns of biological 
transformation that may be applicable to engineering design. 

2. BACKGROUND 
 

2.1. Study of transformation in design 
Singh et al. (2009) examined existing products, patents, 

and biological phenomena to extract three transformation 
principles and twenty transformation facilitators. The three 
transformation principles, or “generalized directive[s] to bring 
about a certain type of mechanical transformation,” include: 1) 
expand / collapse, 2) expose / cover, and 3) fuse / divide. 
Twenty transformation facilitators, e.g., flip, fold, material 
flexibility, etc., describe mechanisms or characteristics that 
enable transformation. Singh et al. also identified analogous 
biological phenomena for each principle and facilitator. 

Camburn et al. (2010) and Kuhr et al. (2010) developed 
techniques and tools to support the design of transformable 
products. Camburn et al. (2010) derived a set of indicators to 
identify when implementing transformation in products may 
be beneficial. Kuhr et al. (2010) developed a method to help 
designers examine the functional states of single-function 
devices and apply relevant transformation facilitators. 

 
2.2. Methods to support biomimetic design 
 
2.2.1. Search natural-language text 

Shu (2010) summarized the natural-language approach, 
which involves searching biological information in natural-
language format for relevant analogies. The approach enables 
designers to identify analogies that are not limited to those 
suggested by biologists or indexed by design researchers. 
However, challenges of the approach include: 1) lexical 
differences between engineering and biology and 2) a 
potentially large number of search results to manage.  

Chiu and Shu (2007) and Cheong et al. (2011) developed 
a process for identifying biologically meaningful keywords to 
address the first challenge. Such keywords may locate more 
relevant analogies in biological text than the corresponding 
engineering keywords. For the second challenge, Ke et al. 
(2010) applied natural-language processing to categorize 
search results. However, challenges also exist in identifying 
and transferring analogies from descriptions of biological 
phenomena to engineering solutions (Mak and Shu 2004, 
2008; Cheong et al. 2010). 
 

2.2.2. Model and index biological systems 
A number of researchers have developed formal 

representations to model and index biological systems, which 
can help designers understand complex biological information 
for design-by-analogy. Chakrabarti et al. (2005) developed 
SAPPhIRE constructs to represent causality in natural and 
artificial systems and created a database of these systems. 
Goel et al. (2009) used the structure-behavior-function (SBF) 
model to represent biological phenomena and created a 
library, IDEAL, that contains the SBF models. Nagel et al. 
(2010) used the functional basis to model biological systems 
and index them in a design repository. 

These formal representations use terminologies or 
frameworks that are abstract or engineering-oriented, 
facilitating the transfer and application of biological 
knowledge to design problems. However, a primary limitation 
of the modeling approach is that it requires resources and 
expertise to construct and categorize information for the 
models, a process that may introduce researcher bias.  
 
2.2.3. Generalize patterns of biological solutions 

Instead of modeling individual biological systems, one 
could generalize patterns in strategies used by biological 
systems. Altshuller (1984) identified inventive principles 
based on patterns of innovation found in patents, resulting in 
the TRIZ matrix, which provides innovative principles to 
solve contradicting objectives in design problems. Vincent et 
al. (2006) developed BioTRIZ, which rearranged the original 
TRIZ matrix based on how contradicting objectives are solved 
in over 500 biological phenomena. 

Vandevenne et al. (2011) proposed a scalable approach to 
identify the patterns of term occurrences in natural-language 
text. The approach could bridge the gap between directly 
searching natural-language text for relevant information and 
identifying general patterns of biological solutions. Cheong 
and Shu (2012) discuss the automatic extraction of causally 
related functions from natural-language text, which can also 
contribute towards identifying patterns of biological strategies. 
 
2.3. Information categorization techniques  

 
2.3.1. Categorization for biomimetic design methods 

Each method developed to support biomimetic design 
uses a different approach to categorize biological information. 

Initially, our natural-language approach allowed designers 
to use and categorize retrieved information to suit them. More 
recently, we use syntactic or semantic information (Ke et al. 
2010, Cheong and Shu 2012) to categorize retrieved 
information towards identifying the most relevant information. 

Vandevenne et al. (2011) propose a scalable approach to 
categorize biological information, mainly based on the lexical 
relationships between documents containing the biological 
information. This approach can be highly automated and is 
therefore well suited to categorizing a large amount of 
information. However, it may overlook the semantics and 
context of the biological information. 
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The modeling approaches require researchers to manually 
enter information, as well as develop formal representations to 
capture information. As such, axiomatic or empirical 
validation of the representation schemes is essential.  

The above challenges motivated us to develop a 
categorization method that is compatible with both manual 
and computational categorization. 
 
2.3.2. Formal representations vs. tagging 

The main benefit of formal representation is that 
information can be captured in a consistent format that 
facilitates machine reasoning. Goel (1997) and Umeda and 
Tomiyama (1997) argue that formal representations enable 
artificial intelligence to support innovative design, including 
analogical design. While increased formality minimizes 
ambiguity and helps machines understand information, it often 
results in loss of flexibility in capturing information 
(Baclawski and Niu 2006). This can be particularly 
problematic while modeling complex biological information. 

Tags, or metadata, are non-hierarchical keywords that are 
assigned to describe particular data. Tagging is highly flexible 
because taggers are free to label information in any way. One 
well-known use of tagging is on web blogs where the authors 
label free-form tags on their entries, which help authors 
organize, and others find, tagged entries. However, since tags 
are freely chosen, the main disadvantage is semantic 
ambiguity. 

A folksonomy is a collaborative taxonomy that emerges 
from tags created and shared by multiple people. Halpin et al. 
(2007) and Robu et al. (2009) demonstrated that collaborative 
taxonomy can self-organize and converge toward a more 
controlled taxonomy. 

For our work, we aim to explore the collective 
categorization that can emerge from categories and tags used 
by multiple people. The next section describes our methods.  

3. METHODS 
Figure 1 gives an overview of our methods. First, we 

collected 163 examples of biological transformation while 
defining the characteristics and scope of the information 
collected. Four participants then independently categorized the 
examples and tagged each group with keywords. An algorithm 
was developed to analyze the tagging data.  

 
3.1. Defining bio-transformation 

While collecting examples of natural transformation in the 
initial exploration phase, we discovered that we must define 
our scope. Singh et al. (2009) defined transformation as “the 
act of changing state in order to facilitate new, or enhance an 
existing functionality.” Because this definition is intended to 
achieve wide coverage in the engineering domain, it does not 
capture specific details required to distinguish subtle 
differences between various physical changes in biology. 
Therefore, we developed a set of requirements to define the 
scope of transformation examples collected for this research: 

 

 
Requirement 1: possession of at least two stable states  
Requirement 2: change of function across different states 

 
Some examples of biological phenomena we excluded 

include: 1) evolutionary changes, 2) growth patterns, and 3) 
processes that are not completely understood. First, despite 
potentially inspiring useful ideas for design, evolutionary 
changes in organisms have a very long timeline, and may not 
be as relevant for designing artificial transformers that must 
readily alternate between functions. We also disregarded 
examples of metamorphosis or plant growth that do not 
involve distinct states. Finally, we excluded examples where 
we did not have a complete understanding of the exact 
mechanisms involved, e.g., DNA replication.  

This process revealed that even identifying relevant 
characteristics and limitations for the scope of biological 
information to include is a relatively subjective task. We 
suspect that this can present significant challenges in the 
modeling approaches to biomimetic design. 

 

 
Figure 1: Overview of methods. 
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3.2. Methods used to collect examples 
The following search methods were used to collect 

examples of relevant biological transformation: 
 

1. Recall personal knowledge and search for confirming 
evidence (~40% of examples) 

• Examples: A salamander amputating its tail, Venus 
flytrap closing its leaves, a chameleon changing its color. 

2. Use keywords in public search engines (~25% of examples) 
• Example keywords used:  

o Nouns: adaptation, adaptive behavior, autonomy, 
self-amputation, camouflage. 

o Verbs: fold, shape, fuse, divide, change. 

3. Explore websites containing collections of biological 
phenomena (~25% of the examples) 

• Examples of sources accessed: The Encyclopedia of 
Earth (EOE) website, video collections on BBC Nature, 
e.g., movie clips in the “Animal and Plant Adaptations 
and Behaviour” section. 

4. Miscellaneous (~10% of the examples) 
• Discuss biology with subject matter experts. 
• Review literature, e.g., Hirnschall (1975). 
• Survey museum exhibits, e.g., the natural history section 

at the Royal Ontario Museum in Toronto. 
 

Table 1 shows examples of resources we used. Once 
relevant information on transformation was found, other 
scientific journals or websites were researched for more 
complete descriptions of the information, i.e., the underlying 
mechanism of the corresponding transformation. 
 

Table 1: Primary sources used to gather examples of 
biological transformation. 

Source type Source 
Online 
encyclopedias  

− Animal Diversity Web 
(http://animaldiversity.ummz.umich.edu) 

− BBC Nature (www.bbc.co.uk/nature) 
− Encyclopedia of Earth (www.eoearth.org) 
− Encyclopedia of Life (http://eol.org) 
− Wikipedia (http://en.wikipedia.org) 

Biomimicry 
Institute portal − Ask Nature (www.asknature.org) 

Scientific 
journals 

− Nature (www.nature.com) 
− Science (www.sciencemag.org) 

 
The initial search effort identified 80 examples of natural 

transformation, but this effort focused on popular sources of 
information. To include other relevant examples, we reviewed 
a reference text for an entry-level university biology course, 
Life: The Science of Biology. Searching this source, as well as 
revisiting other primary sources in the initial phase, provided 
83 additional examples of transformation. Overall, 163 
relevant examples were collected for this study. 

One challenge encountered was the time-consuming 
nature of the search process. In many cases, the actual 

mechanisms of transformation were not fully described, 
requiring further research to determine if a phenomenon was 
actually relevant to the scope of this study. The presence of 
certain keywords, e.g., fold, change color, etc., in the 
description often distinguished whether the biological 
phenomenon involved relevant transformation behavior. 

We recognize that bias could skew the examples 
collected. For instance, because many sources that we studied 
described phenomena at the organ to organism level (e.g., 
behaviors of animals or plants), potentially useful 
transformation examples at other levels (e.g., the molecular to 
cellular levels) may have been neglected. 
 
3.3. Initial categorization of examples 

At first, two of the authors looked for patterns in the 
examples of biological transformation, and found 20 
transformation principles that organisms use to achieve 21 
objectives. These principles and objectives were determined 
after thorough discussion and mutual agreement between the 
two. These discussions were beneficial in enriching the 
understanding of the transformation examples. When 
disagreement could not be resolved, more information was 
sought until both agreed on how to categorize the example. 

This process highlighted an intrinsic limitation in manual 
categorization, that of subjectivity.  
 
3.4. Tagging examples with multiple participants 

Next, four additional people independently categorized 
the transformation examples and tagged them with keywords. 
Two were authors of this paper, not involved in the 
information collection process, while the other two were 
colleagues: graduate students researching design theory and 
methodology. We hypothesized that incorporating multiple 
perspectives in the categorization process would reveal 
interesting patterns of transformation. We also wanted to 
explore the collective taxonomies or categories that could 
emerge from this process. 

The examples collected were prepared as individual cards, 
each containing a description and a picture of a specific 
biological transformation. Each participant received all 163 
cards. Figure 2 shows an example card. 

Participants were instructed to 1) group the cards based on 
any attributes they perceived as important from the examples 
and 2) tag each card with keywords to describe important 
attributes that they noted. Participants were free to choose 
whichever categories, keywords, or order of performing the 
two tasks that they preferred. They could also use multiple 
keywords to describe each card. Participants were reminded 
that the eventual goal of the study was to extract patterns of 
biological transformation, so that they would not categorize 
the examples based on taxonomical classifications, e.g., genus 
or species. The goal of this categorization/tagging task was to 
capture the participants’ individual perspectives on patterns in 
the given set of transformation examples. 
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Figure 2: An example card and keywords tagged by 

Participant A. 
 

The resulting data from each participant consisted of a set 
of examples described by specific keywords. For example, 
Participant A used the keyword, “absorb”, to describe 
Examples 24, 69, and 133. We interpreted this as participant A 
creating a group (or category), labeled “absorb”. Because 
multiple keywords could be assigned to each example, groups 
were not mutually exclusive. After the categorization/tagging 
task, participants were debriefed and strategies used to carry 
out the task were discussed. 
 
3.5. Developing algorithm to analyze categorization results 

The lead author preprocessed the categorization results to 
ensure that keywords describing the same attribute were used 
in a consistent grammatical format, e.g., change “absorption” 
to “absorb”. The resulting data set contained pairs of example 
identification numbers and keywords, e.g., “24-absorb”.  

Han and Chen (2007) and Robu et al. (2009) investigated 
models to analyze collaborated tagging from a large number of 
people in information systems. We developed a simpler 
algorithm to enable accurate analysis of a relatively small data 
set, rather than approximate trends in a large amount of data.  

The algorithm essentially identified the relatedness of 
groups between multiple participants. Two different measures 
were used to determine the relatedness: 1) subset index, the 
ratio of the size of intersection between two groups to the size 
of the smaller group and 2) similarity index, the ratio of the 
size of intersection between two or more groups to the size of 
their union. The two indices are expressed as:  

 
SU (subset index) = ! !"#$%!!∩!!"#$%!

!(!"#$%&)   
 

SI (similarity index) = ! !"#$%!!∩!!"#$%!!∩…!"#$%&
!(!"#$%!!!∪!"#$%!!!∪…!"#$%&) 

 
n(#)#=#number#of#examples#in#the#set#

groupX#=#the#smaller#group#of#group1#and#group2#
N#=#total#number#of#groups#being#compared#

#
Figure 3 shows an example where Participant A’s group 

has 7 transformation examples, Participant B’s group has 9 
transformation examples, and the two groups share 5 
examples. The subset index would be 5/7 = 0.71, and the 
similarity index would be 5/(7+9-5) = 0.45. 

 
Figure 3: An example output of the algorithm. 

The subset index could potentially identify a hierarchical 
relationship between concepts describing groups. The 
similarity index, on the other hand, could identify synonymous 
concepts used between groups. These two relationships are 
fundamental to building taxonomies or hierarchies used in 
information systems (Baclawski and Niu 2006).  

The subset index is calculated only between two 
participants, while the similarity index can be calculated 
among multiple participants. The algorithm currently 
calculates the indices for every possible combination of 
groups among all participants. 

The relatedness between groups is based on the common 
examples contained in the groups, not the keywords used to 
describe the groups. In other words, when two participants 
formed similar groups based on a similar attribute but labeled 
them with different keywords, e.g., “coil” vs. “roll”, the 
algorithm could still determine that those two groups were 
similar. Thus, the algorithm can identify patterns from 
multiple participant tags despite different lexicons used to tag. 

4. RESULTS 
This section reports observations from the participant 

tagging results, participant interviews, and algorithm output.   
 
4.1. Multiple categorization approaches used by 

participants 
The data collected from participants showed large 

differences in the number of keywords and categories used 
between participants. Figure 4 shows the total number of 
groups and the average number of examples in each group 
created by the participants. Figure 5 shows the frequency of 
group sizes each participant created. The following 
characteristics of each participant’s categorization approach 
were observed: 

• Participant A created mostly small groups. 
• Participant B created many small groups and a few 

large groups. 
• Participant C had many medium-sized groups. 
• Participant D had mostly medium-sized and large 

groups. 

A related group between Participant A and Participant B: 
coil 
22 67 74 80 81 95 99 
collapse into a ball 
22 37 45 67 80 81 97 99 155 
Common examples: 
22 67 80 81 99 
Similarity coefficient: 0.45 
Subset coefficient: 0.71 
Label: coil-collapse into a ball 
1st group size: 7 
2nd group size: 9 
 
Total # of similar groups: 1 
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Figure 4: Total number of groups and average number of 

examples in groups created by each participant. 
 

 
Figure 5: Group size frequency of participants. 

Participants A and C had few large groups because they 
did not create super-categories, i.e., categories within 
categories. In contrast, Participants B and D created small 
categories within larger categories to form hierarchies. 

These observations were consistent with the debrief 
results, as summarized in Table 2, showing the various 
strategies that participants used to carry out the 
categorization/tagging. 

As expected, participants used different methods to carry 
out the categorization/tagging task. For example, Participant A 
used only the keyword tagging method throughout the sorting 
task, while Participants C and D mainly used the 
categorization method. Participant B simultaneously used the 
tagging and categorization methods. 

 

Table 2: Summary of each participant's 
categorization/tagging methods and attributes of focus. 

Partic. Primary 
method  

Attributes 
of focus 

Additional note 

A Tagging with 
keywords 

Mechanisms 
and goals 
(equal 
priority) 

Did not create super- 
categories 

B Categorization 
and tagging 
with 
keywords 

Mechanisms 
(priority) 
and then 
goals 

Combined some 
categories into super-
categories 

C Categorization Any attribute Categorized an example 
under multiple 
categories; no super-
categories 

D Categorization Goals only Created super-categories 

 

The participants also focused on different attributes to 
categorize or tag the examples. For instance, Participant B 
grouped the examples based on mechanisms of 
transformation, and then tagged each group with keywords 
that describe corresponding functional goals achieved by the 
mechanisms. In contrast, Participant D strictly categorized the 
examples based on the goals achieved. Participant C’s strategy 
was notably different; this participant created categories based 
on any attribute that could be associated from the examples. 

 
4.2. Relationships identified from categorization results 

The algorithm described in Section 3.5 quantified the 
relatedness between the groups participants generated. In 
addition to the hierarchical and synonymous relationships 
identified by the subset and similarity indices, we observed 
that causal relationships could be inferred from the pairs of 
related groups identified. The characteristics of each 
relationship discovered from the computational output are 
summarized below. Figure 6 depicts these relationships. 

• Hierarchical: the pair has a high subset index, but a low 
similarity index. Often, the pair consists of one large-
sized group and one small-sized group. 
Ex: “roll” (n=3) and “cover” (n=12) 
 subset index = 1.00 
 similarity index = 0.25 

• Synonymous: the pair has both high similarity and high 
subset indices. This also suggests that the sizes of the two 
groups are similar. 
Ex: “secrete” (n=26) and “liquid coating” (n=24) 

subset index = 0.92 
similarity index = 0.79 

• Causal: the pair usually has a high subset index and 
usually a low-medium similarity index. 
Ex: “deceive” (n=23) and “protect” (n=56) 

subset index = 0.87 
similarity index = 0.34 
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Hierarchical and synonymous relationships could be 
determined purely based on the indices, suggesting that these 
relationships could be automatically identified. However, 
causal relationships did not have clear-cut criteria and require 
interpretation of the semantics of the keywords used. 

Causal relationships can be identified when participants 
choose to describe different attributes of the same group. For 
instance, one participant may use the keyword, “cover”, to 
describe the common mechanism used in a particular group, 
while another participant may use the keyword, “protect”, to 
describe the common goal of the same group. 
 
 

 
 
 

 
Figure 6: Graphical representation of the relationships 

discovered between participant-created groups.  
 
 

Figure 7 shows all group pairs between Participants A and 
B plotted over the corresponding subset and similarity indices. 
The pairs with high similarity indices near the right end of the 
plot, e.g., “coil-coil”, “group-aggregate”, “deceive-optical”, 
etc., exhibit synonymous relationships. The pairs with medium 
to high subset indices but low to medium similarity indices 
exhibit either hierarchical, e.g., “roll-coil”, or causal 
relationships, e.g., “trap air-control internal environment”, 
“secrete-protect”, “deceive-avoid predation”. 

Figure 7: Group pairs plotted over the subset and 
similarity indices. Data points are selectively labeled with 

keywords used by the participants. 
 
4.3. Examples of relationships identified 

Table 3 lists pairs of related groups that scored relatively 
high subset or similarity indices and exhibit either causal or 
hierarchical relationships. This type of information could be 
used to identify important patterns in biological transformation 
and help develop appropriate relations or categories for formal 
representations. 
 
Table 3: Pairs of related groups between participants that 

exhibit causal or hierarchical relationship. 
Related groups Subset 

Index 
Similar. 
Index 

Relationship 

reverse body part-enhance 
mobility 

1.00 0.80 Causal 

secrete-prevent 0.92 0.79 Causal 
secrete-cover 0.95 0.64 Causal 
change color-camouflage 0.92 0.63 Causal/ 

hierarchical 
cover-insulate 0.80 0.40 Causal 
deceive-protect 0.87 0.34 Causal 
detach-separate 1.00 0.33 Hierarchical 
distribute seed-distribute 1.00 0.30 Hierarchical 
trap air-insulate 1.00 0.27 Causal 
coat-cover 1.00 0.25 Hierarchical 
change color-reduce heat 
absorption 

1.00 0.22 Causal 

These results, however, are specific to this current study. 
The categories that emerge from the interpretation of given 
examples will always be dependent on the examples collected, 
which is one limitation of such bottom-up category 
development.  

5. DISCUSSION 
The categorization process identified challenges in sorting 

biological information, and how collective categorization and 
computational tools could help overcome those challenges. 
We believe that the collective categorization approach could 
be further automatized to discover patterns from a large 
amount of biological information. 
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5.1. Challenges in categorizing biological information  
As suspected, we observed differences in how each 

participant categorized examples and identified relevant 
attributes of the examples. These differences led the algorithm 
to discover fewer significant relationships than expected. The 
modeling frameworks developed for biomimetic design are 
intended to achieve consistency in knowledge representation 
and categories created. However, the consistency achieved 
between multiple people modeling/categorizing biological 
information is often not discussed in the evaluation of those 
models. More importantly, the models are usually created by a 
small group of researchers; consequently, bias could exist in 
the representation schemes used, e.g., attributes or relations 
defined to describe the biological information modeled. 

Another significant challenge observed was that 
biological phenomena often involve ambiguous mechanisms 
or goals. Even with the freedom to categorize/tag the 
examples as they please, participants reported difficulty with 
grouping some examples and tagging them with appropriate 
keywords. If a controlled vocabulary and categories were 
provided in advance, they may not have been flexible enough 
to capture some biological information. This is a particularly 
relevant concern because most modeling frameworks used for 
biomimetic design were initially developed to represent 
engineering systems. Vincent and Mann (2002) reported that 
patterns of some biological solutions could not be mapped to 
an engineering problem-solving methodology such as TRIZ. 

The collective categorization method also has its 
limitations. As discussed earlier, Participant C in this study 
took a significantly different approach to categorize the 
examples. It is difficult to assess whether his categorization 
results would be useful for forming a collaborative taxonomy, 
solely because his results were so dissimilar to the majority. In 
addition, a biologist or other nonengineer is likely to create a 
significantly different categorization scheme. Future studies of 
the collective categorization method should ensure that these 
unique inputs are not “smoothed out” from the results of the 
majority, because they could provide nonobvious insights in 
studying patterns of biological phenomena. 
 
5.2. Benefits of collective categorization 

The collective categorization method allows individuals 
to offer their own perspectives when describing a particular set 
of information. Section 4.1 showed the types of differences 
that could exist when people describe or group complex and 
ambiguous information such as biological mechanisms. The 
flexibility of collective categorization is particularly relevant 
for categorizing biological information. 

Allowing this flexibility means that different people could 
describe the same information in multiple ways. In other 
words, semantic ambiguity can arise without explicit 
definitions of tags or categories, which poses challenges for 
computational reasoning. 

However, this research has demonstrated the potential of 
collective categorization in discovering relationships between 
biological concepts. Since semantics involves the study of 

relations between concepts, our collective categorization 
method could help reveal the semantics of biological 
information. Halpin et al. (2007) and Robu et al. (2009) 
support that collaborative tagging could be analyzed to derive 
the meanings of the tags used.  

The semantics identified from collective categorization 
could help discover relations that exist in biology. In addition, 
the results of collective categorization from multiple people 
could be compared with the modeling frameworks specified 
by researchers, to evaluate the consistency of frameworks. 

Cheong et al. (2011) showed that a similar set of semantic 
relations as those reported in this paper could be used to 
identify biologically meaningful keywords (See Section 
2.2.1.). Therefore, the semantics that emerge from collective 
categorization could also assist in the information-extraction 
process, giving clues to what kind of information should be 
captured from biological text. 

 
5.3. Application of computational approach in collective 

categorization 
To discover more relationships between biological 

concepts, more examples of biological transformation and 
participant categorization results could be incorporated. This 
can be resource-intensive because the data acquisition and 
categorization/tagging tasks are currently performed manually. 

Natural-language processing techniques could automate 
or semi-automate both identification and categorization of 
examples. Descriptions of biological transformation may 
include verbs that are causally related, e.g., one verb 
describing the enabling mechanism and the other verb 
describing the desired action achieved. In such a case, the 
automatic extraction tool developed by Cheong and Shu 
(2012) could be used to identify candidate biological 
information.  

For categorization, automatic tagging could be performed 
based on the keywords that appear in descriptions of the 
examples. Multiple tagging results could be populated by 
focusing on different part-of-speeches of keywords, i.e., verbs, 
nouns, adjectives, and mimic the process of multiple people 
tagging the examples with different perspectives. 

The main benefit of a computational approach is that a 
large number of examples can be analyzed, allowing for the 
identification of more patterns of biological phenomena. 

6. SUMMARY AND CONCLUSION 
This work confirmed our suspicions that many challenges 

exist in collecting and categorizing biological information for 
the purpose of biomimetic design. The participants of this 
study used varying approaches to categorize/tag examples of 
biological transformations, resulting in different groups and 
attributes describing the same sets of examples. 

A collective categorization method was developed to 
quantify the relatedness between groups that participants 
created. This method demonstrated the potential to identify 
some meaningful semantic relations between biological 
concepts, i.e., hierarchical, synonymous, and causal. 
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Aggregating multiple sets of free-form categorization and 
tagging could reveal semantics that can contribute towards 
developing formal representations or learning unique patterns 
in biological phenomena.  
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