
Exploring Generative 3D Shapes Using Autoencoder Networks
Nobuyuki Umetani

Autodesk Research, Toronto, Canada

parameterization synthesis

Figure 1: From unstructured triangle mesh (left), our approach can efficiently and robustly construct a quad mesh with a
consistent topology (middle) that is compactly parameterized as a height map (shown in color contour). The autoencoder
constructs a low-dimensional representation of the set of shapes to synthesize new shapes (right). Our interface allows the
user to interactively guide the synthesis by directly manipulating on the shapes.

ABSTRACT
We propose a new algorithm for converting unstructured triangle
meshes into ones with a consistent topology for machine learning
applications. We combine the orthogonal depth map computation
and the shrink wrapping approach to efficiently and robustly pa-
rameterize the triangle geometry regardless of imperfections such
as inverted faces, holes, and self-intersections. The converted mesh
is consistently and compactly parameterized and thus is suitable for
machine learning. We use an autoencoder network to extract the
manifold of shapes in the same category to explore and synthesize a
variety of shapes. Furthermore, we introduce a direct manipulation
interface to navigate the synthesis. We demonstrate our approach
with over one thousand car shapes represented in unstructured
triangle meshes.

CCS CONCEPTS
•Computingmethodologies→Neural networks; Shapemod-
eling; • Applied computing→ Computer-aided design;

KEYWORDS
machine learning 3D shapes, interactive shape exploration

ACM Reference Format:
Nobuyuki Umetani . 2017. Exploring Generative 3D Shapes Using Autoen-
coder Networks. In Proceedings of SIGGRAPH Asia Technical Brief, Bangkok,
Thailand, November 2017, 4 pages.
https://doi.org/10.1145/3145749.3145758

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGGRAPH Asia Technical Brief, November 2017, Bangkok, Thailand
© 2017 Association for Computing Machinery.
ACM ISBN 0730-0301/2017/November. . . $15.00
https://doi.org/10.1145/3145749.3145758

1 INTRODUCTION
Recent advances in machine learning have seen the introduction of
various applications such as classification, style transferring and
generation, which target media such as images and audio. However,
3D shapes have not gained full benefit from machine learning,
despite the vast number of 3D shapes now available on the internet.
This is mainly because the machine learning algorithms require
the consistent representation of input and output data such as an
orthogonally aligned grid (i.e., pixels in the images). Unstructured
triangle meshes are the most popular surface representation in
the computer graphics, but their topological structures are usually
different from one another, hindering the use of machine learning.

In this paper, we present a new parameterization technique for
efficiently converting a given unstructured mesh into one with a
manifold mesh with consistent connectivity using depth informa-
tion. Our parameterization is robust to deficiencies such as holes,
gaps, and inverted triangles. We achieve compact and explicit pa-
rameterization of a 3D shape by representing the shape as a hight
field, which is elevated from the subdivision of a simple primitive
polygon. We demonstrate the robustness of our approach by the
parameterization of over one thousand car shapes.

The main benefits of our parameterization are the generation of
input and output data that is ready for machine learning (Figure 1-
middle). From many shapes in the same category, our autoencoder
network constructs a manifold of these shapes. Using the low di-
mensional representation from the autoencoder, we can generate
and explore a variation of the 3D shapes at the interactive rate
(see Figure 1-right). We also present an interface to interactively
manipulate the 3D shape synthesis result, allowing the user to di-
rectly specify the location of a vertex of a generated shape. Our
contributions are summarized as follows:

• A compact and efficient parameterization of 3D shapes.
• An autoencoder to construct a manifold of 3D shapes.
• A direct manipulation interface to explore generative shapes.

https://doi.org/10.1145/3145749.3145758
https://doi.org/10.1145/3145749.3145758

SIGGRAPH Asia Technical Brief, November 2017, Bangkok, Thailand Nobuyuki Umetani

2 PARAMETERIZATION OF 3D SHAPES
The neural network, which is one of the most common approaches
in machine learning, constructs a map that approximates the in-
put/output relationship in the training data. While the neural net-
work can approximate highly nonlinear functions, their input and
output dimensions are usually predetermined, and thus we need to
represent the training data via fixed-sized feature vectors. In com-
puter graphics, 3D geometries are often available as polygon soup
which are usually non-manifold and un-oriented triangle meshes
which may contain self-intersections. It is very challenging to con-
struct a consistent representation of such unstructured data.

As deep learning became a hot topic in computer science, many
graphics researchers started to study 3D shape representation for
neural networks. We refer to the survey [Masci et al. 2016] for vari-
ous previous studies. Voxel approaches consume a lot of memory
space and thus it is difficult to increase resolution. The multi-view
projection approaches represent a shape with projected images
taken from multiple viewpoints. However, it is difficult to use this
implicit 2D parameterization to synthesize 3D shapes because gen-
erated 2D images may contradict each other. Approaches based
on descriptors extracted from 3D geometry do not usually con-
tain complete information of the original shapes and thus it is also
difficult to synthesize 3D shapes.

Our parameterization constructs a quad mesh with consistent
topology to explicitly represent 3D shapes (Sec. 2.2). The quad mesh
is efficiently computed from the depth map from the multi-view
projection (Sec. 2.1). We are interested in machine learning exte-
rior shapes that are genus zero and not very concave (no point
is occluded completely) and shaped similarly to the cuboid in the
coarsest resolution such that the depth map contains enough infor-
mation on the 3D surface.

2.1 Depth Map

depth surfaceFirst, we set up a bounding box
that encloses all the training
shapes. Then, we divide a face of
the bounding box to construct a
Cartesian grid. From each center
of the grid cell, we shoot a ray in
the inward direction −N⃗ , where
N⃗ is the normal of the bounding
box face. For all the grid cells,
we record the depth, i.e., the dis-
tance the rays traveled before intersecting any of the triangles in
the object. Since the training shapes are always inside bounding
box, the depth takes value in the range (0, Dmax], where the Dmax
is the maximum depth of the bounding box for the grids whose
ray does not intersect with the shape. For the car shapes, we use
the bounding box that has the dimensions 2m×2m×6m. Each face
of the bounding box is divided in the resolution where the grid
size ∆дr id is 1 cm. We used a pixel shader to efficiently compute
the depth map with 4-byte accuracy. Hereafter, we call the surface
prescribed by the projected cell-centered points as depth surface s.

2.1.1 relaxation. The general non-manifold triangle meshes of-
ten have many holes (e.g., the gap between the doors, the air intake
of the front grill). If a ray goes through such holes, it appears as a

sharp spike in the depth surface. Such high-frequency artifacts often
undermine the machine learning by making it focus on the noise.
Hence, we filter out such noise if it exceeds a certain curvature
threshold. We first extract the silhouette of the projection by mark-
ing the outside grids by flood-filling grids with the maximum depth
Dmax . Then, for the cell inside the silhouette and not adjacent to its
boundary, we compute the Laplacian of the depth using the central
differential scheme. If the magnitude of the Laplacian at a cell is
larger than αDmax /∆

2
дr id , we apply the Laplacian smoothing for

that cell. Note the α (here we use α = 0.1) is the threshold factor
indicating the magnitude of the Laplacian comparing its maximum
possible value. We iterate this relaxation process several times until
reaching convergence. Note that this operation converges quickly
as it does not change the silhouette and only reduces the magnitude
of the Laplacian.

2.2 Shrink Wrapping Parameterization
We propose to use the shrink wrapping approach [Kobbelt et al.
1999] to consistently parameterize the 3D shapes for machine learn-
ing. Shrink wrapping is a technique used to construct a subdivision
connectivity mesh by projecting the vertices onto the target mesh
while iteratively subdividing a coarse base mesh. In this paper, we
use a cube as the base mesh because most of the cars have a box-like
geometry in a coarse resolution. In short, how the subdivided cube
is deformed to fit the target 3D shape gives the parameterization of
the shape.

2.2.1 projection directions. We pre-
define the projection direction d⃗ for
each subdividing vertex of the cube such
that only the projection height h deter-
mines the positions of the vertices. This
constant direction projection instead of
variable directions helps to reduce the
number of parameters to encode the
movement of a vertex from three variables (XYZ displacement)
to a single variable (scalar height). Given an axis-aligned cube, we
choose projection directions for each subdivision vertex by adding
up the normals of the faces to which the vertex belongs (see the
inset figure). For example, the projection direction is d⃗ = (0, 0,+1)
if the vertex is inside a face with +z normal. If the vertex is on
the edge between the faces with normal -x and +z, the projection
direction would be d⃗ = (−1, 0,+1). If the vertex is at the corner
surrounded by the three faces with normals +x, -y, and -z, the pro-
jection direction will be d⃗ = (+1,−1,−1). The integer values of the
XYZ components of the projection direction help to accelerate the
computation of the following ray intersection method.

2.2.2 corner points. Given the set of depth surfaces S for an
object, we first move the eight corner vertices of the base cube
onto the object’s surface. The corner vertex should be placed such
that the base cube approximates the object as much as possible.
Let a corner vertex have a projection direction d⃗ ; we simply place
the vertex where the depth surface s is tangent to the plane with
normal d⃗ (see Fig. 2-top left). We ignore the depth surface s ∈ S if
its depth projection direction is opposite to the vertex projection

Exploring Generative 3D Shapes Using Autoencoder Networks SIGGRAPH Asia Technical Brief, November 2017, Bangkok, Thailand

direction N⃗ · d⃗ < 0 because the tangent point is usually not on the
object surface. For the rest of the tangent points, we compute the
average to determine the final corner points location. This corner
vertex placement is somewhat heuristic, but gives a desirable result
for an approximately convex shape such as that of most cars.

2.2.3 ray intersection. In each subdivision iteration, we subdi-
vide the cube mesh in half by adding vertices at the center of the
edges and quad faces (see Fig. 2). From each newly added vertex,
we shoot a ray in the direction d⃗ to find the first intersection point
ps against all the depth surfaces s ∈ S. If the ray does not intersect
with a depth surface, we shoot a ray in an opposite direction −d⃗ .
For the intersection points, we then compute their average with
the weightws as

p =
∑
s∈S

wsps/
∑

ws , ws = N⃗ · n⃗s , (1)

where n⃗s is the the normal of the depth surface at the intersec-
tion point. We trust the intersection point where the normal n⃗s
is similar to the projection direction N⃗ because the depth surface
better represents the object’s surface and it is less affected by the
relaxation step. Again we ignore the intersection point if the depth
projection direction faces opposite to the ray direction as d⃗ · N⃗ < 0.
Since the XYZ components of the ray direction d⃗ are either 0,+1 or
-1, we can efficiently find the set of grid cells where the ray may
intersect by traveling the adjacent cells.

2.2.4 projection height. We denote δh the projection height, i.e.,
how far the original subdivision point is projected to reach the
intersection point p in the direction of the ray d⃗ . For visualization
purposes, we compute the total heighth for each subdivision step by
adding its projection height δh to the averaged total heights of the
points of the subdivided element (edge or quad). The total heights
visualize how much in total the subdivision points are lifted from
the base mesh. Fig. 2-middle shows the color contour visualization
of the total height at different levels of the subdivision.

subdivision projectioninitialization

level 0 level 1 level 2

level 3 level 4 level 5 -0.2m

0.5m

Figure 2: Shrink wrapping parameterization. (top) 2D
schematic illustration. (bottom) Example of parameteriza-
tion in different subdivision levels.

3 MACHINE LEARNING
3.1 Training Data
We subdivide the base cube five times to create a quad mesh with
6146 vertices. The shape of the quad mesh is parameterized with
the XYZ coordinate of the eight corner points and the projection
height δh of the 6138 subdivision points. We also included three
additional parameters to encode the location of the front and rear
tire axis and its radius. After all, we have a parameter vector with
8 × 3 + 6138 + 3 = 6165 dimensions.

We use car shapes in the ShapeNet [Chang et al. 2015] data set for
our machine learning. There are approximately 3.5 k shapes under
the "car" category. However, some of them are highly concave if, for
example, their windows are open. We manually selected realistic
and reasonably convex 1243 cars. These cars include various styles
such as sedans, wagons, pickup trucks, sports cars and classic cars.
For these cars, we manually removed sharp non-convex details
such as tires, side-mirrors, spoilers, and antennas. We compute
the depth surface from five projection directions (top, front, back,
right and left). We do not project depth from the below because the
underbody of the car is sometimes missing or is very complicated
(with pipes or shafts). The shrink wrap vertex projection for the
underbody completely relies on depth surfaces from side views.

3.2 Autoencoder Network
So far, we have described how a 3D shape is parameterized in a
fix-sized high dimensional vector. This high dimensional space
is very difficult to explore manually because there are too many
parameters to tweak. In this section, we describe a way to extract
a much lower number of parameters that parameterize various
shapes in the same category. In other words, we extract a shape
manifold, which is represented in few parameters, from the high
dimensional parameter space.

There are many techniques used to reduce the number of pa-
rameters such as principal component analysis. Here, we use the
autoencoder technique to construct nonlinear mapping between
a reduced number of parameters to high-dimensional parameters.
The autoencoder is a neural network that has a hidden layer with a
small number of neurons. For the technical details of the autoen-
coder, please refer to the survey [Schmidhuber 2015].

Fig. 3 illustrates the configuration of our neural network. Our
neural network is a feed-forward neural network with four fully
connected layers. The output layer has a linear activation function,

linear

10
di

m
.

10
00

di
m

.

61
65

di
m

.

61
65

di
m

.

10
00

di
m

.

sigmoid

encoder decoder
0.1

1

10

100

1000

0 5000 10000 15000 20000

input output

Figure 3: (left) Configuration of our autoencoder network.
(right) Convergence of the sum of squares in the training.

SIGGRAPH Asia Technical Brief, November 2017, Bangkok, Thailand Nobuyuki Umetani

while the other layers use a sigmoid function for the activation
functions to express nonlinearity.

We train our neural network such that the input values and the
output values are as similar as possible for all the training shapes
in the sum of squares measure. We used the GPU implementation
of the Tensor flow™ to train the network. The dropout rate is set
to be 20% for all the layers to reduce the over-fitting problem. We
used the stochastic gradient descent using an Adam optimizer with
batch size 50.

4 RESULT
Our parameterization of 3D shapes can robustly parameterize all
of the input triangle meshes of the cars without serious distortion
such as flipped faces. To encourage further use of this dataset, we
attached entire quadmeshes obtained through our parameterization
as supplemental material. The parameterization is fast enough to
be interactive. Conversion from the input triangle mesh (which
contains 11.2k triangles on average) into hight-map parameters
takes 0.33 second on average.

It takes about 20 minutes to iterate the optimization 200, 000
times to obtain the convergence in the network training (see Fig. 3-
right). Thanks to our consistent parameterization, we could train
the autoencoder network with relatively small errors. The root
mean squared error of the neural network averaged over all the
training set and all the vertices is 0.01 m, which indicates the input
and output shape is only different in the order of few centimetre
by average. Fig. 4-top shows some of the examples of the input and
output of the autoencoder network. The autoencoder preserves the
feature of the input shapes well.

The middle layer of our autoencoder network has ten neurons,
which is the smallest among all the four layers. The neural net-
works before and after the smallest layer are called the encoder and
decoder, respectively. Since the output of the network is fully de-
termined by the input of these ten neurons, we can synthesize new
shapes by changing input values q for the decoder between zero and
one, which is the range of the sigmoid function (see Fig. 4-bottom
for some of the synthesis results). The synthesized car shapes have
detailed features such as the front grills or the rear visors. The
number of input parameters is small enough for the user to directly

in
pu

t
ou

tp
ut

Figure 4: (top) Examples of input and output of our autoen-
coder network. (bottom) Synthesized car shapes

manipulate them with slide bars. The average shape synthesis from
the low-dimensional parameters runs roughly 300 FPS.

4.1 Interactive Exporation

parameters

So far, we have described the
method used to consistently pa-
rameterize shapes and reduce
their dimensions using the au-
toencoder. However, it is some-
times difficult to determine how
to manipulate the parameters q
to obtain a desirable shape since
the relationship between param-
eters and the resulting shape is not obvious. Hence, our interface
allows the user to interactively specify x′i which is the target posi-
tion for a vertex i to steer the synthesis results (see the inset figure).
The interface runs the optimization of the input of the decoder
parameter q such that the position of the output shape’s vertex
xi (q) is as close as possible by minimizing the following error

E (q) = | |xi (q) − x′i | |2. (2)

Since our subdivision and projection approach provides a closed
form relationship between the input projection heights and coordi-
nates of the vertices, we could analytically compute the gradient of
the error E concerning the low-dimensional parameter q. Once the
gradient is computed, we update the parameter using the Newton-
Raphson iterations as q := q − E (q) (∂E/∂q) /| |∂E/∂q| |2. For each
update, we project each element of q between zero and one if it
exceeds that range. The optimization works at 17 FPS, which is
sufficiently fast to allow the interactive manipulation.

5 CONCLUSION
We introduced a parameterization approach that combines the
depthmap and shrinkwrapping to efficiently and robustly construct
a consistent parameterization for machine learning of 3D shapes.
We further demonstrated the construction of a shapemanifold using
an autoencoder and presented an interface to directly manipulate
the generation of 3D shapes.

Our method is not suitable for highly concave shapes such as
characters’ bodies because the coarse geometry is far from a cube.
This is not a fundamental limitation because we can change the base
coarsest mesh to other than a cube (such as coarse quad mesh) or
segment the shape into several convex parts that are parameterized
individually. We are also considering using our manifold represen-
tation of car shapes to improve the object detection framework for
self-driving cars.

REFERENCES
Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang,

Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. 2015. ShapeNet: An Information-Rich 3D Model Repository. Technical
Report arXiv:1512.03012 [cs.GR].

Leif P. Kobbelt, Jens Vorsatz, and Ulf and Labsik. 1999. A Shrink Wrapping Approach
to Remeshing Polygonal Surfaces. Computer Graphics Forum 18, 3 (1999), 119–130.

Jonathan Masci, Emanuele Rodolà, Davide Boscaini, Michael M. Bronstein, and Hao Li.
2016. Geometric Deep Learning. In SIGGRAPH ASIA 2016 Courses (SA ’16). ACM,
New York, NY, USA, Article 1, 50 pages.

J. Schmidhuber. 2015. Deep Learning in Neural Networks: An Overview. Neural
Networks 61 (2015), 85–117. Published online 2014; based on TR arXiv:1404.7828
[cs.NE].

	Abstract
	1 Introduction
	2 Parameterization of 3D Shapes
	2.1 Depth Map
	2.2 Shrink Wrapping Parameterization

	3 Machine Learning
	3.1 Training Data
	3.2 Autoencoder Network

	4 Result
	4.1 Interactive Exporation

	5 Conclusion
	References

