
DesignDEVS: Reinforcing Theoretical Principles in a
Practical and Lightweight Simulation Environment

Rhys Goldstein, Simon Breslav, Azam Khan

Autodesk Research
Toronto, Canada

{rhys.goldstein, simon.breslav, azam.khan}@autodesk.com

ABSTRACT
We introduce DesignDEVS, a simulation development envi-
ronment based on the Discrete Event System Specification
(DEVS) formalism. DesignDEVS aims to promote under-
standing and appreciation of model-simulator separation, de-
layed binding of models, and other key principles of a sys-
tems engineering approach. To minimize installation and
learning time, we embed a lightweight scripting language
called Lua as the primary programming language for model
implementation. Lua is extended to both enforce and com-
municate a number of modeling constraints implied by DEVS
theory. These constraints include restrictions on state changes
and data references. While not all theoretical principles are
strictly enforced, we include a discussion of best practices
which account for practical considerations such as modeler
convenience and computational efficiency. DesignDEVS has
been used for complex modeling tasks in architectural and
building science research. Its unique features may aid in the
teaching of DEVS.

Author Keywords
Simulation development environment; DEVS theory; Lua
programming language; modeling constraints; best practices.

ACM Classification Keywords
I.6.7 Simulation and Modeling: Simulation Support Systems;
I.6.5 Simulation and Modeling: Model Development.

1. INTRODUCTION
Computer simulations are actively developed across a wide
range of scientific and engineering domains. A variety of pro-
gramming techniques are employed in these efforts, includ-
ing acausal modeling as popularized by Modelica [9], block-
diagram editing as realized by Simulink [19] and Ptolemy II
[22], and traditional imperative programming as supported
by C, C++, Java, Python, MATLAB, and even Fortran in
many cases. An overarching goal of the field of modeling
and simulation is to steer simulation developers—from all
disciplines—to build communities of practice using scalable
methods that will ultimately give rise to collaboratively au-
thored predictive models of the most complex natural and/or
artificial systems that humans encounter and/or design.

Yet a practitioner’s time is limited. He/she is often inclined
to stick with familiar programming techniques, instead of ex-
ploring alternatives that may or may not prove beneficial once

SpringSim-TMS/DEVS 2016, April 3-6, 2016, Pasadena, CA, USA
c© 2016 Society for Modeling & Simulation International (SCS)

all practical considerations are taken into account. Unfortu-
nately, the result is that systems engineering principles are
rarely followed by the communities that have the most to gain
from them. Ad-hoc simulators are typically embedded within
model-specific code, causing redundancy and conflict when
two or more models must be integrated. Also, models often
refer explicitly to one another, creating dependencies that dis-
courage the testing of new combinations of models.

It is in this context that a formalism known as the Discrete
Event System Specification (DEVS) [31] holds great promise.
First, DEVS is among the most general of modeling for-
malisms. It has been shown that a multitude of other types of
models can be formally mapped into DEVS models, though
the reverse is not necessarily true [30]. Second, DEVS lends
itself well to the imperative style of programming familiar to
virtually all scientists and engineers. Thus even when graph-
ical features are incorporated into a DEVS-based simulation
environment, the textual programming tasks that remain tend
to build upon a user’s preexisting knowledge. Overall, DEVS
can be viewed as a means of delivering widespread benefit
with moderate learning demands, while exposing practition-
ers to helpful principles such as model-simulator separation
and delayed binding of models.

Numerous simulation development environments are avail-
able which provide both textual and graphical features for de-
veloping, debugging [20], and experimenting with simulation
models. Among the simulation environments most dedicated
to DEVS theory are those listed in Table 1: PowerDEVS [3],
DEVS-Suite [32], CoSMoS [24], CD++ Builder [4], SimStu-
dio [28], and VLE [23] (see [8] for a more comprehensive
list). As indicated in the table, each tool is based on either
the original 1970s version of the theory, Classic DEVS, or a
1990s variant called Parallel DEVS [6], though various ex-
tensions may be supported as well. Each environment han-
dles atomic models implemented in a textual programming
language—usually C++ or Java—while some of the tools fea-
ture state-diagram-like editors that provide an alternative to
imperative code. All of these tools offer a node-link diagram
editor for defining coupled models that combine other mod-
els in a hierarchical fashion. What distinguishes each simula-
tion environment is a set of priorities and associated features,
which we summarize with brief “Objective” statements in Ta-
ble 1. Each tool will teach or reinforce the concepts it most
emphasizes, such as the quantization of state in the case of
PowerDEVS, the management of models in the case of CoS-
MoS, or the integration of different types of graphical models
in the case of CD++ Builder.



Environment DEVS Variant Language Objective

PowerDEVS Classic DEVS C++ Promote DEVS-based quantized integrators to combine continuous and discrete
models using block-diagram-like compositions similar to Simulink, Ptolemy II.

DEVS-Suite Parallel DEVS Java Teach a systems approach to the modeling of computer networks and other
systems, with animations of the simulation process superimposed on the model.

CoSMoS Parallel DEVS Java Build upon the DEVS-Suite simulator with new visual modeling interfaces and
a framework for categorizing and managing models and model families.

CD++ Builder Classic DEVS
+ Cell-DEVS C++ Reduce barriers for non-developer users with a state-diagram-like editor and

other graphical modeling tools within an extensible Eclipse-based framework.

SimStudio Classic DEVS Java Establish a multi-layer platform to support web-based collaborative authoring of
simulation models.

VLE Parallel DEVS
+ extensions C++ Support heterogeneous model development and experimentation through a broad

set of DEVS extensions and environment plug-ins.

DesignDEVS Classic DEVS Lua Teach DEVS principles via modeling constraints enforced at run-time, while
exploring best practices that account for scalability and user experience.

Table 1. A list of DEVS-based simulation environments indicating the underlying theory, programming language, and objective.

Some environments use DEVS, but feature it less prominently
than those in Table 1. AToM3 [7] exemplifies multi-paradigm
modeling [29], where DEVS is regarded as a means of inte-
grating models developed according to a diverse set of con-
ventions. James II [14] also combines DEVS with other ap-
proaches. MS4 Me [25] is based on DEVS, but purposely
minimizes its users’ perceived exposure to systems theory by
providing alternative modeling options such as sequence dia-
grams and natural language documents. The tool introduced
in this paper, DesignDEVS, has more in common with the
simulation environments in Table 1. As illustrated in Sec-
tion 2, elements of DEVS theory are prominently exhibited in
the user interface. However, as with similar tools, the empha-
sis on DEVS is not meant to preclude support for modeling
strategies seen as closer to the users’ domains of expertise.

DesignDEVS aids in the teaching of DEVS principles with
an emphasis on practical considerations such as ease of in-
stallation, rapid prototyping of models, and computational
efficiency, to name of few. It was found that by embedding
Lua into the environment as the primary programming lan-
guage exposed to users, we could achieve the desired level
of user convenience while furthering our educational objec-
tives. Lua [16] is a minimalistic programming language with
an interpreter specifically intended for embedding in software
applications. This allows DesignDEVS to be distributed in a
small and self-contained package, and eliminates the step of
generating executable code from users’ models. Lua is also a
highly extensible language. Section 3 describes how Lua’s
environment tables can be modified to provide modeling-
specific functions without importing large libraries. Further-
more, Lua’s metatables can be exploited to prevent users from
performing harmful operations. Explanations for these mod-
eling constraints are communicated through error messages.

The most unique aspect of DesignDEVS is arguably the con-
straints it imposes on state changes and data references during
run-time debugging. Consistent with DEVS theory, it is im-
possible to alter a state variable in the time advance function.
More interestingly, if the state variable contains a data refer-
ence, then the value that is pointed to cannot change. The tool
also features a novel solution to the “Insidious Pointer” prob-

lem as described by Nutaro [21]. In DesignDEVS, it is vir-
tually impossible to communicate a data reference between
two components in such a way that they alter one another’s
state by modifying the shared memory. Yet for the sake of
efficiency, it is still possible to pass pointers under safe condi-
tions as explained in Section 4. Whereas a number of DEVS-
based libraries enforce some of these constraints using const

variables or deep copies, the DesignDEVS approach is both
comprehensive and informative. Any combination of value
and pointer assignments that contradicts the formalism should
produce a run-time error, and the associated restriction is ex-
plained to the user.

It is not practical to enforce all principles. Some principles
must be promoted through best practices, as discussed in Sec-
tion 5. An ongoing challenge is to establish best practices
which address not only scalability but also user experience.

2. DESIGNDEVS USER INTERFACE
The layout of the DesignDEVS user interface, shown in Fig-
ure 1, reflects a key principle of modeling formalisms in gen-
eral: the separation of model and simulator. The window is
split by a horizontal divider bar into an upper section dedi-
cated to modeling, and a lower section focused on simulation
runs. All DEVS-based simulation environments feature this
separation at a semantic level, but the visual partitioning of
model and simulation elements reinforces the concept.

The modeling section above the horizontal divider is split into
a model list on the left, and a model editor on the right. The
editor is further organized by tabs, where the types of tabs
depend on whether the selected model is atomic or coupled.
If the selected model is coupled, as in Figure 1, there are 5
tabs including the Composition tab which contains the node-
link diagram. If an atomic model is selected, the editor has 8
tabs including the Internal Transition tab shown in Figure 2 with
Lua code for a classic Game of Life model.

The simulation section below the divider has a list of simu-
lations on the left, and tabs for configuring and viewing the
selected simulation on the right. These tabs include Messages,
as shown in Figure 1, where input messages are created prior
to running a simulation. The simulation end time is adjusted



Figure 1. A screenshot of the DesignDEVS user interface showing a
model list and editor (upper section), and a simulation list and configura-
tion/visualization tools (lower section).

on the far right of the timeline. Because items in the model
list (top left of Figure 1) and the simulation list (bottom left)
have a one-to-many relationship, multiple configurations can
be stored for the same model. To support debugging after
a simulation is run, both input and output messages are dis-
played on the timeline as seen in Figure 3 (output messages
are lower and have upward arrows). Skewed triangular ele-
ments below messages remind users that discrete events are
not necessarily evenly distributed over simulated time, and
that multiple events can be associated with the same time
point. As shown in Figure 2, there is also a Visualization tab
for displaying 2D animations of simulation results.

The principle of delayed binding is emphasized in the node-
link editor for coupled models. DEVS models communicate
via messages without explicitly referring to one another, al-
lowing models with similar interfaces to be interchanged. To
convey this notion, a node is first drawn, then named, and fi-
nally associated with a particular model. The model can be
replaced later without deleting the node.

To minimize the risk of important features remaining hidden
from users, DesignDEVS places nearly all functionality close
to the context of their use instead of in the menu bar at the top.
The coupled model editor follows this philosophy to an ex-
treme degree. All node-link editing functions are embedded
in the diagram, consistent with the human-computer interac-

Figure 2. A transition function populated with Lua code for a classic Game
of Life model (top), and a 2D visualization of the results (bottom).

tion principle of direct manipulation [26]. The functions are
revealed in a tooltip depending on the cursor location. The
indicated action is executed simply by clicking; there is no
drag-and-drop interaction and no right-click menu.

When the cursor is within the coupled model, regions of the
background are filled with diagonal stripes as shown in Fig-
ures 4 and 5. Clicking on a blue stripe will expand the model
vertically, as in Figure 4 (top), or horizontally, depending on
whether the cursor is closer to a horizontal or vertical grid
line. Similarly, clicking on a red stripe contracts the model.
Some grid cells are solid green, indicating they are suffi-
ciently far from existing boundaries to place a node. Hover-
ing over a green cell shows where a node will be placed upon
clicking, as in Figure 4 (bottom). Once a node is created, red
text indicates that it needs a name and model. To prevent cir-
cular dependencies, a model can only be assigned to a node if
the model appears above the coupled model in the list shown
at the top left of Figure 1. Nodes can be deleted or moved
by clicking on either the red or blue square that appears at

Figure 3. Pre-simulation input messages and post-simulation output messages, as appearing in the DesignDEVS timeline.



Figure 4. Coupled model expansion and node insertion.

the top-left or bottom-right corner when hovering. It is never
possible to produce overlapping nodes or even adjacent nodes
that might conceal their surrounding links.

Links indicate how messages flow within a coupled model.
To insert a link, one first clicks on a green rectangle on the
boundary of a node or the coupled model itself. With the ori-
gin of the link determined, green rectangles appear through-
out the diagram at every possible link destination. DEVS the-
ory disallows links from a component to itself, so the green
rectangles do not appear around the node of origin. Once a
link is placed, the ports at either end point can be assigned.
Figure 5 illustrates the placement of a link and the final model
as a result of the manipulations in both Figures 4 and 5.

DesignDEVS is developed for Windows and Mac OS using
C++ with graphical user interface components from the Qt
library [27], though only Lua is exposed to users.

3. LANGUAGE EMBEDDING AND EXTENDING
Lua is a high-performing yet lightweight scripting language
that has achieved popularity within the computer game indus-
try. Among the features that make Lua simple is the fact that
it provides only one data structure: the table. Tables are col-
lections of key-value pairs that are passed by reference and
monitored by a garbage collection algorithm. Whereas most
modern languages have separate data types for sequences (i.e.
arrays or vectors) and records (i.e. tuples or structs), Lua
relies on tables with integer- or string-valued keys, and has
built-in operations dedicated to these types of tables.

Figure 5. Coupled model link insertion.

In Lua, when a new variable is created with an assignment
statement such as x = 5, the underlying effect is to add the
key-value pair ("x", 5) to a special table called the environ-
ment table (named ENV in Lua 5.2, the version used by De-
signDEVS). DesignDEVS modifies environment tables such
that newly added keys become state variables of the DEVS
model instance. Of course, a variable that is local to a partic-
ular event should not be treated as a state variable, and must
not persist between events. Fortunately, these local variables
are inherently supported by Lua’s built-in local keyword.

In addition to reinterpreting variable assignments, Design-
DEVS expands environment tables by adding the modeling-
specific functions in Table 2. The duration function creates
a time value from a multipler and a unit (e.g. duration(8,
"minutes")). The value is rounded to the Time Resolution of
the overall simulation, which is always as fine or finer than
the Time Resolution of any of the component models. An op-
tional third argument controls the rounding method: "floor",
"ceil", "halfup" (default), "halfdown", "halfeven", or
"halfodd". With a single string argument, the duration
function can produce a single unit of the simulation pre-
cision ("minimum"), the maximum representable duration
("maximum"), or an infinite duration ("forever"). A dura-
tion may appear anywhere in a DesignDEVS model, and in
the Time Advance tab it serves as the return value. Other key
functions include input, used in the External Transition tab to
access received values; output used in the Internal Transition



Function Description
duration Construct a time duration value
tostring Convert a value (incl. table) to a string
print Print arguments on the console
const Make a table permanently read-only
copy Make a deep copy of a table
runscript Load a .lua file from the project folder
error Abort with an error message
input Input a (port, value) pair
output Output a (port, value) pair
elapsed Get time elapsed since previous event
total elapsed Get time elapsed since simulation start
remaining Get time remaining until planned event
get parameter Get parameter value
set parameter Set component parameter value
get statistic Get component statistic value
set statistic Set statistic value

Table 2. Modeling-specific functions.

tab to send values; and elapsed, used where needed to ob-
tain the time elapsed since the previous event. The input and
output functions make use of the port names specified in the
Main tab.

Environment table modifications allow models to be imple-
mented with virtually no boilerplate code and no explicit im-
porting of DEVS-specific libraries (though custom libraries
can be imported with the runscript function). As a result,
DEVS models can be rapidly prototyped. For example, Ta-
ble 3 lists the source code for three basic models implemented
in a mere 2, 4, or 18 lines. To help new users, these models
and several others are included—along with step-by-step in-
structions contained in the model Description fields—in a Gen-
erator Processor Tutorial project packaged with the software.
Also provided is the Game of Life model of Figure 2, and
the coupled model example illustrated in Figures 4 and 5.

4. CONSTRAINT CHECKING AND COMMUNICATION
DEVS has a number of theoretical constraints by virtue of
its mathematical nature. For example, a pre-transition state
s is never modified, but rather replaced by a post-transition
state s′. DEVS tools differ in how constraints are enforced.
SC-DEVS [18], one of the many non-graphical DEVS-based
simulation libraries, is particularly loyal to the theory in that

the current state (of C++ type const State&) is immutable
and the new state is a distinct object. If the state requires
a considerable amount of memory, the more object-oriented
approach of VLE and several other DEVS-based simulators
is more computationally efficient. In VLE, state variables can
be directly modified by state transition member functions of
model-specific C++ classes. Member functions correspond-
ing to the DEVS formalism’s time advance and output func-
tions are declared const to prevent state changes, consistent
with the theory. Similar constraints have been enforced us-
ing custom modeling notations [2]. Nevertheless, few DEVS-
based simulators fully protect the user from theoretical incon-
sistencies caused by the use of data references, or pointers.

As Nutaro [21] writes, an “insidious problem [our emphasis]
with exchanging pointers is that the output object is shared by
its producer and all of its recipients. [...] In effect, the shared
object becomes a hidden channel for communication, and its
effects can be unpredictable, and generally undesirable, as
the root cause can be difficult to pin down.” Based on Nu-
taro’s description, we call this the Insidious Pointer Problem.
The problem is acknowledged in the testing framework of Li
et al. [17], who investigate two simulators and find that both
fail at least one related test case.

DesignDEVS promotes consistency with DEVS theory in
large part through the detection of a broad range of errors at
run-time. An example is the calling of a Table 2 function in an
inappropriate context. For example, if input() appears in the
Internal Transition tab, the error "attempt to call ’input’
outside of External Transition" is produced. Clicking
the error message in the Console selects the relevant tab and
highlights the offending line of code. To detect the error,
input is implemented as a closure (as in functional program-
ming), that captures an instance-specific table, which in turn
keeps track of what code is being executed. Other errors
are detected through the use of metatables, described below.
The entire approach is comprehensive in that no combination
of value and pointer assignments should result in undetected
side effects that contradict the mathematics of the formalism.

Lua differs from C++ in that instead of declaring variables
const, one can dynamically control whether a table is con-
stant or mutable. More generally, one can attach or modify
metatables to customize the language in a number of ways,
including but not limited to controlling “constness”.

Model State Initialization Time Advance External Transition Internal Transition
Greeting
Generator
(2 lines)

return duration(8, "minutes") output("out", "Hello")

Counting
Generator
(4 lines)

n = 1 return duration(8, "minutes")
output("out", n)
n = n + 1

Ideal
Processor
(18 lines)

item = nil
inputCount = 0
outputCount = 0

local dt r =
duration("forever")

if not (item == nil) then
dt r = duration(0)

end
return dt r

local port, value = input()
if port == "in" then

item = value
inputCount = inputCount + 1

else
error("no port named ’" +

port + "’")
end

output("out", item)
item = nil
outputCount =

outputCount + 1

Table 3. Complete source code for three simple DesignDEVS models. The line counts treat multi-line instructions as one line.



The simplest errors are detected by metatables attached to
environment tables. These metatables are aware of what part
of a model is being executed. If a state variable is modified in
the External Transition or Internal Transition tab, there is no error;
but if one attempts to change the variable in the Time Advance
tab, a metatable triggers the error "attempt to reassign
a state variable in Time Advance (state changes
occur in External and Internal Transitions)".

To detect not just a few clearcut errors such as those above,
but rather the vast majority of operations that contradict
DEVS theory in subtle ways, great attention is paid to the
metatables attached to tables defined by the modeler. Recall
that in Lua, these user-defined tables are passed by reference
and include all sequences and records as well as general col-
lections of key-value pairs. Therefore, careful handling of
these tables addresses essentially every data structure and ev-
ery pointer encountered in a typical DesignDEVS model. The
first step is to assign each table one of following types: raw,
regular, state, external regular, external state, acquired state,
and constant. Tables are converted from one type to another
depending on the context. Certain operations are prohibited
based on the context and the table type.

A raw table is a basic Lua table. If a DesignDEVS-specific
operation is performed on a raw table, it is converted into a
regular table. The conversion process triggers an error if the
table contains a key value that is another table, a function, or
an object that cannot be printed. Importantly, circular refer-
ences trigger the error "attempt to record or transmit a
table with a circular reference (simulation models
require tables that do not reference themselves,
not even indirectly)".

If a regular table is assigned to a state variable or a table
within a state variable, it is converted into a state table. If
a raw table is assigned in a similar manner, it is silently
converted into a regular table before becoming a state table.
Altering a state table fails if done in the wrong context (e.g.
"attempt to modify a state variable table in Time
Advance)"). This protects not only state variables from un-
desirable modifications, but also objects referenced by state
variables. The const feature of C++ does not necessarily
provide this guarantee, since a const pointer does not mean
the underlying data is constant. Furthermore, if we regard a
model’s entire state as a hierarchy (i.e. state variables may
be tables containing other tables), a state table may only
occur once in that hierarchy. A second reference triggers
an error ("attempt to reference a modifiable table
in multiple state variables or in multiple places
within a single state variable"). This modeling con-
straint, which also cannot be enforced using C++’s const,
prevents a change within one state variable from affecting
another. If a state table contains a state table, and the former
is altered such that it no longer contains the latter, the latter
is converted back to a regular table.

Three types of tables occur only in input messages received
during an External Transition. Their collective purpose is to
solve the Insidious Pointer Problem whereby a received
data reference—a Lua table, in our case—creates a “hidden

channel for communication” [21]. When a regular table is
received, it becomes an external regular table which, to avoid
influencing other recipients, cannot be altered ("attempt
to modify a table just received from another model
instance"). However, an external regular table can be stored
in the recipient’s state. The table then becomes an acquired
state table, and can be modified in a future External Transition
or Internal Transition. If a state table or acquired state table is
received in a message, it is an external state table which can
be neither altered ("attempt to modify a state variable
owned by another model instance") nor stored ("attempt
to reference a modifiable table in state variables
of multiple model instances").

Any table can be converted to a constant table using the const
function. Once made constant, a table can never be altered
(though it can be copied, and the copy can be modified). Mul-
tiple references to constant tables can exist in both within a
single model instance and among communicating instances.

If desired, the user can avoid memory sharing by copying a
table using the copy function. Some DEVS tools address the
Insidious Pointer Problem by performing such deep copies
by default. For sake of computational efficiency, Design-
DEVS accommodates a variety of communication patterns
involving pointers, yet still circumvents their problematic ef-
fects. The solution is unique, and provides a means to inform
users about the constraints being enforced. By incorporating
DEVS-specific error messages in a DEVS-inspired user in-
terface, DesignDEVS removes many of the barriers novices
encounter when developing formalism-based simulations.

5. APPLICATIONS AND BEST PRACTICES
DesignDEVS has served as the development environment
for several simulation projects, including a model combining
cognitive structural elements with motion sensors in buildings
[5], and various explorations of equation-solving and time ad-
vancement strategies in the context of building system control
and heat transfer [11, 13]. Although DesignDEVS can be ap-
plied to a multitude of domains, its name reflects an early
focus on architectural design and building science.

Inevitably, the use of a simulation environment highlights
practical considerations such as modeler convenience and
computational efficiency, which are sometimes at odds with
aspects of the underlying formalism [10]. In light of these
considerations, we find that some DEVS principles are ap-
propriate to enforce through constraints such as those in Sec-
tion 4, whereas other principles can be encouraged by defin-
ing and communicating a set of best practices. An anal-
ogy can be made with object-oriented programming, where
language designers tend to permit the declaration of public
member variables despite recommending such variables be
declared private. The overarching goal is to promote scalable
methods while prioritizing user experience.

Consider the Classic DEVS output function λ. It is always
invoked immediately before the internal transition function
δint , but only the latter is permitted to modify the state. Sup-
pose that a large array must be computed, output, and stored.
Theoretically, either (a) the array must be computed first in λ



and then again in δint , or (b) λ and δint must both be invoked
twice such that the first δint(s) occurs before the second λ(s).
This raises an unfortunate conflict between DEVS theory and
the need for computational efficiency and convenience. To
produce a positive experience for users, DesignDEVS shields
them from this issue by merging λ and δint into a single In-
ternal Transition tab where the state is permitted to change. An
output function can be invoked any number of times from
within the tab. The outputs are transmitted in sequence such
that each is received by a separate External Transition event. Al-
though this convention has theoretical drawbacks [10], there
is precedent for the merging of λ and δint [15]. If one’s pur-
pose is to teach the DEVS formalism, a best practice could be
established in which output is invoked at most once, with no
preceding alteration of any state variable.

Many simulation environments allow users to directly modify
the parameters of the components of a coupled model. De-
signDEVS takes the opposite approach, enforcing the princi-
ple of encapsulation by giving every coupled model an Initial-
ization tab. The modeler may read the parameters of the cou-
pled model (using get parameter) and produce the param-
eters of the components (using set parameter). With this
mechanism, it is possible to centralize pre-simulation pro-
cessing operations, as well as ensure that two components re-
ceive the same parameter value where needed. Atomic mod-
els are given an extra initialization step in the form of a Con-
stant Initialization tab, where parameters are used to define a set
of constants. These constants are actually mutable within the
tab, but are automatically fixed prior to State Initialization.

DesignDEVS is similar to PowerDEVS in that models have
user-supplied Finalization code. This code may be used to re-
lease access to resources, similar to destructors in C++. In
DesignDEVS, they also accommodate the reporting of simu-
lation results that have been aggregated into statistics. Not all
users require statistics, but those that do benefit from a built-
in reporting mechanism. The inclusion of statistics in mod-
els seems to contradict DEVS theory, which would confine
them to an experimental frame. One can address this principle
by recommending, as a best practice, that only experiment-
specific analysis models be populated with statistics.

The most complex DesignDEVS model to date is a discrete-
space hotel simulation [12]. A 3D animation of the results,
produced separately in Autodesk Maya [1], is shown in Fig-
ure 6. The merging of λ and δint is exploited by a submodel
representing heat diffusion. A fine-resolution array of tem-
peratures is computed once, stored in the submodel’s state,
and communicated to another submodel responsible for oc-
cupant comfort. The initialization function of the overall cou-
pled model centralizes the loading of datasets, which are then
distributed in memory to multiple submodels. These practical
features helped the modelers remain focused on path-finding
algorithms and other domain-specific modeling tasks.

6. CONCLUSION
DesignDEVS has unique qualities that have not only proven
effective for rapid prototyping, but will likely aid in the teach-
ing of Classic DEVS. First, the simulation environment is dis-
tributed as a lightweight package that is easy to install. Sec-

Figure 6. A virtual hotel modeled and simulated using DesignDEVS. The
indoor temperature distribution (surface coloring) influences the window-
opening behavior of occupants (cylinders), which in turn affects indoor tem-
perature.

ond, the built-in scripting language simplifies the syntax of
model code and avoids compilation-related difficulties. Most
importantly, DesignDEVS reinforces its users’ knowledge of
DEVS theory through modeling constraints implemented via
extensions to the Lua programming language, and communi-
cated using formalism-specific error messages. By teaching
the software alongside best practices, a broad range of theo-
retical principles can be covered. DesignDEVS contributes to
the ongoing exploration of how to best incorporate modeling
and simulation theory into practical tools. This will encour-
age practitioners from a multitude of disciplines to discover
systems engineering principles on their own, helping them
collaborate in the modeling of complex systems.

REFERENCES
1. Autodesk Inc. Maya. Proprietary animation software

(www.autodesk.com/products/maya/overview-dts),
2016.

2. Barroca, B., Mustafiz, S., Van Mierlo, S., and
Vangheluwe, H. Integrating a neutral action language in
a devs modelling environment. In Proceedings of the
International Simulation Tools and Techniques
Conference (SIMUTools) (2015).

3. Bergero, F., and Kofman, E. PowerDEVS: a tool for
hybrid system modeling and real-time simulation.
Simulation: Transactions of the Society for Modeling
and Simulation International 87, 1-2 (2011), 113–132.

4. Bonaventura, M., Wainer, G. A., and Castro, R.
Graphical modeling and simulation of discrete-event
systems with CD++Builder. Simulation: Transactions of
the Society for Modeling and Simulation International
89, 1 (2013), 4–27.



5. Breslav, S., Goldstein, R., Doherty, B., Rumery, D., and
Khan, A. Simulating the sensing of building occupancy.
In Proceedings of the Symposium on Simulation for
Architecture and Urban Design (SimAUD) (2013).

6. Chow, A. C. H., and Zeigler, B. P. Parallel DEVS: a
parallel, hierarchical, modular modeling formalism. In
Proceedings of the Winter Simulation Conference (WSC)
(1994).

7. de Lara, J., and Vangheluwe, H. AToM3: A tool for
multi-formalism and meta-modelling. In Fundamental
Approaches to Software Engineering, R.-D. Kutsche and
H. Weber, Eds., vol. 2306 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2002, 174–188.

8. Franceschini, R., Bisgambiglia, P.-A., Touraille, L.,
Bisgambiglia, P., and Hill, D. A survey of modelling and
simulation software frameworks using Discrete Event
System Specification. In Proceedings of the Imperial
College Computing Student Workshop (ICCSW) (2014).

9. Fritzson, P., and Bunus, P. Modelica – a general
object-oriented language for continuous and
discrete-event system modeling and simulation. In
Proceedings of the Annual Simulation Symposium
(ANSS) (2002).

10. Goldstein, R., Breslav, S., and Khan, A. Informal DEVS
conventions motivated by practical considerations
(WIP). In Proceedings of the Symposium on Theory of
Modeling & Simulation (TMS/DEVS) (2013).

11. Goldstein, R., Breslav, S., and Khan, A. Using general
modeling conventions for the shared development of
building performance simulation software. In
Proceedings of the International Building Simulation
Conference (2013).

12. Goldstein, R., Breslav, S., and Khan, A. Towards
voxel-based algorithms for building performance
simulation. In Proceedings of the IBPSA-Canada eSim
Conference (2014).

13. Gunay, B., O’Brien, L., Beausoleil-Morrison, I.,
Goldstein, R., Breslav, S., and Khan, A. Coupling
stochastic occupant models to building performance
simulation using the Discrete Event System
Specification (DEVS) formalism. Journal of Building
Performance Simulation 7, 6 (2014), 457–478.

14. Himmelspach, J., and Uhrmacher, A. M. Plug’n
simulate. In Proceedings of the Annual Simulation
Symposium (ANSS) (2007).

15. Hwang, M. H. DEVS++: C++ open source library of
DEVS formalism, v.1.4.2 ed., 2009.

16. Ierusalimschy, R., De Figueiredo, L. H., and Celes, W.
Passing a language through the eye of a needle.
Communications of the ACM 54, 7 (2011), 38–43.

17. Li, X., Vangheluwe, H., Lei, Y., Song, H., and Wang, W.
A testing framework for DEVS formalism
implementations. In Proceedings of the Symposium on
Theory of Modeling & Simulation (TMS/DEVS) (2011).

18. Madlener, F., Molter, H. G., and Huss, S. A. SC-DEVS:
An efficient SystemC extension for the DEVS model of
computation. In Proceedings of the Design, Automation,
and Test in Europe Conference (DATE) (2009).

19. MathWorks. Simulink: Dynamic System Simulation for
MATLAB. 2000.

20. Mierlo, S. V., Tendeloo, Y. V., Mustafiz, S., Barroca, B.,
and Vangheluwe, H. Explicit modelling of a Parallel
DEVS experimentation environment. In Proceedings of
the Symposium on Theory of Modeling & Simulation
(TMS/DEVS) (Alexandria, VA, USA, 2015).

21. Nutaro, J. J. Building Software for Simulation: Theory
and Algorithms with Applications in C++. John Wiley
& Sons, Hoboken, NJ, USA, 2011.

22. Ptolemaeus, C., Ed. System Design, Modeling, and
Simulation using Ptolemy II. Ptolemy.org, 2014.

23. Quesnel, G., Duboz, R., and Ramat, E. The Virtual
Laboratory Environment – an operational framework for
multi-modelling, simulation and analysis of complex
dynamical systems. Simulation Modelling Practice and
Theory 17, 4 (2009), 641–653.

24. Sarjoughian, H. S., and Elamvazhuthi, V. CoSMoS: A
visual environment for component-based modeling,
experimental design, and simulation. In Proceedings of
the International Simulation Tools and Techniques
Conference (SIMUTools) (2009).

25. Seo, C., Zeigler, B. P., Coop, R., and Kim, D. DEVS
modeling and simulation methodology with MS4 Me
software tool. In Proceedings of the Symposium on
Theory of Modeling & Simulation (TMS/DEVS) (2013).

26. Shneiderman, B. The future of interactive systems and
the emergence of direct manipulation. Behaviour &
Information Technology 1, 3 (1982), 237–256.

27. The Qt Company Ltd. Qt Documentation. Online API
(doc.qt.io/), 2016.

28. Traoré, M. K. SimStudio: A next generation modeling
and simulation framework. In Proceedings of the
International Simulation Tools and Techniques
Conference (SIMUTools) (2008).

29. Vangheluwe, H., de Lara, J., and Mosterman, P. J. An
introduction to multiparadigm modelling and simulation.
In Proceedings of the Simulation and Planning in High
Autonomy Systems Conference (AIS) (2000).

30. Vangheluwe, H. L. M. DEVS as a common denominator
for multi-formalism hybrid systems modelling. In IEEE
International Symposium on Computer-Aided Control
System Design (CACSD) (2000).

31. Zeigler, B. P., Praehofer, H., and Kim, T. G. Theory of
Modeling and Simulation: Integrating Discrete Event
and Continuous Complex Dynamic Systems, second ed.
Academic Press, San Diego, CA, USA, 2000.

32. Zengin, A., and Sarjoughian, H. DEVS-Suite simulator:
A tool teaching network protocols. In Proceedings of the
Winter Simulation Conference (WSC) (2010).


	1 Introduction
	2 DesignDEVS User Interface
	3 Language Embedding and Extending
	4 Constraint Checking and Communication
	5 Applications and Best Practices
	6 Conclusion

