
Articles

FALL 2015 19

Modern computer programs can have thousands of
commands available to the user, with a general ten-
dency to increase year after year (Baecker et al.

2000). For example, AutoCAD is a widely used software appli-
cation for both two-dimensional and three-dimensional
drafting and design. The number of commands in AutoCAD
has been growing linearly and consistently over time (figure
1). While the growth of commands increases a system’s capa-
bilities, the quantity can make learning the system a chal-
lenge. In particular, users’ lack of awareness of relevant func-
tionality can act as a barrier to their efficiency with the
system (Grossman et al. 2009, Shneiderman 1983).

In a best case scenario, users would work with an expert
next to them who could recommend commands when
appropriate (Grossman et al. 2009). Indeed, this type of over
the shoulder learning has been shown to be valuable in the
workplace (Twidale 2005), yet it is obviously impractical to

Copyright © 2015, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Deploying CommunityCommands:
A Software Command

Recommender System Case Study

Wei Li, Justin Matejka, Tovi Grossman, George Fitzmaurice

n In 2009 we presented the idea of
using collaborative filtering within a
complex software application to help
users learn new and relevant commands
(Matejka et al. 2009). This project con-
tinued to evolve and we explored the
design space of a contextual software
command recommender system and
completed a six-week user study (Li et
al. 2011). We then expanded the scope
of our project by implementing Com-
munityCommands, a fully functional
and deployable recommender system.
CommunityCommands was a publical-
ly available plug-in for Autodesk’s flag-
ship software application AutoCAD.
During a one-year period, the recom-
mender system was used by more than
1100 users. In this article, we discuss
how our practical system architecture
was designed to leverage Autodesk’s
existing customer involvement program
(CIP) data to deliver in-product contex-
tual recommendations to end users. We
also present our system usage data and
payoff, and provide an in-depth discus-
sion of the challenges and design issues
associated with developing and deploy-
ing the software command recom-
mender system. Our work sets impor-
tant groundwork for the future
development of recommender systems
within the domain of end user software
learning assistance.

Articles

20 AI MAGAZINE

Figure 1. The Number of Commands in AutoCAD.

0

250

500

750

1,000

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

N
um

be
r

of
 C

om
m

an
ds

Product Year

assume such assistance would be readily available.
One promising way to address this challenge is to

provide users with in-product command recommen-
dations. Existing techniques, such as tip-of-day and
did you know, can expose new features, but they may
be irrelevant to the user’s current task (Fischer 2001,
Norman and Draper 1986). An alternative is to pro-
vide personalized command recommendations,
based on the user’s own history of usage. While some
research has been initiated in this area (Linton and
Schaefer 2000, Matejka et al. 2009), working imple-
mentations that deliver these recommendations
have never been embedded within a target applica-
tion. We contribute a recommender system that was
released as a plug-in for AutoCAD and has been used
in real usage scenarios. During a one-year period of
time, more than a thousand AutoCAD users down-
loaded and installed our CommunityCommands
plug-in from the official Autodesk1 website as a tech-
nology preview.

In this article, we provide an in-depth discussion
of the important issues and challenges we have
encountered during the development and deploy-
ment of this system. This includes many of the tech-
nical details of the recommender system itself, as well
as the system architecture and implementation
details required to make a real-time command rec-
ommender system hosted on a user’s local machine
work in practice. In particular, we discuss the key
challenges associated with the domain of software
functionality recommendations that required us to
diverge from the traditional treatment of recom-
mender system problems. This includes cold-start
issues; contextual in-product real-time recommenda-
tions; and the system architecture to deliver the per-
sonal recommendations to end users, while also pro-
tecting user privacy.

In our software command recommender design,
we leverage an existing customer involvement pro-
gram (CIP), which provides a mechanism to collect
user command sequence logs anonymously. We also
propose a novel architecture that pushes the item-by-
item similarity matrix to each user’s computer. For
users who have privacy and data security concerns,
this push model can enable a download-only recom-
mender being deployed to their systems. In addition
to privacy concerns, CIP also provides a valuable data
source for solving the cold-start problem. Our hope is
that the presentation of these important details will
set the groundwork for the future development of
recommender systems within the domain of end user
software.

Prior Work
Collaborative filtering–based recommender systems
have become an important tool to help users deal
with information overload and provide personalized
suggestions (Hill et al. 1995, Shardanand and Maes
1995). Examples include recommending movies
(Miller et al. 2003), news (Resnick et al. 1994), and
books (Linden, Smith, and York 2003). However, lit-
tle research has been conducted to help users learn
and explore a complicated software package using a
recommender system. We are aware of two such sys-
tems that have been proposed in the literature: OWL
for Microsoft Office (Linton and Schaefer 2000) and
CommunityCommands for Autodesk AutoCAD (Li et
al. 2011).

The OWL system compares a target user’s command
frequencies to the average command frequencies of an
entire user population. Based on the difference
between these frequencies, OWL recommends com-
mands that the target user should use either more or

Articles

FALL 2015 21

less often. OWL was designed to run within an organ-
ization, so it assumes that all users in the community
should share the same command usage distribution,
and in turn, use the software system in the same way.
Across a broad user community, this assumption is
unlikely to hold true. Users have different tasks and
preferences, so recommendations should be personal-
ized (Mitchell and Shneiderman 1989).

In contrast, we presented CommunityCommands,
a command recommender that uses personalized col-
laborative filtering to produce recommendations tai-
lored to an individual (Matejka et al. 2009). This adds
a significant benefit over the OWL system; com-
mands that are not relevant to the individual’s work-
flow will be avoided. We then continued to explore
the design space of a contextual software command
recommender system and completed a six-week user
study (Li et al. 2011). We found that the recom-
mender successfully exposed users to new com-
mands, as unique commands issued significantly
increased.

We then expanded the scope of this research by
implementing a fully functional and deployable rec-
ommender system, including a publically available
plug-in for Autodesk’s flagship software application
AutoCAD. During a one-year period, the recom-
mender system was used by more than 1100 users.
Here we describe our deployment of this system, pro-
vide a detailed description of the system architecture,
and report and reflect on the data that was collected
from our deployment used by more than 1000 actu-
al AutoCAD users resulting in more than 55,000 com-
mand recommendations issued over a one-year peri-
od of time.

Challenges of Building
and Deploying a Software

Command Recommender System
In this section, we describe a number of challenges
that we encountered while preparing our system for
public deployment.

Privacy
The issue of user privacy has been explored by rec-
ommender system users and researchers (Frankowski
et al. 2006, Ramakrishnan et al. 2001). In many rec-
ommender systems, a central server has access to all
user profiles and generates personal recommenda-
tions. This type of architecture may reveal details
about the user, gained through examining their user-
item relations. Some privacy research has focused on
using a decentralized server architecture combined
with strong algorithms to secure user’s data (Ahmad
and Khokhar 2007, Berkovsky et al. 2007, Shokri et
al. 2009), but this still requires user data to be sent to
a network server.

The issue of privacy is a significant concern for
CommunityCommands. Customers often worry that

their usage behaviors and data is being logged. For
design software, such as AutoCAD, customer-gener-
ated data can be extremely sensitive. In an ideal
usage situation, software users should have options
and be able to control when to upload their software
usage data.

Cold Start
The cold-start problem is a well-known issue in rec-
ommendation systems (Schein et al. 2001). For our
implementation, we would have no previous data
related to the individual user’s behavior, and thus,
no information to base the recommendations on. It
is also difficult to generate the required user-by-user
or item-by-item similarity matrices without an exist-
ing software usage data set, which results in an
inability to draw inferences to recommend items to
users. Due to concerns surrounding privacy, it can be
difficult to collect the usage data necessary to pro-
vide useful recommendations.

In-Product Recommendation
Another design challenge of our system is that it pro-
vides the recommendations within the product, and
they are updated in real time. This requires the rec-
ommendations to be available immediately, unlike
previous software recommendation systems in
which users receive periodic email updates (Linton
and Schaefer 2000). Because of the in-product design
and the possibility that the users might not have
internet connections, the computations of recom-
mendations must occur locally.

Customer Involvement Program
Many software applications have customer experi-
ence improvement programs2 (CEIP) or customer
involvement programs3 to help collect users’ feed-
back (called CIP in the remainder of this article). CIP
lets users choose to send usage data to the software
designers and developers, so they can get anony-
mous information about how their programs are
being used. CIP usually gathers product usage and
system configuration information, such as system
memory, video card, screen resolution, and operat-
ing system details at regular intervals. This type of
data is not particularly sensitive. However, in the
aggregate, data items such as these give software
developers a great deal of insight into what features
customers are using, how well they’re working, and
where they could be improved.

In AutoCAD, command usage histories are col-
lected as a part of the CIP data. A CIP participation
window is presented to AutoCAD users during the
software installation process (figure 2). Sample data
and generated reports are also presented to explain
that the user’s privacy is still being protected. If the
user agrees to participate in CIP, when they execute
a command, this action is recorded in the form of a

Articles

22 AI MAGAZINE

(userID, commandID, time stamp) tuple in a central-
ized database.

The voluntary nature of CIP also provides options
to software users either to upload their command log
to a central CIP server or to keep the log on their
computers. AutoCAD users can also turn off CIP any
time by clicking a menu item. Our system leverages
CIP to generate command recommendations while
users have the option of not revealing their personal
information. Before the deployment of Community-
Commands, we used existing CIP data to solve the
cold-start problem and implicitly define a rating
scheme and generate item-by-item correlations.

Application Description
Based on our previous work (Matejka et al. 2009, Li et
al. 2011), we developed our recommender prototype
into a plug-in for AutoCAD and released it to the
public. The system runs as a palette embedded in the
AutoCAD workspace, providing within-application
and real-time recommendations while users go about
their normal usage of the software (figure 3).

Here we describe our architecture design of this ful-

ly functional system for software command recom-
mendations. The system architecture is composed of
three components: the user’s local machine, the
CommunityCommands server, and the main Auto-
CAD CIP server (figure 3). When the plug-in is
installed and connected to the Internet, a 1.8 MB
data package is downloaded (pushed) to the user’s
local machine, which contains a command-to-com-
mand similarity matrix used for suggesting com-
mands. The local machine collects the user’s com-
mand sequence and computes the recommendations
locally each time a new command is issued. In addi-
tion, the CommunityCommands server continuous-
ly receives command sequence logs from AutoCAD’s
main CIP server. This allows us to update the com-
mand-to-command similarity matrix on usage pro-
files of AutoCAD users that may not be running our
plug-in. On a monthly basis, the server computes a
new command-by-command similarity matrix and
each user’s local machine downloads and replaces
the existing matrixes. This system architecture pro-
vides two important and unique design properties:
preserving privacy and in-product recommenda-
tions. The following section will discuss how to gen-
erate those similarity matrixes.

Figure 2. CIP Enrollment Interface in AutoCAD 2012.

Use of Collaborative Filtering
We generate a command-to-command similarity
matrix using the item-based collaborative filtering
approach. As alluded to in our review of the related
work, there are a number of unique considerations to
address in developing a collaborative filtering system
for software commands.

Command Ratings
Standard collaborative filtering algorithms work by
viewing a data set as a rating matrix. These ratings are
either captured implicitly, for example, through pur-
chase records and browsing histories, or explicitly, by
asking users to rate the items. We need to map users’
command history onto a rating matrix.

One approach is to allow a user to give explicit rat-
ings for each command. This approach would not
utilize the user’s historical data and would thus suf-
fer from the cold-start problem (Schein et al. 2001).
Moreover, an explicit rating system would be imprac-
tical, since software application users will be focused
on their primary task, not on rating the functions
that they use. In addition, research has shown that
users may be reluctant to provide explicit ratings
(Shardanand and Maes 1995). As such, the implicit
acquisition of user preferences of software commands
is more favorable in practice.

Our method uses the command frequency to
imply the rating for the user (Li et al. 2011). To mod-

el how important a command is to a particular user
within a community, and to suppress the overriding
influence of commands that are being used fre-
quently and by many users, we have adapted tf-idf
(Jones 1972) into a command frequency, inverse user
frequency (cf–iuf) rating function. We first take the
command frequency (cf) to give a measure of the
importance of the command ci to the particular user
uj.

where nij is the number of occurrences of the con-
sidered command for user uj, and the denominator is
the number of occurrences of all commands for user
uj.

The inverse user frequency (iuf), a measure of the
general importance of the command, is based on the
percentage of total users that use it:

where:
|S|: total number of users in the community
|{uj:ci ∈ uj}|: Number of users who use ci.

With those two metrics we can compute the cf-iuf as

cfij =
nij

knkj!

iufi = log
S

uj : ci ! uj{ }

cfij ! iufij

Articles

FALL 2015 23

Figure 3. System Architecture.

Top N

Recommendations

Recommender

Real Time Local
User Command Log

AutoCAD Plugin
AutoCAD User

A B
CIP Data

C
IP

 D
at

a

CommunityCommands
Server

Similarity Matrix

A high rating in cf-iuf is obtained when a command
is used frequently by a particular user, but is used by
a relatively small portion of the overall population.
For each user uj, we populate the command vector Vj
such that each cell, Vj(i), contains the cf-iuf value for
each command ci, and use these vectors to compute
user similarity.

Item-Based Collaborative Filtering
In our released recommender, we applied item-based
approach and customized our suggested commands
based on active user’s short term preference (session-
based command history) to generate contextual in-
product real-time recommendations (Li et al. 2011).
Rather than matching users based on their command
usage, our item-based collaborative filtering algo-
rithm matches the active user’s commands to similar
commands. The steps of the algorithms are described
below.

Step 1. Defining User Vectors
We first define a vector Vi for each command ci in the
n dimensional user space. Each cell, Vi(j), contains
the cf-iuf value for each user uj.

Step 2. Build a Command-to-Command Similarity
Matrix
We generate a command-to-command similarity
matrix, M. Mik is defined for each pair of commands
i and k as:

Step 3. Create an Active List
For the active user, uj, we create an active list L, which
contains all of the commands that the active user has
used in the current session.

Mik = cos Vi ,Vk()

Step 4. Find Similar Unused Commands
Next, we define a similarity score, si, for each com-
mand ci that is not in the active user’s active list:

Step 5. Generate Top-N List
The last step is to sort the unused commands by their
similarity scores si,, and to provide the top N com-
mands in the user’s recommendation list.

The first two steps are performed offline based on
data from all users. Then the rest of the steps find the
most similar unused commands for each active user
based on her/his active list and the command-to-
command similarity matrix.

Contextual Command Recommender
Design
We explore two important dimensions related to con-
textual recommendations: the scope of the active
user’s command history for defining current context
(current session or entire history), and the granulari-
ty of the global command history for generating
command-by-command correlations (session-based,
or user-based) resulting in the design space shown in
figure 4.

One important element is the need to define a
command session. When we look at the command
inputs of a typical usage scenario we notice that the
commands are not distributed evenly over time. For
example we can see the activity of a typical user in
figure 5, which shows that even though the applica-
tion was open the entire time, there were three time
periods of relatively heavy activity with two distinct

si = average Mik ,!ck " L()

Lj = ci cfij > 0{ }

Articles

24 AI MAGAZINE

Figure 4. Design Space of Command Recommendation Systems.

Contextual recommendations
based on all sessions

Global recommendations
based on all users

Global recommendations
based on all sessions

Contextual recommendations
based on all users

Current Session

U
se

rs
Se

ss
io

ns

O
rg

an
iz

at
io

n
 o

f
C

o
m

m
un

it
y

D
at

ab
as

e

Input from Active User’s Command Log
Entire History

A B

DC

gaps between them, which splits this user’s com-
mand history into three sessions.

Our command data set includes the time intervals
between every pair of sequential commands per-
formed, resulting in 40 million command pair tim-
ings. This data shows that 95 percent of the com-
mand intervals are shorter than one minute and 0.6
percent of the intervals are longer than one hour.
There is also a command set, Q, containing com-
mands such as QUIT, CLOSE, and QSAVE, which end
a command sequence immediately. Based on both
the command interval and the sequence ending
commands, we define a command session:

where ci is the ith command in the sequence and ti is
the time interval between ci and c(i+1). T is the amount
of time of inactivity between two commands where
we consider a new session to begin. We define T = 1
hour for the purposes of this work.

In the first axis of the design space (horizontal axis
in figure 4), the duration of the active user’s com-
mand history, used as input to the recommender, is
considered. In this dimension we define two discrete
values: current session, and entire history.

Current Session (A and C)
Current session command data represents the user’s
session-specific preferences, which are transient and
dependent on the current task flow. For example, in
an e-commerce recommender system, an item that
was purchased recently by a user should have a
greater impact on the prediction of the user’s future
behavior than an item that was purchased many
years ago. Similarly, a user’s preference may change
when switching between different tasks or stages in
the workflow; or, when working on multiple projects
each of which require different sets of functionality
from the application. A sequence of commands that
has recently been used by a user should have a greater
impact on predicting this user’s future action or
needs than commands from longer ago. In a com-

s = c1 t1…cn!1tn ,cn{ }! : ti <T ,ci "Q

mand recommender, the user’s short-term require-
ments may change in different sessions.

Entire History (B and D)
Alternatively, we can look at the user’s entire com-
mand history, allowing the system to infer some of
the user’s stable preferences that remain true
throughout. Recommendations generated using
long-term history are more stable than recommen-
dations based on session data, but this could mean
the recommendations, which may be useful at some
point in the future, may not be very useful given the
current user task. For example, when using AutoCAD
a user’s complete command stream may indicate
interest in both the three-dimensional Alignment
and two-dimensional Alignment commands, even
though the user is currently working in a two-dimen-
sional drafting project when clearly the two-dimen-
sional command is more relevant to the current task.
Using the entire history also has the potential advan-
tage of having more data on an individual user to use
when computing similarities.

The second axis of the design space (vertical axis
in figure 4) determines how we generate command-
by-command correlations. We split up the commu-
nity database by either sessions or users.

Organization of Rating Database
by Sessions (A and B)
Session-based correlation represents the similarity
between two commands that have happened togeth-
er in a relatively short time frame. Commands are
tightly correlated because they have usually hap-
pened in the same stage of a user’s task flow. For
example, command pairs COPY-PASTE and REDO-
UNDO are closely related in the session-based simi-
larity matrix. Of course any command correlations
that would be seen over time periods spanning more
than one session cannot be captured by using a ses-
sion-based correlation method.

Organization of Rating Database by Users (C and D)
In contrast, to capture correlations that can occur

Articles

FALL 2015 25

Figure 5. Example User History of a Typical User Showing Distinct Sessions of Activity with Breaks in Activity in Between.

Red lines indicate the intensity of user activity (darker red means more activity) and the white areas indicate lack of activity.

Activity

1:30

No Activity High Activity

2:00 2:30 3:00 3:30 4:00 4:30 5:00

over multiple sessions, an alternative is to generate a
user-based similarity matrix based on each user’s
entire command history. User-based correlation gen-
erates a matrix containing similarities over the long
term among the items. In figure 4, our global models
are generated based on each user’s full command his-
tory. The benefit of using the user’s entire history is
to identify similar commands that may be used
across different sessions.

We explored four item-based collaborative filtering
algorithms, each designed to satisfy one of the four
quadrants in figure 4.

A recommendation set R can then be generated for
each of the four design quadrants from figure 4. Fig-
ure 6 summarizes the recommendation process and
the design space. Specifically, it shows the two deci-
sion points of how to treat the history files from the
user community (to create a command similarity
matrix), and which command data to look at for the
active user (as input to the item-by-item collaborative
filtering algorithm) to generate command recom-

mendations. These two decisions lead to the four
quadrants of the design space.

Offline Evaluation Metrics
Command recommendation is a top-N recommen-
dation problem, which identifies a set of N com-
mands that will be of interest to a user (Karypis 2001,
Herlocker et al. 2004). We consider good recommen-
dations to be those where the user was not previous-
ly familiar with the command, but after seeing the
suggestion, will use it. As such, we were required a
metric that would indicate usefulness and novelty. To
do so, we developed a k-tail evaluation that dynami-
cally measures the usefulness of suggested commands
based on the sequential information in a user’s com-
mand log (Matejka et al. 2009).

Consider a user ui with a series of commands S. The
k-tail evaluation divides this command sequence into
a training sequence Strain and a testing sequence Stest,
so that there are k unique commands in Strain that are
not in Stest. For example, the command sequence in

Articles

26 AI MAGAZINE

Figure 6. The Recommendation Process with the Two Decision Points of Using User Histories Broken Up into Sessions or Users.

Looking at the command data from the current session or the entire history of the active user.

Command Similarity Matrix
(Ms or Mu)

Item-by-Item
Collaborative Filtering

Command Recommendations
(R)

Command Data From:
1. Current Session (VCs)
2. Entire History (VCa)

User Histories Divided Into:
1. Current Session (VCs)
2. Entire History (VCa)

figure 7 is a 2-tail series since there are two com-
mands, SOLIDEDIT and 3D-ROTATE, which have
never appeared in the training set.

To evaluate an algorithm, we find the average
number of commands that are in both a user i’s rec-
ommendation list Ri, and the user’s testing set Stest,i.
We define the evaluation result of k-tail as hitk, where
n is the number of users in the community.

We use the k-tail technique (with k = 1) to evaluate
the recommendations generated from algorithms A
through D (Li et al. 2011). Figure 8 shows that a user’s
more recent commands (A, C) seem to hold more rel-
evance than commands that a user used any time in
his/her entire history (B, D). This result could be
explained by the fact that the user’s last session’s
actions are more likely to be related with the user’s
action in the near future than those actions hap-
pened long time ago.

hitk =
Ri! STi

i=1

n

"
n

In the dimension of organization of the commu-
nity command database, algorithms using user-based
data (C and D), showed improvements in compari-
son to the algorithms using session data (A and B).
We believe this is because command pairs used by the
same user in separate sessions are not captured when
only using session data. This offline evaluation indi-
cates the short-term contextual recommendations
will improve the quality of the commands recom-
mended to the users.

We also propose to approximate a command rec-
ommendation’s novelty factor using its binomial
probability. We call this the binomial novelty indicator
(BNI) (Li et al. 2011).

To evaluate the novelty of the recommendations,
we compute the probability that a command, which
was correctly predicted by the recommender, would
appear in the testing set by random chance. We do
this by using the binomial probability formula, based
on a command’s overall frequency across the entire
user community

Articles

FALL 2015 27

Figure 7. k-Tail Evaluation of a Command Sequence.

DIMLINEAR, MOVE, MOVE, DIMLINEAR, 3D PAN, ERASE, -VIEW, -VIEW, MOVE, SOLIDEDIT, MOVE, 3D ROTATE

Training Set Testing Set

Figure 8. Offline Evaluation of Four Approaches in Figure 5.

A C B D

Session-Based

30%

20%

10%

0%

23% 25%

16%

21%

User-Based

Current Session Data

Pe
rc

en
ta

ge
 o

f C
or

re
ct

Pr
ed

ic
tio

ns

Entire History Data

Session-Based User-Based

how novel, overall, the commands that a recom-
mender algorithm generates are. Thus, we combine
BNI with k-tail offline evaluation by computing the
mean of BNI for every unique command in R⋂T,
where l is the length of T. Our deployed recom-
mender uses both k-tail and BNI to select collabora-
tive filtering algorithms and tuning parameters.

Training Before Recommending
To further address the cold-start problem, the plug-in
begins in a training period, where commands are
logged, but no recommendations are presented.
Determining the right length of this training period
is difficult — we wanted the recommendations to
start as soon as possible, but only after we reliably
know what commands the user is already aware of.
To minimize the time needed for training, we ran a
pilot test by analyzing data from 27 users (Li et al.
2011). On a daily interval, we measured the rate at
which new commands were used (had not been pre-
viously observed for that user), across a period of 4
weeks (figure 9). The data showed that the rate of
using new commands levels off quickly. For example,
after 8 days, 50 percent of users had less than 3 new
commands per day. However, because users will have
different daily usage rates, this public released rec-
ommender exits the training phase when the user
performs less than 3 new commands on two consec-
utive days. To ensure enough data has indeed been
collected, it also requires that the training phase was
active for at least 10 usage days, or until at least 200
commands have been captured.

During this training phase, we display a message

where P(k) is the probability of a specific command C
executed exactly k times in a commands sequence of
length l, and p is the overall probability of C being
executed in the data set. The cumulative distribution
function for k can be expressed as

F(l, l, p) represents the chance of seeing command C
at least once. So we define the binomial novelty indi-
cator (BNI) as

This gives us an explicit measurement as to the like-
lihood a recommended command would have
appeared in the sequence by chance. For example,
consider a command A that has a frequency of 0.036
and a command B that has a frequency of 0.002,
across all users, and a testing set with 13,000 com-
mands. We compute that there is a 95 percent chance
that A appears in the testing set once or more, and a
3 percent chance that B appears once or more. If the
recommender predicts both A and B correctly, we can
be reasonably certain that the user more likely knew
A than B. Comparing this across all correctly recom-
mended commands, we can get a measurement of

hitk =
Ri! STi

i=1

n

"
n

F k;l, p() = l
i

!

"
#

$

%
&

i=0

k

' pi 1(p()l!i

P k() = l
k

!

"
#

$

%
& pk 1' p()l!k

Articles

28 AI MAGAZINE

Figure 9. New Command Adoption Rates Based on 27 Users.

1

30

25

20

15

10

5

0
2 3 4 5 6 7 8 9 10 11 12 13 14

Day Number

N
um

be
r

of
 N

ew
 C

om
m

an
ds

 U
se

d

15 16 17 18 19 20 21 22 23 24 25 26 27

to the user, and use the pallet to provide access to
recently used commands. This gives the users some
value, while waiting for the recommendations to
begin (see figure 10).

In-Product Recommendations
Recommended commands are placed in a list within
the AutoCAD plug-in palette (figure 11).

Clicking the command button executes the com-
mand. If a command in the recommendation list is
used, it is immediately removed from the list and dis-
played in a most recently used commands list. Hov-
ering over the command button causes the standard
AutoCAD tooltip to appear, and dwelling longer
reveals an extended tooltip with additional usage
information (figure 12).

During our development process, we found it crit-
ical to be minimally disruptive to the computational
resources needed by the main application. Under
normal usage, computation of recommendations is
unnoticeable to the user, so we compute the recom-

Articles

FALL 2015 29

Figure 10. Recommender Training Phase UI.

Figure 11. Recommender Plug-In Palette Is Opened in AutoCAD.

mendations after an individual command has been
executed. However, we have to delay the recom-
mender computation if we observe a rapid succession
of command usage. In addition, since AutoCAD has
a scripting language that can issue multiple com-
mands without user input, we defer processing the
recommendations and updating the UI until our
threshold idle time of 0.5 seconds has been satisfied.

Application Use and Payoff
We report how long the CommunityCommands
plug-in was deployed on the user’s system. This
deployment time was calculated using the time
stamps of the first and last time the user ran the rec-
ommender. During the one year period after we
released this recommender system, approximately
1100 AutoCAD users downloaded and installed the
plug-in; 983 users used the plug-in for at least one
day, and 709 users used the plug-in for more than 30
days. On average, the plug-in was installed at the
user’s computer for more than two months (69.8
days). We also observed that most users who have
very short usage times did not pass their training
phase before they uninstalled or disabled the plug-in.

Recommendation Adoption
Our hope is that users of the recommender system
would start using the recommended commands. We
hope they not only try the command a few times,
but adopt the recommendations into their regular
workflows. Figure 13 shows the number of recom-
mended commands being used by the users who
have moved past the training phase. The figure con-
tains the recommended commands being used at

least once, 3 times, 10 times and 20 times. We call
those commands adopted recommendations or use-
ful recommendations. On average, 21.4 recommen-
dations were used by users at least once; 14 new rec-
ommendations were used by users more than 3
times, 9.6 for 10 times, and 7.3 for 20 times.

Figure 14 shows the distribution of the total adopt-
ed recommendations over time. Here we assume all
users start at the same time and spend the same
amount time using the system. This figure shows 50
percent recommendation adoptions happened dur-
ing the first 19 percent of the entire period of system
usage time.

CommunityCommands only recommend com-
mands that had never been executed in the user’s
command history. But there may be commands used
by the user before the installation of the plug-in. As
such, some of these adopted commands may have
already been known to the user.

CIP Enrollment
CIP is a key component for solving the users’ privacy
concerns and cold-start problem. A large group of
users (71.3 percent) who downloaded the Communi-
tyCommands plug-in enrolled in CIP. This of course
means that 28.7 percent of users did not enroll into
CIP, mostly due to privacy and technical concerns. As
such, our system needs to work for both user groups.

Command Usage Visualization
To help visualize the data that was collected during
our deployment, we developed personal software
usage DNA diagrams for the users of our plug-in.
These diagrams are generated by looking at the com-
mand usage patterns of each individual user. By
ordering the commands based on the community’s
overall usage, and coloring them based on the indi-
vidual’s usage, we can see commands that an indi-
vidual is using more (or less) often than the commu-
nity as a whole. By looking at how densely the
individual row is filled in, we can also see if the indi-
vidual uses a lot of commands or relatively few.

Figure 15 presents the information included in
each DNA diagram. A red command name means
that the command was recommended but was
removed by the user from the recommendation list.
A green command name means that it was normally
shown in the recommendation list. The brightness of
the command background represents the usage fre-
quency of that command. So a green command on a
bright background is a strongly adopted recommen-
dation. Figure 16 shows the 17 most active users’
DNA diagram, with the top user enlarged. In the
future, it could be interesting to present these per-
sonal software usage DNA diagrams to the end users,
to encourage usage reflection and further command
adoption.

Articles

30 AI MAGAZINE

Figure 12. Recommended and Recently Used Commands.

Tooltip appears when mouse is hovered over the command.

HATCHEDIT

ARC

Command
recommendations

AutoCAD
tooltip

Recently used commands

ARC

Press F1 for more help

Creates an arc using a start point, center, and the
length of a chord

WSCURRENT

HATCH

PASTEBLOCK

Try Something New

Recently Used Commands

Articles

FALL 2015 31

Figure 13. Recommended Command Adoption.

0

20

40

60

80

100

120

140

160

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801

C
om

m
an

d
C

ou
nt

User ID

Recommended
Commands Used
More Than Once

>=1 time
>=3 times
>=10 times
>=20 times

Figure 14. Total Adopted Useful Recommendations Over Deployed Time.

The horizontal axis shows the percentage of time passed.

0

5000

10000

15000

20000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

To
ta

l A
do

pt
ed

 C
om

m
an

ds

100

Figure 15. Legend of Software Usage DNA Diagram.

Conclusion and Future Work
Based on our experiences, we believe that recom-
mender systems have a rich future for use within
software applications. We have provided a detailed
treatment of the issues surrounding the development
of a command recommender system and the archi-
tecture used for its deployment. Our hope is that this
research will serve as groundwork and inspiration for
future efforts in this area.

We have shown that collaborative filtering algo-
rithms can identify commands that will be useful to
a user. This leads us to believe that such systems
could also be used to recommend higher-level task
flows and relevant tutorial materials.

The item-based collaborative filtering provides rel-
evant and novel recommendations. It aggregates
user-item relations into item-item relations. When
combined with the system architecture we proposed
here, the item-based algorithm can also preserve
user’s privacy, which is a desirable feature for many
business applications.

Certain software applications, including Auto-
CAD, have a main version, but also parallel cus-
tomized versions for specific user groups. By using
collaborative filtering technology, we will be able to
recommend customized software features to the
appropriate user groups. For example, AutoCAD has
vertical versions for mechanical engineers, electric
engineers, civil engineers, and architects. Recom-

mending commands commonly used by civil engi-
neering to architects, when those commands fit the
current workflow, could increase the diversity and
novelty of current recommendations.

Another issue is related to software upgrades. In e-
commerce situations, when new products or services
emerge, the interest of customers and the temporal
feature of the ratings in collaborative filtering may
change. Previous work (Ding and Li 2005) has used a
time weighted item-by-item correlation to track con-
cept drifting. It would be interesting to apply this
same idea to help introduce new commands in each
release of a software package to the users and allow
the newer and potentially more efficient commands
to be recommended.

In summary, the novel contribution of our work is
the description of system architecture that has
allowed us to embed a software command recom-
mender system within a target application, during
real usage situations. Software command/feature rec-
ommendation opens a new domain for recom-
mender system research. Many interesting problems
arise that open up areas for future work.

Acknowledgement
We would like to thank Joseph A. Konstan for pro-
viding valuable suggestions and participating discus-
sions during this project development.

Articles

32 AI MAGAZINE

Figure 16. Software Usage DNA Diagrams from the 17 Most Active Users.

ER
AS

E
M

O
VE

G
RI

P_
ST

RE
TC

H
ZO

O
M

C
O

PY

ULI
N

E
U

N
D

O

TR
IM

Recommended, not dismissedRecommended, dismissed

Command used frequently
(white bar)

Command used sometimes
(grey bar)

Command never used
(black bar)

(red label) (green label)

Notes
1. www.autodesk.com.

2. ww.microsoft.com/products/ceip/EN-US/default.mspx.

3. www.autodesk.com/acip/CIP_Privacy_eng.html.

References
Ahmad, W., and Khokhar, A. 2007. An Architecture for Pri-
vacy Preserving Collaborative Filtering on Web Portals. In
Proceedings of the Third International Symposium on Informa-
tion Assurance and Security, 273–278. Plymouth, UK: Univer-
sity of Plymouth.

Baecker, R.; Booth, K.; Jovicic, S.; Mcgrenere, J.; and Moore,
G. 2000. Reducing the Gap Between What Users Know and
What They Need to Know. In Proceedings of the ACM Confer-
ence on Universal Usability — 2000, 17–23. New York: Asso-
ciation for Computing Machinery.

Berkovsky, S.; Eytani, Y.; Kuflik, T.; and Ricci, F. 2007.
Enhancing Privacy and Preserving Accuracy of a Distributed
Collaborative Filtering. In Proceedings of the 2007 ACM
Conference on Recommender Systems, 9–16. New York:
Association for Computing Machinery.

Ding, Y., and Li, X. 2005. Time Weight Collaborative Filter-
ing. In Proceedings of the 14th ACM International Conference
on Information and Knowledge Management, 485–492. New
York: Association for Computing Machinery.

Fischer, G. 2001. User Modeling in Human-Computer Inter-
action. User Modeling and User-Adapted Interaction 11(1–2):
65–86.

Frankowski, D.; Cosley, D.; Sen, S.; Terveen, L.; and Riedl, J.
2006. You Are What You Say: Privacy Risks of Public Men-
tions. In Proceedings of the 29th Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval, 565–572. New York: Association for Computing
Machinery.

Grossman, T.; Fitzmaurice, G.; and Attar, R. 2009. A Survey
of Software Learnability: Metrics, Methodologies, and
Guidelines. In Proceedings of the ACM CHI Conference on
Human Factors in Computing Systems. New York: Association
for Computing Machinery.

Herlocker, J. L.; Konstan, J. A.; Terveen, L. G.; and Riedl, J. T.
2004. Evaluating Collaborative Filtering Recommender Sys-
tems. ACM Transactions on Information Systems 22(1): 5–53.

Hill, W.; Stead, L.; Rosenstein, M.; and Furnas, G. 1995. Rec-
ommending and Evaluating Choices in a Virtual Commu-
nity of Use. In Proceedings of the ACM SIGCHI Conference on
Human Factors in Computing Systems, 194–201. New York:
Association for Computing Machinery.

Jones, K. S. 1972. A Statistical Interpretation of Specificity
and Its Application in Retrieval. Journal of Documentation
60(5): 10.

Karypis, G. 2001. Evaluation of Item-Based Top-N Recom-
mendation Algorithms. In Proceedings of the Tenth ACM Inter-
national Conference on Information and Knowledge Manage-
ment. 247–254. New York: Association for Computing
Machinery.

Li, W.; Matejka, J.; Grossman, T.; Konstan, J. A.; and Fitz-
maurice, G. 2011 Design and Evaluation of a Command
Recommendation System for Software Applications. ACM
Transactions Computer-Human Interaction, 18(2): 6: 1–6: 35.

Linden, G.; Smith, B.; and York, J. 2003. Amazon.Com Rec-
ommendations: Item-to-Item Collaborative Filtering. IEEE
Internet Computing 7(1): 76–80.

Linton, F., and Schaefer, H.-P. 2000. Recommender Systems
for Learning: Building User and Expert Models Through
Long-Term Observation of Application Use. User Modeling
and User-Adapted Interaction 10(2–3): 181–208.

Matejka, J.; Li, W.; Grossman, T.; and Fitzmaurice, G. 2009.
CommunityCommands: Command Recommendations for
Software Applications. In Proceedings of the 22nd ACM Sym-
posium on User Interface Software and Technology, 193–202.
New York: Association for Computing Machinery.

Miller, B. N.; Albert, I.; Lam, S. K.; Konstan, J. A.; and Riedl,
J. 2003. MovieLens Unplugged: Experiences with an Occa-
sionally Connected Recommender System. In Proceedings of
the 8th International Conference on Intelligent User Interfaces.
263–266. New York: Association for Computing Machinery.

Mitchell, J., and Shneiderman, B. 1989. Dynamic Versus
Static Menus: An Exploratory Comparison. SIGCHI Bulletin
20(4): 33–37.

Norman, D. A., and Draper, S. W. 1986. User Centered System
Design; New Perspectives on Human-Computer Interaction.
Hillsdale, NJ: Lawrence Erlbaum Associates Inc.

Ramakrishnan, N.; Keller, B. J.; Mirza, B. J.; Grama, A. Y.;
and Karypis, G. 2001. Privacy Risks in Recommender Sys-
tems. IEEE Internet Computing 5(6): 54–62.

Resnick, P.; Iacovou, N.; Suchak, M.; Bergstrom, P.; and
Riedl, J. 1994. GroupLens: An Open Architecture for Col-
laborative Filtering of Netnews. In Proceedings of the 1994
ACM Conference on Computer Supported Cooperative Work,
175–186. New York: Association for Computing Machinery.

Schein, A.; Popescul, A.; Ungar, L.; and Pennock, D. 2001.
Generative Models for Cold-Start Recommendations. Paper
presented at the 2001 ACM SIGIR Workshop on Recom-
mender Systems, September, New Orleans, LA.

Shardanand, U., and Maes, P. 1995. Social Information Fil-
tering: Algorithms for Automating Word of Mouth. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, 210–217. New York: Association for
Computing Machinery.

Shneiderman, B. 1983. Direct Manipulation: A Step Beyond
Programming Languages. IEEE Computer 16(8): 57–69.

Shokri, R.; Pedarsani, P.; Theodorakopoulos, G.; and
Hubaux, J.-P. 2009. Preserving Privacy in Collaborative Fil-
tering Through Distributed Aggregation of Offline Profiles.
In Proceedings of the Third ACM Conference on Recommender
Systems, 157–164. New York: Association for Computing
Machinery.

Twidale, M. B. (2005). Over the Shoulder Learning: Sup-
porting Brief Informal Learning. Computer Supported Coop-
erative Work 14(6): 505–547.

Wei Li, Ph.D., is a principal research scientist at Autodesk
Research. Li’s main research interests are interdisciplinary,
drawing on both artificial intelligence and human-com-
puter interaction. In particular, his past and present
work/interests fall into the following areas: general learning
mechanisms in software applications, gamification, recom-
mender systems, knowledge representations, and automat-
ic reasoning. Through a mixture of empirical work and sys-
tems building, Li currently focuses on novel techniques for
goal-directed design systems and data-aided design.

Tovi Grossman, Ph.D., is a senior principal research scien-
tist at Autodesk Research, located in downtown Toronto.

Articles

FALL 2015 33

His research is in human-computer interaction, focused on
understanding and improving software learnability in com-
plex end user applications. Although this is one of the most
fundamental problems of human-computer interaction,
new trends and technologies allow us to think about the
problem in exciting new ways that were not possible in the
early days of human-computer interaction research. His
other research passion is interaction techniques, and in par-
ticular, for new technologies, such as multitouch, miniature
projectors, and three-dimensional displays.

Justin Matejka is a senior research scientist at Autodesk
Research in Toronto, Ontario. He has been with Autodesk
for more than eight years researching user interfaces for
three-dimensional navigation, developing new techniques
for navigating streaming videos, and developing systems to
improve the learnability of complex software applications.

His current research focus is in creating interactive visuali-
zation techniques for making sense of large data sets.

George Fitzmaurice, Ph.D., is a director of research and
runs the User Interface Research Group for Autodesk. He has
been with Autodesk (including Alias) for more than 15 years
conducting research in two-dimensional and three-dimen-
sional user interfaces (UIs) including input devices, large
displays, two-handed interaction, multitouch, pen-based
UIs, tracking menus, spatially aware displays, three-dimen-
sional navigation, and tangible UIs. In the human-comput-
er interaction community he established the field of gras-
pable UIs, which is the precursor to what is known as
tangible UIs. Currently, he is leading research projects on
advanced learning technologies for feature-rich software
applications.

Articles

34 AI MAGAZINE

Visit the AAAI Member Site
and Create Your Own Circle!

We encourage you to explore the fea-
tures of the AAAI Member website
(aaai.memberclicks.net), where you
can renew your membership in AAAI
and update your contact information
directly. In addition, you are connect-
ed with other members of the largest
worldwide AI community via the
AAAI online directory and other
social media features. Direct links are
available for new AI Magazine fea-
tures, such as the online and app ver-
sions. Finally, you will receive
announcements about all AAAI
upcoming events, publications, and
other exciting initiatives. Be sure to
spread the word to your colleagues
about this unique opportunity to tap
into the premier AI society!

