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We consider the shape optimisation of high-voltage devices subject to electrostatic 
field equations by combining fast boundary elements with multiresolution subdivision 
surfaces. The geometry of the domain is described with subdivision surfaces and different 
resolutions of the same geometry are used for optimisation and analysis. The primal and 
adjoint problems are discretised with the boundary element method using a sufficiently 
fine control mesh. For shape optimisation the geometry is updated starting from the 
coarsest control mesh with increasingly finer control meshes. The multiresolution approach 
effectively prevents the appearance of non-physical geometry oscillations in the optimised 
shapes. Moreover, there is no need for mesh regeneration or smoothing during the 
optimisation due to the absence of a volume mesh. We present several numerical 
experiments and one industrial application to demonstrate the robustness and versatility 
of the developed approach.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The shape optimisation of high-voltage electrical devices, such as switchgear or transformers, serves as the driving ap-
plication for our work. The prevention of electrical breakdown is one of the key considerations in the design of high-voltage 
devices [1,2]. In a first approximation, limiting the electric field strength on critical components can reduce a device’s sus-
ceptibility to electric breakdown. The electric field strength is determined with the electrostatic field equations, which in 
absence of space charges reduce to the Laplace equation with Dirichlet boundary conditions [3]. By optimising the shape of 
critical components the maximum electric field strength on the surface, i.e., the normal flux, can often be considerably re-
duced. This may make it possible to shrink the size of a device and in turn lead to cost savings. In the approach introduced 
in this paper we systematically optimise the geometry of a device such that a cost functional consisting of the L2-norm of 
the electric field strength is minimised.

The boundary element method (BEM) has clear advantages when applied to shape optimisation of high-voltage devices, 
see [4–8] for an introduction to BEM. First of all, BEM relies only on a surface discretisation so that there is no need 
to maintain an analysis-suitable volume discretisation during the shape optimisation process. Moreover, BEM is ideal for 
solving problems in unbounded domains that occur in electrostatic field analysis. In gradient-based shape optimisation the 

* Corresponding author.
E-mail addresses: kkmb2@cam.ac.uk (K. Bandara), f.cirak@eng.cam.ac.uk (F. Cirak), of@tugraz.at (G. Of), o.steinbach@tugraz.at (O. Steinbach), 

jan.zapletal@vsb.cz (J. Zapletal).
http://dx.doi.org/10.1016/j.jcp.2015.05.017
0021-9991/© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jcp.2015.05.017
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://creativecommons.org/licenses/by/4.0/
mailto:kkmb2@cam.ac.uk
mailto:f.cirak@eng.cam.ac.uk
mailto:of@tugraz.at
mailto:o.steinbach@tugraz.at
mailto:jan.zapletal@vsb.cz
http://dx.doi.org/10.1016/j.jcp.2015.05.017
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2015.05.017&domain=pdf


K. Bandara et al. / Journal of Computational Physics 297 (2015) 584–598 585
Fig. 1. Topology of the domain Ω and its transformation to the domain Ωt .

shape derivative of the cost functional with respect to geometry perturbations is needed [9–11]. To this purpose, we use 
the adjoint approach and solve the primary and the adjoint boundary value problems with BEM. The associated linear 
systems of equations are dense and an acceleration technique, such as the fast multipole method [12,13], is necessary for 
their efficient solution. For some recent applications of fast BEM in shape optimisation and Bernoulli-type free-boundary 
problems we refer to [14–16].

The geometry parameterisation and its interplay with the BEM surface discretisation plays a crucial role in shape op-
timisation. When the BEM surface mesh is used for geometry parameterisation it leads to non-physical oscillations in the 
optimised geometry, as already known in the finite element literature [17,18]. In addition, the BEM mesh may become 
severely distorted after a few optimisation steps so that auxiliary mesh smoothing procedures become necessary. To remedy 
both difficulties, geometries in shape optimisation are commonly parameterised with b-splines or related techniques, such 
as NURBS and subdivision surfaces [17–21]. In this paper we represent geometries with subdivision surfaces, which are the 
generalisation of splines to arbitrary connectivity meshes. Specifically, we use the Loop scheme based on triangular meshes 
and quartic box-splines [22].

In subdivision schemes a limit surface is obtained through the repeated refinement of a coarse control mesh [23]. In 
practice, there are closed form expressions for computing the limit surface for a given control mesh [24,25]. The hierarchy 
of control meshes underlying a subdivision surface lends itself naturally to multiresolution editing [26,27]. The coarse control 
mesh vertex positions are modified to perform large-scale editing and the fine control mesh vertex positions are modified 
to add localised changes. In the introduced multiresolution shape optimisation approach we use a fine control mesh for 
BEM discretisation and coarser control meshes for geometry modification. More precisely, we start optimising with the 
coarsest control mesh and progress to optimise increasingly finer control meshes. As our numerical examples demonstrate, 
the multiresolution optimisation approach does not lead to non-physical oscillations in geometry. Moreover, the occurrence 
of mesh pathologies, like inverted elements, is greatly reduced because the support size of the geometry modifications and 
the element sizes are well coordinated.

This paper is organised as follows. In Section 2 we introduce the electrostatic shape optimisation problem and the re-
quired shape derivates. We then discuss in Section 3 the discretisation of the state and adjoint boundary value problems 
with the BEM. Subsequently, in Section 4 the multiresolution subdivision surfaces for geometry parameterisation are ex-
plained. The multiresolution optimisation algorithm is introduced in Section 5. Finally, in Section 6 we present several 
numerical examples with increasing complexity to demonstrate the efficiency and robustness of the proposed approach.

2. Electrostatic shape optimisation problem

The electrostatic field equations in absence of space charges lead to a Dirichlet boundary value problem for the Laplace 
equation{−�u = 0 in Ω,

u = 0 on Γ0,

u = 1 on Γf,

(1)

where u is the electric potential or voltage, Ω ⊂ R
3 denotes a multiply connected, bounded Lipschitz domain with the 

boundary Γ := ∂Ω consisting of a free part Γf and a fixed part Γ0. In this paper, we assume that the potentials on Γf and 
Γ0 are constant. The geometry of the free boundary Γf is to be determined with shape optimisation. We assume that the 
topology of Ω is as shown in Fig. 1, i.e., that Γ0 and Γf are disconnected parts of the boundary and that Γf is interior to Γ0. 
It is straightforward to generalise our approach to other situations. Moreover, it is well known that the Dirichlet problem 
(1) admits a unique solution u ∈ H1(Ω). For the purposes of the shape calculus introduced below, however, we assume a 
higher regularity of the solution u in the vicinity of the free part of the boundary Γf .

In electrostatic shape optimisation one may seek to minimise the pointwise maximum of the normal flux on the free 
part of the boundary Γf . The corresponding cost functional reads

Jmax(Ω, u) := sup

∣∣∣∣∂u

∂n
(x)

∣∣∣∣ (2)

x∈Γf



586 K. Bandara et al. / Journal of Computational Physics 297 (2015) 584–598
with the normal flux ∂u/∂n = 〈∇u, n〉 and the exterior unit boundary normal n. Recall that the physical interpretation of the 
normal flux is the electric field in normal direction. Due to the non-smooth nature of the max function in (2) we decided 
to consider an alternative differentiable functional in order to be able to exploit methods of the first order calculus; namely

J (Ω, u) := 1

2

∥∥∥∥∂u

∂n
− Q

∥∥∥∥2

L2(Γf)

= 1

2

∫
Γf

(
∂u

∂n
(x) − Q

)2

dsx (3)

where Q ≥ 0 is a prescribed constant expected value. Similar cost functionals are also considered in the context of Bernoulli-
type free-boundary problems [16,28].

During the iterative shape optimisation (see Section 5) the derivatives of the cost functional (3) with respect to domain 
perturbations are needed. To this end, we make use of shape calculus methods as introduced, e.g., in [9,11]. First, in order to 
describe geometry changes of the domain Ω , we define a family of mappings T t : Ω → R

3 as the perturbation of identity, 
i.e., T t := I + tV with the pseudo-time parameter t ∈ [0, τ ) and some velocity field V . The new configuration of the domain 
Ω at pseudo-time t is as illustrated in Fig. 1 given by

Ωt := T t(Ω) := {T t(x): x ∈ Ω}.
Under reasonable regularity assumptions on the velocity field V , say V ∈ [W 1,∞(Ω)]3, and for τ small enough, T t can be 
shown to be a one-to-one mapping of Ω onto Ωt preserving the Lipschitz regularity, see, e.g., [10,11]. The shape optimisa-
tion problem is thus transformed to a search for a suitable velocity field V that reduces the cost functional. Following the 
structure theorem by Hadamard and Zolésio, see, e.g., [9, Chapter 9], one only has to define the mapping on the boundary. 
Moreover, since Γ0 is fixed, we can define V |Γ0 := 0, i.e., Γ0,t := T t(Γ0) = Γ0. The shape optimisation problem is solved by 
an iterative procedure and a suitable velocity field V has to be determined in every iteration step.

Together with the original boundary value problem (1) we consider the problem⎧⎨⎩
−�ut = 0 in Ωt,

ut = 0 on Γ0,

ut = 1 on Γf,t

(4)

in the transformed domain. The value of the cost functional (3) in this configuration changes to

J (Ωt, ut) = 1

2

∫
Γf,t

(
∂ut

∂nt
(xt) − Q

)2

dsxt .

To be able to use first order minimisation techniques, the shape derivative of the cost functional in the direction of the 
velocity field V given by

J ′(Ω, u)(V ) := d

dt
J (Ωt, ut)

∣∣∣∣
t=0

= lim
t→0+

J (Ωt , ut) − J (Ω, u)

t

is needed. Under reasonable regularity assumptions (see [9,11]), the shape derivative can be represented in the so-called
Hadamard–Zolésio form

J ′(Ω, u)(V ) =
∫
Γf

g(x)〈V (x),n(x)〉dsx,

where 〈V (x), n(x)〉 denotes the scalar product of the two involved vectors and g is some kernel function which is indepen-
dent of the velocity field V . Note that setting

V |Γf := −gn implies J ′(Ω, u)(V ) = −
∫
Γf

g2(x)dsx ≤ 0 (5)

and thus such a velocity field V defines a descent direction. This structure will be exploited in Section 5 for iterative shape 
optimisation.

Finally, in the case of the considered cost functional (3) the kernel function g takes the form

g(x) := −∂ p

∂n
(x)

∂u

∂n
(x) − H(x)

2

((
∂u

∂n
(x)

)2

− Q 2

)
(6)

according to [9,16,28]. Here H is the additive curvature, u is the primal solution given by (1), and p is the solution of the 
adjoint boundary value problem
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⎧⎪⎨⎪⎩
−�p = 0 in Ω,

p = 0 on Γ0,

p = ∂u

∂n
− Q on Γf.

(7)

Notice that the only difference between the primal and adjoint boundary value problems concerns the Dirichlet datum 
on Γf . The normal flux of the primal solution serves as the Dirichlet datum for the adjoint problem.

3. Boundary element discretisation

During the iterative shape optimisation the primal and the adjoint boundary value problems (1) and (7), respectively, 
have to be solved to compute the cost functional (3) and the descent direction (5). The actual domain boundaries are 
described with multiresolution subdivision surfaces as will be introduced in Section 4. For all the computations we apply 
the boundary element method to avoid remeshing or smoothing of the volume mesh in each step of the optimisation 
process.

We apply a direct boundary integral formulation, as we need the normal fluxes ∂ p
∂n and ∂u

∂n for the evaluation of the kernel 
function g in (6). For details on boundary integral equations, the properties of the involved boundary integral operators and 
boundary element methods, see, e.g., [4–8].

The solution of the original boundary value problem (1) is given by the representation formula

u(̃x) =
∫
Γ

U∗(̃x, y)w(y)ds y −
∫
Γ

∂

∂n y
U∗(̃x, y)u(y)ds y for x̃ ∈ Ω, (8)

where Γ = ∂Ω = Γf ∪Γ0 is the boundary of the domain Ω and w := ∂u
∂n denotes the normal flux. The fundamental solution 

U∗(x, y) of the Laplacian in three dimensions reads

U∗(x, y) := 1

4π

1

|x − y| .

The limiting case Ω � x̃ → x ∈ Γ provides the boundary integral equation

u(x) = (V w)(x) + 1

2
u(x) − (K u)(x) for almost all x ∈ Γ, (9)

where V : H−1/2(Γ ) → H1/2(Γ ) denotes the single layer boundary integral operator

(V w)(x) :=
∫
Γ

U∗(x, y)w(y)ds y for x ∈ Γ,

and K : H1/2(Γ ) → H1/2(Γ ) denotes the double layer boundary integral operator

(K u)(x) :=
∫
Γ

∂

∂n y
U∗(x, y)u(y)ds y for x ∈ Γ.

To determine the unknown normal fluxes w := ∂u
∂n and q := ∂ p

∂n for the boundary value problems (1) and (7), respectively, 
we use the boundary integral equation (9) to obtain

(V w)(x) = 1

2
u(x) + (K u)(x), (10a)

(V q)(x) = 1

2
p(x) + (Kp)(x) (10b)

for almost all x ∈ Γ . For the original boundary value problem (1), the boundary integral equation (10a) can be simplified to

(V w)(x) =
{

0 for x ∈ Γ0,

1 for x ∈ Γf

due to the kernel properties of the double layer boundary integral operator. As the boundary integral operators are bounded 
and the single layer boundary integral operator V is H−1/2(Γ )-elliptic, all boundary integral equations are uniquely solvable.

For the boundary element discretisation we use the Galerkin variational formulation based on piecewise constant ap-
proximations

wh :=
N∑

wiψi and qh :=
N∑

qiψi . (11)

i=1 i=1
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The related constant basis functions

ψi(x) :=
{

1 for x ∈ τi,

0 elsewhere

are defined with respect to a decomposition of the surface Γ into N planar triangular shape regular boundary elements τi . 
Thus, we have to solve the following two systems of linear equations

V h w = Mh f , (12a)

V hq = (
1

2
Mh + K h)h (12b)

to determine the normal flux vectors t ∈ R
N and q ∈R

N with the coefficients ti and qi . The Galerkin matrices are given by

V h[ j, i] :=
∫
τ j

∫
τi

U∗(x, y)ds y dsx, K h[ j, i] :=
∫
τ j

∫
τi

∂

∂n y
U∗(x, y)ds y dsx,

Mh[ j, i] :=
∫
τ j

ψi(x)dsx

for i, j = 1, . . . , N . The coefficients of the two vectors f and h on the right-hand side of (12) are given by

f i :=
{

0 for τi ∈ Γ0,

1 for τi ∈ Γf,
hi :=

{
0 for τi ∈ Γ0,

ti − Q for τi ∈ Γf.

During shape optimisation we need the shape gradient at the mesh nodes x j , cf. Sections 4, 5. To this end, we approximate 
the kernel function g of the shape gradient (6) with

g̃ j := −̃q j w̃ j − H(x j)

2

((
w̃ j

)2 − Q 2
)

(13)

in the nodes x j . We estimate the required additive curvature H with discrete differential operators given in [29]. Instead 
with the discontinuous normal fluxes in (11) we compute the shape gradients g̃ j with the nodally weighted averages

w̃ j :=
∑

i∈I( j) wi Ai∑
i∈I( j) Ai

and q̃ j :=
∑

i∈I( j) qi Ai∑
i∈I( j) Ai

,

where the index set I( j) contains all the element indices connected to node j and Ai denotes the surface area of the 
element τi . This can be interpreted as a quasi-interpolation, see, e.g., [30].

As the fundamental solution U∗(x, y) is non-local, the entries of the matrices V h and K h are non-zero in general. As 
a result, both are fully populated. Therefore, acceleration techniques, such as the fast multipole method [13], are crucial 
for the fast and efficient computation of matrix operations. A description of our implementation of the boundary element 
method using the fast multipole method and a detailed error analysis is given in [12].

4. Multiresolution subdivision surfaces

Next, we introduce the multiresolution subdivision surfaces for describing the geometry of the computational domain. 
Subdivision is a powerful geometric modelling technique for generating smooth surfaces on arbitrary connectivity meshes. 
The smooth surface is recursively generated through repeated refinement of an initial coarse control mesh. In this paper, we 
limit ourselves to the review of the elementary properties of subdivision surfaces. In particular, we only consider subdivision 
schemes that lead to cubic b-splines in the univariate setting and quartic box-splines in the bivariate setting with triangular 
elements. For more details we refer to [23,25,20,31].

4.1. Subdivision refinement

To begin with, we consider the univariate subdivision refinement of polygons, as illustrated in Fig. 2. The initial polygon 
is referred to as the control polygon and determines the shape of the limit curve resulting from repeated subdivision. It is 
instructive to think that each subdivision step consists of a refinement and an averaging step. In the refinement step each 
segment of the polygon is subdivided into two segments, see Fig. 3(a). Subsequently, the vertex coordinates of the refined 
polygon are determined by averaging the coarse vertex coordinates with the two stencils shown in Fig. 3(b). The even vertex 
stencil applies to vertices that are already present in the coarse polygon and the odd vertex stencil applies to vertices that 
are only present in the refined polygon. The naming odd and even is motivated by the consecutive numbering of vertices in 
a polygon where newly inserted vertices receive odd numbers. According to Fig. 3(b), for a given coarse polygon of level 	
with vertex coordinates x	 a refined polygon of level 	 + 1 with vertex coordinates x	+1 is computed with
i i
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Fig. 2. Subdivision refinement of a given control polygon (shown left). The three polygons to the right are generated by repeated subdivision. Notice the 
increasing smoothness of the subdivided polygons.

Fig. 3. Univariate subdivision refinement.

Fig. 4. Bivariate Loop subdivision refinement.

x	+1
2i = 1

8
x	

i−1 + 3

4
x	

i + 1

8
x	

i+1, (14a)

x	+1
2i+1 = 1

2
x	

i + 1

2
x	

i+1. (14b)

By definition we assign the coarse control mesh the level 	 = 0. Without going into the details, we note that the weights 
in (14) have been chosen such that the limit curve for 	 → ∞ is a uniform cubic b-spline. The weights can be modified 
in order to change the interpolation and/or smoothness properties of the curve. Being a cubic b-spline the limit curve is 
C2-continuous which can also be reduced to C0-continuous by modifying the stencil weights. For the sake of completeness 
we note that other choices of stencil weights may also lead to smooth curves [23].

It is convenient to express the subdivision equations (14) as a matrix vector multiplication

x	+1 = Sx	, (15)

where x	+1 and x	 are the vectors of all vertex coordinates of the coarse and refined polygons, respectively, and S is 
the subdivision matrix. The subdivision matrix S is a banded sparse matrix and its entries are the stencil weights given 
in Fig. 3(b). The dimensions of S , for instance, for the 2D example in Fig. 2 are (4N × 2N), where N is the number of 
vertices on level 	 with each having two coordinates. Although the dimensions of S increase with increasing 	 we denote 
all subdivision matrices with S since the same subdivision stencils are used in each step.

In the bivariate surface setting, we use the subdivision scheme introduced by Loop [22]. The notion of control polygon is 
now replaced with control mesh to reflect the higher dimension. The Loop scheme is based on triangular meshes and yields 
quartic box-splines for meshes with regular vertices. In this context a vertex is regular when it is inside the domain and 
incident to six edges, or is on the boundary of the domain and incident to four edges. The number of incident edges to a 
vertex is usually referred to as the valence of that vertex. It is known that the Loop scheme yields a C1-continuous surface 
on non-regular vertices and a C2-continuous surface everywhere else.

In the refinement step of the Loop scheme, each triangle of the control mesh is subdivided into four triangles by intro-
ducing new vertices at the edge midpoints, as seen in Fig. 4(a). Subsequently, the vertex coordinates of the refined mesh 
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Fig. 5. Subdivision refinement of a connector. On the coarse control mesh on the left the edges shown in red are tagged as crease edges. The control mesh 
in the centre is generated with extended Loop subdivision. The geometry on the right is a rendering of the limit surface. (For interpretation of the colors 
in this figure, the reader is referred to the web version of this article.)

Fig. 6. Multiresolution editing of the connector geometry introduced in Fig. 5. The geometry is modified by moving the edge of one of the holes in the 
vertical direction. On the first row the modification is performed on level 	 = 0 and on the second row it is performed on level 	 = 1. Notice the effect of 
the modification level on the limit surface (last column).

are computed with the stencils shown in Fig. 4(b). Similar to univariate subdivision there are two different types of stencils. 
The even vertex stencil applies to vertices that already existed on the coarse mesh and the odd vertex stencil applies to 
newly introduced vertices on the edges. Notice that the weights in the stencil for even vertices depend on the valence v of 
the vertex.

In the present work, we use the extended Loop subdivision scheme introduced by Biermann et al. [32]. In contrast to 
the original Loop scheme, the extended scheme allows the modelling of non-smooth and non-manifold features, such as 
creases or T-sections, which are crucial for many engineering applications. It is clear that the limit surface along creases is 
only C0-continuous. Fig. 5 shows a mechanical connector geometry containing sharp features described with the extended 
subdivision surfaces. For implementation details we refer to [31].

4.2. Multiresolution subdivision surfaces

Subdivision surfaces represent a limit surface with a nested hierarchy of control meshes of increasing resolution. As 
known in computer graphics, this property lends itself to efficient multiresolution editing of surfaces [26,27]. The basic 
idea in multiresolution editing is to modify coarse mesh vertex coordinates to perform large-scale changes (to the limit 
surface) and to modify fine mesh coordinates to add localised changes. By way of example, this is illustrated in Fig. 6 for 
the connector geometry previously introduced in Fig. 5. First the control mesh coordinates x0 are modified with x0 + d0, 
where d0 can be thought as a user given perturbation vector. In the considered example, d0 applies displacements only 
to the vertices placed on one of the hole edges. Subsequent computation of the limit surface (by repeated subdivision) 
leads to a geometry with rather large scale changes. Alternatively, the edge of the hole can be displaced on level 	 = 1, 
i.e., x1 + d1 = Sx0 + d1. This results in more localised changes. It can be shown that the area of influence for each vertex 
extends over two rings of adjacent triangles.

The multiresolution editing algorithms available in computer graphics allow us to alternately edit coarse and fine reso-
lutions, see, e.g., [26]. This is achieved by a wavelet-like decomposition of the geometry into a low resolution part and a 
collection of wavelet coefficients expressing perturbations from the low resolution part [26,27]. To compute such a decom-
position it is necessary to define, in addition to the subdivision refinement, a coarsening operation

x	 = Rx	+1. (16)

The coarsening matrix R enables the computation of the coarse representation x	 corresponding to a given edited fine 
representation x	+1. In contrast, recall that the subdivision matrix S enables to compute for a given coarse representation 
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Fig. 7. Coarsening of the limit curve previously obtained with subdivision refinement, see Fig. 2. Top row shows the coarsening of the unperturbed 
limit curve and the bottom row the coarsening of a perturbed limit curve. For a vertex with index i the perturbation is of the form x̃i

∞ = xi
∞ +

n(xi)a sin( f 〈xi , e0〉), where n is the normal to the curve, e0 is the basis vector (1, 0, 0)T , a is the amplitude, and f is the frequency.

the corresponding fine representation, cf. (15). Different choices for the matrix R are possible. For instance, it can be 
determined by the least squares fitting

x	 = argmin
y	

‖x	+1 − S y	‖2, (17)

which leads to

ST Sx	 = STx	+1. (18)

By comparison with (16) we observe that the coarsening matrix has to be R = (ST S)−1 ST . Notice that R is the pseudoin-
verse of S such that R S = I yields the identity matrix.

In Fig. 7 the functioning of the coarsening matrix R is illustrated. We reconsider the one-dimensional subdivision re-
finement example previously introduced in Fig. 2 and investigate the coarsening of two limit curves. On the top row of 
Fig. 7, the limit curve previously obtained via subdivision refinement in Fig. 2 is successively coarsened until the original 
control polygon is recovered. On the bottom row the coarsening of a perturbed limit polygon is shown. As can be seen, the 
coarsening operation successively removes the high-frequency oscillations from the geometry. The resulting control polygon 
represents a limit curve which is a visually faithful smooth representation of the perturbed original curve.

In multiresolution analysis of surfaces the refinement and coarsening matrices S and R , respectively, are used to con-
struct a wavelet-like decomposition of the geometry. The resulting algorithms allow the concurrent editing of coarse and 
fine levels. As will be discussed in Section 5, in multiresolution shape optimisation it is sufficient to start from a coarse 
control mesh and successively add details to a surface by editing increasingly finer subdivided meshes. This can be achieved 
without a wavelet-like decomposition of the surface.

5. Multiresolution shape optimisation

We are now in a position to discuss the multiresolution optimisation of the electrostatic problem introduced in Section 2
by combining subdivision surfaces with the shape gradients computed with BEM. The basic idea in our approach is to use a 
fine mesh for computing the shape gradients and to use a coarser mesh for geometry modification [20,33]. The underlying 
subdivision representation ensures that the same limit surface is always considered, independently of the actual refinement 
level. Moreover, it is straightforward to transfer any geometry or field data between the different levels using the introduced 
subdivision refinement and coarsening operations, see (15) and (16), respectively.

In the following we briefly summarise our multiresolution optimisation algorithm. This description should be read in 
conjunction with Fig. 8. For boundary element discretisation, the computational level 	c is prescribed with 	c = n, where 
n is chosen sufficiently high to ensure the accuracy of the solution, the gradient field, and the functional. The optimisation 
level 	o is initialised with 	o = 0 and successively increased until 	o = 	c . For simplicity, we assume that the discretised 
optimisation problem is solved using the steepest descent algorithm and no constraints are present.

1. Initialise the optimisation level with 	o = 0, the computational level with 	c = n and the discretised cost functional with 
J (Ω	c , u	c ) = ∞. Here, n is user given and has to be large enough such that the accuracy of the numerical solution is 
sufficient for practical purposes.

2. Repeatedly subdivide the optimisation mesh at level 	o until the computation level 	c is reached.
3. Solve the primal boundary element system (12a) and the adjoint boundary element system (12b) using the computa-

tional mesh with 	c = n.
4. Evaluate the cost functional J (Ω	c , u	c ), i.e., the discrete counterpart to (3), and the shape derivative kernel ̃g	c

i at each 
vertex xi according to (13).
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Fig. 8. Multiresolution optimisation algorithm.

5. If the cost functional J (Ω	c , u	c ) is increasing in relation to the previous value, increment the optimisation level 
	o ← (	o + 1).

6. If the optimisation level exceeds the maximal optimisation level (e.g. the computational level, i.e., 	o > 	c), terminate 
the optimisation procedure.

7. Repeatedly coarsen the computational mesh and the associated vertex shape derivative kernel g̃ until the optimisation 
level 	o together with g̃	o is reached.

8. Perturb the vertex coordinates of the optimisation mesh according to (5) with

x	o
i ← (x	o

i − α g̃	o
i n(x	o

i ))

where the index i denotes vertex id, the kernel values g̃	o
i are computed with (13), and α ≥ 0 is a suitably chosen 

step length parameter. The normal n is computed directly from x	o
i using subdivision limit masks for the surface tan-

gents [31].
9. Go to Step 2.

In our actual implementation we use the method of moving asymptotes (MMA) proposed by Svanberg [34,35] as im-
plemented in the NLopt library [36]. This changes in particular Step 8 in the above algorithm. Using a more sophisticated 
optimisation algorithm than steepest descent significantly reduces the number of optimisation iterations and allows to apply 
bound constraints on the vertex coordinates to prevent unwanted geometries. For further details, such as the consideration 
of volume or surface constraints, we refer to [33].

6. Examples

We present three examples to demonstrate the functioning of the proposed BEM based multiresolution shape optimi-
sation approach. In all examples, the Dirichlet boundary value problem for the Laplace equation (1) is considered. Recall 
that the domain boundary Γ is split into the two disjoint parts Γ0 and Γf , with the prescribed potentials u = 0 on Γ0 and 
u = 1 on Γf . During the optimisation only the shape of the boundary Γf is updated with multiresolution shape optimisa-
tion described in Section 5. The boundary Γ0 and its mesh resolution remains unchanged. As mentioned, the discretised 
optimisation problem is solved with the MMA algorithm as implemented in the NLopt library [36]. The input to the NLopt 
library consists of the cost functional J (Ω	c , u	c ) and for each vertex on the optimisation level 	o its position x	o

i and gra-

dient g̃	o
i n(x	o

i ). In all examples our objective is to minimise the L2-norm of the normal flux (3). As usual in gradient-based 
optimisation, the aim is to achieve a reduction in cost functional and not to find the global minimum of the non-convex 
optimisation problem.

6.1. Box in a sphere

As an introductory example we optimise the shape of a box placed inside a sphere, see Fig. 9, with the expected normal 
flux density Q in (3) set to 20. It can be shown that the optimal shape for the inner box is a sphere with half the 
diameter of the outer sphere [37]. The box, representing the to be optimised boundary Γf , is of size 0.16 × 0.2 × 0.24 and 
the outer sphere, representing the fixed boundary Γ0, has radius 0.2. The coarse mesh for the box contains 48 elements 
which increases to 768 elements in the twice subdivided fine mesh at level 	c = 2. During the subdivision refinement, the 
creases in the coarse mesh are maintained as creases using the extended subdivision stencils mentioned in Section 4.1, 
see also [32]. With the extended subdivision stencils the limit surface corresponding to the coarse box mesh is a box of 
the same geometry. Note that on the limit surface the creases are only C0-continuous and not at least C1-continuous. The 
resolution of the outer sphere remains fixed with 3840 elements. Hence, the meshes for the boundary element analysis of 
the cube and sphere consist of 768 and 3840 elements, respectively.
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Fig. 9. Box in a sphere. Initial and optimised geometries with isocontours of the normal flux. The meshes indicate the optimisation level 	o . The isocontours 
belong to the fine computational mesh at level 	c = 2. The geometries shown in (b) and (c) represent intermediate results and (d) represents the final 
result.

Table 1
Box in a sphere. Reduction of the cost functional corresponding to Fig. 9.

Initial 	o = 0 	o = 1 	o = 2

J (Ω	c , u	c ) 1.54 · 101 1.68 · 100 7.32 · 10−2 8.46 · 10−3

Reduction 0.00% 89.06% 99.52% 99.95%

Fig. 10. Box in a sphere. Rendering of the limit surface of the final optimised shape.

Figure 9(a) shows the initial coarse geometry yielding a cost functional value of J (Ω	c , u	c ) = 15.38. First we select this 
coarse geometry as optimisation level, i.e., 	o = 0, and obtain the optimised geometry shown in Fig. 9(b). After consecutively 
selecting 	o = 1 and 	o = 2 and optimising we obtain the final optimised geometry shown in Fig. 9(d). As shown in Table 1, 
every subdivision of the control mesh leads to a decrease of the cost. The final shape of the initial box is nearly a sphere 
of diameter 0.215 and the cost functional value is J (Ω	c , u	c ) = 8.46 · 10−3, which represents a reduction of 99.95%. The 
maximum normal flux in the initial geometry is Jmax(Ω

	c , u	c ) = 81.49 and reduces to Jmax(Ω
	c , u	c ) = 21.43 in the final 

geometry. As to be expected, the optimisation leads to a geometry with nearly uniform distribution of normal flux as seen 
in Fig. 9(d). Since the extended subdivision scheme was used in this case, the marked creases were not smoothed out by 
the subdivision itself, but rather by the shape optimisation procedure. In Figure 10 a rendering of the limit surface of the 
final optimised geometry is shown.

In order to demonstrate the robustness and benefits of the proposed multiresolution optimisation approach we compute 
the box in a sphere example using a fixed single optimisation level. All boundary element computations are performed with 
	c = 2. First, the fixed optimisation level is chosen with 	o = 1, that is the once subdivided box mesh serves as the initial 
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Fig. 11. Box in a sphere. Single level optimisation for fixed levels 	o and 	c . The wireframe mesh indicates the optimisation mesh, the isocontours on the 
analysis mesh indicate the normal flux.

Fig. 12. L-shaped domain. Plan view of the initial geometry with the outer polygon representing the boundary Γ0 and the inner polygon representing the 
boundary Γf to be optimised. The out-of-plane length of each part is 0.2 and 0.1, respectively.

geometry. The obtained geometry is shown in Fig. 11(a) and the corresponding reduction in the cost functional J (Ω	c , u	c )

is 83.0%. In a second independent computation the fixed optimisation level is chosen with 	o = 2 and the twice subdivided 
box mesh serves as the initial geometry. The resulting geometry is shown in Fig. 11(b) and the corresponding reduction in 
the cost functional J (Ω	c , u	c ) is 80.0%. It is worth emphasising that for both computations the starting geometry is a box, 
each with a different mesh resolution. The advantages of multilevel optimisation are evident from the comparison of the 
single level optimisation results in Fig. 11 with multilevel optimisation results in Fig. 9. Moreover, notice the non-physical 
oscillations in Fig. 11(b) which are reminiscent of problems reported in the finite element context [17,18].

6.2. L-shaped domain

As a second example we consider the optimisation of an L-shaped domain placed inside a larger L-shaped domain, see 
Fig. 12. The geometry contains convex and non-convex corners which usually represent challenges for geometry updating 
during optimisation. The inner L-shaped boundary is the boundary Γf to be optimised and the outer L-shaped boundary is 
the fixed boundary Γ0. The number of elements on Γf increases from initially 28 to 448 in the twice subdivided mesh at 
level 	c = 2. The resolution of the boundary Γ0 remains fixed with 7168 elements. During the subdivision refinement of 
the inner L-shaped boundary Γf the creases are not retained as visible in Fig. 13(a). As previously mentioned, in order to 
maintain the creases it is necessary to use special subdivision stencils [32,31].

Figure 13(a) shows the initial geometry with the maximum normal flux Jmax(Ω
	c , u	c ) = 62.04 and the cost functional 

J (Ω	c , u	c ) = 1.32 (with the expected value Q set to 30). Notice the relatively low value for Jmax(Ω
	c , u	c ) resulting from 

the smoothness of the computational geometry at level 	c = 2. The ellipsoidal geometry resulting from the multiresolution 
shape optimisation is shown in Fig. 13(d). As can be deduced from the isocontour plots on the optimised boundary, the 
normal flux is nearly uniformly distributed. Moreover, during optimisation Jmax(Ω

	c , u	c ) reduces by 48.69% to the value of 
31.83. The cost functional J (Ω	c , u	c ) reduces to 8.64 · 10−3 (99.35% reduction). The cost history is summarised in Table 2.

6.3. Gas insulated switchgear

In this example we apply the proposed shape optimisation approach to the design of an electrode in a gas insulated 
switchgear component, see Fig. 14. Such devices are widely used as disconnectors in high-voltage power transmission. The 
objective of shape optimisation is to reduce the propensity of the component for electric breakdown with the ultimate 
aim to enable more compact component geometries. This can be achieved by modifying the electrode geometries such 
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Fig. 13. L-shaped domain. Initial and optimised geometries with isocontours of the normal flux. The meshes indicate the optimisation level 	o and the 
isocontours belong to the fine computational mesh at level 	c = 2. The geometries shown in (b) and (c) represent intermediate results and (d) represents 
the final result.

Table 2
L-shaped domain. Reduction of the cost functional corresponding to Fig. 13.

Initial 	o = 0 	o = 1 	o = 2

J (Ω	c , u	c ) 1.32 · 101 5.56 · 10−1 3.17 · 10−2 8.64 · 10−3

Reduction 0.00% 57.85% 97.60% 99.35%

Fig. 14. Gas insulated switchgear. Initial geometry and geometric optimisation constraints. (For interpretation of the colors in this figure, the reader is 
referred to the web version of this article.)

that the maximum normal flux Jmax(Ω
	c , u	c ) is minimised. We attempt to achieve this by minimising the cost func-

tional J (Ω	c , u	c ).
In Figure 14 the gas insulated switchgear component is shown with the electrode in the form of a primitive cylinder. 

The cylinder represents the electrode geometry Γf to be optimised. The initial coarse mesh of the cylinder contains 264
elements. The creases on the cylinder are not tagged. Therefore, the geometry becomes smoother while it is refined by 
subdivision. As a design constraint, the inner surface of the cylinder is required to have a constant radius for a bolt passing 
through it. Geometric bounds on the positions of vertices lying on the inner surface are applied to prevent any radial 
movement that would violate this design requirement, see Fig. 14(b).

The once subdivision refined mesh with 1056 elements is chosen as the computational level, i.e., 	c = 1. As can be 
seen in Fig. 15, the ends of the cylinder become smoother because the usual (vs. extended) subdivision stencils are applied 
throughout the mesh. In this example, we consider the geometry at level 	o = 0 for optimisation. In the initial design, 
Fig. 15, the maximum normal flux is Jmax(Ω

	c , u	c ) = 81.63 before optimisation and reduces to Jmax(Ω
	c , u	c ) = 66.99
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Fig. 15. Gas insulated switchgear. Isocontours of the normal flux for the initial cylindrical electrode design.

Fig. 16. Gas insulated switchgear. Isocontours of the normal flux for the optimised electrode design.

Fig. 17. Gas insulated switchgear. Comparison of multiresolution shape optimised design with manually optimised electrode created by ABB engineers.

in the optimised shape shown in Fig. 16, corresponding to a reduction of 17.94%. However, the reduction in the cost 
function J (Ω	c , u	c ) is much higher with 38.24%. In Figure 17 we also show the component with the electrode geometry 
as currently manufactured by ABB. This electrode geometry has been obtained over the years by combining engineering 
intuition with simple calculations and testing. The similarities between the methodically shape optimised and the electrode 
geometry in production are striking. Notice in particular the saddle shape at the two ends of the original cylinder. It helps 
to lower the large normal flux at the sharp crease at the boundary of the inner hole.

7. Summary and conclusions

We have introduced a novel multiresolution shape optimisation approach for electrostatic problems by combining fast 
boundary element methods with subdivision surfaces. For the considered electrostatic problems only a surface mesh is 
required for the boundary element discretisation. This is particularly appealing for three-dimensional problems because of 
the difficulties in generating and updating volume meshes. It was critical for the successful computation of the presented 
optimisation examples that there were no domain meshes.
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For the description of the domain boundaries we used the subdivision surfaces. The inherent hierarchy of the subdivi-
sion surfaces allows to consider the same surface at different resolutions and to take advantage of multiresolution editing 
techniques. Starting from the coarsest control mesh increasingly finer meshes are used for geometry updating and a fine 
control mesh is used for the boundary element discretisation. As demonstrated with the computed examples, this effectively 
inhibits the non-physical geometry oscillations that may occur in shape optimisation. Moreover, any pathological element 
distortions on the computational mesh are practically avoided. As a result, there is no need to regenerate or smooth the 
surface mesh during the optimisation.

The proposed multiresolution optimisation approach has some similarities to multigrid shape optimisation, see [38] and 
references therein. In both cases the geometry is represented through a hierarchy of successively refined meshes and both 
exhibit better globalisation properties. Different from multigrid shape optimisation, in the present approach the hierarchy of 
meshes is only used to improve the stability of the optimisation approach. The primary aim is not to accelerate the iteration 
process. However, the introduced refinement and coarsening operators, that is the prolongation and restriction operators in 
multigrid terminology, appear to be also ideal for multigrid optimisation and accelerating the optimisation process.

In the presented approach subdivision surfaces were used only for geometry parametrisation. It is, however, possible to 
use subdivision surfaces, or the underlying b-spline basis functions, for both analysis and geometry description. This has 
already been successfully demonstrated in isogeometric analysis of solids and shells with the finite element method, see, 
e.g., [39,25]. Recently, the isogeometric analysis of solids with the boundary element method has also been explored [40]. 
In closing, we note that the introduced shape optimisation technique is easily extendible to other boundary value problems 
with known fundamental solutions, like elasticity, Stokes and Helmholtz. Moreover, due to the similarities between shape 
optimisation and inverse problems, see e.g. [41,42], the present technique is also promising for inverse boundary problems.
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