
AN AUTOMATED RIGGING SYSTEM FOR FACIAL

ANIMATION

A Thesis

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Master of Science

by

Jacobo Bibliowicz

January 2005



 2005 Jacobo Bibliowicz

ALL RIGHTS RESERVED



ABSTRACT

We present a system for the automated rigging of human face models, provid-

ing a significant time savings for this arduous task. Our system takes advantage

of previous work which deforms a reference facial surface to conform to new face

models. In particular, we have matched our reference model to digitized human

faces. We parameterize the construction of the reference rig on the surface topol-

ogy of the reference model; thus, the rig can be procedurally reconstructed onto

deformed copies of the model.

The animation parameters of our rig are based on the expressive muscles of the

face. We present a novel skin/muscle model, based on wire deformers and point

constraints, to implement this parameterization. The model supports any number

of muscle contractions about a particular skin patch, yet gives the artist ultimate

control over the shape of the deformation.

Finally, we present a flexible environment for loading, rigging, and animating

new models quickly and effectively.



Biographical Sketch

Jacobo Bibliowicz, known as Jacky to his friends and family, is proud of his Jewish

and Colombian heritage. He was born in Bogotá, Colombia, in May of 1976, and

lived there until he completed his high school degree at Colegio Nueva Granada.

He moved to Ithaca, NY, to obtain his undergraduate degree in Applied and En-

gineering Physics at Cornell University, and has resided there ever since. Before

joining the ranks of the Program of Computer Graphics, he worked at a small

branch of Autodesk, Inc., as a software engineer.

In addition to his academic life, Jacky enjoys having fun and trying out new

and novel projects. In his ten years at Ithaca, he directed the world premiere of

Una tal Raquel, DJ’ed the radio show Ritmo Latino on WICB, and volunteered

as a skier at Greek Peak Sports for the Disabled. He also enjoys riding his bike,

playing squash, dancing salsa, tasting wine, and traveling.

After completing his Masters degree at the PCG, he will move to Canada to

begin a Ph.D. at the University of Toronto.

He will miss Ithaca very much.

iii



Acknowledgements

This work would not have been possible without the encouragement and support

of my advisor, Don Greenberg. His excitement over my work was contagious, and

his enthusiasm over all things graphics related is laudable. I look forward to many

future meetings with Don as a PCG alumnus.

The time spent at the Program of Computer Graphics was enjoyable due to

the charisma, friendliness, and support of its faculty and staff. I thank my minor

advisor, Kavita Bala, for lending a helpful hand and a friendly ear when I needed

them, and for ensuring that my work is presented in the best possible way. Steve M.

and Fabio provided invaluable comments on some of the chapters in this thesis and

answered some of my toughest questions. Bruce, Steve W., and Jim were always

available to help me and to chat whenever I popped into their office. Maintaining

a computer lab that runs smoothly is no small task; Hurf and Martin provided

first-rate support for all my computing needs. Linda was crucial in ensuring that

my work did not get buried in Don’s in box, Peggy entertained me with many

interesting conversations about politics, upholstery, and skiing, and Mary was not

too upset about the spilled popcorn.

Life at the PCG was not always work; lunch breaks and fun times were shared

with other students. Ryan, Jeremy, and Spf ensured that our transition into the

iv



lab was a smooth one. Adam proved himself a great office mate and a strong

athlete. Mike provided great entertainment with hallway sports and “DyD,” while

Will entertained us with his juggling and candy consumption. Henry is just an

overall great guy, fun to talk and listen to, and his office mate Vikash is the pillar

of calmness and the guru of all thing Linux and Subaru. John Mollis was the con-

nection to A&EP at Cornell, and Hong Song completed the club of international

students. To the students who remain: Jeremiah has been a great office mate,

providing artistic tips in exchange for technical ones. Jeff B. is the Houston con-

nection and a good buddy, and Jeff W. provided hockey tickets and rides home at

key times. And Nasheet and Mark will quietly take over the lab when nobody is

looking. That is, of course, unless the Ph.D. students (Jon, Andy, Ganesh, Adam,

Milos, Piti) do it first.

My mom and dad have been strong supporters of all my endeavors, each in

their own way. I will never be able to thank them enough for calling me so often

(even when I don’t want to talk) and for inviting me to visit far away places. I

love them very much. My sister Yael is also a source of strength and inspiration,

as well as a true friend. I wish all three of them could have seen me present this

work. I also want to thank the rest of my family for their love and support—they

are too many to mention in these short pages.

My love goes out to my girlfriend Juyun. She has mothered me over the last few

weeks and helped me jump over the stumbling blocks I lay down for myself. Roćıo

is a fun and cheerful friend and a great President. Her family adopted me for the

Christmas holiday when I was not able to visit my own. Mauricio “Guasacaca” has

been a my partner in squash and in crime. Pati cheered me up when I was down

and increased my consumption of bubble tea. Miguel and Jenny Gómez invited

v



me into their home during my last few months in Ithaca, for which I am eternally

grateful. I partied Colombian style with Camilo, Miguel, Hernando, Luz Marina,

Juliana, Tomás, León, Juan, and many others.

In the ten years I have spent in Ithaca, I have met many wonderful people who

I do not have space to mention, but who will never be forgotten.

This work would not have been possible without generous software donations

from Alias, Inc. Funding was provided by Program of Computer Graphics, the

Department of Architecture, and the National Science Foundation Grant CCF-

0205438.

vi



Chapter 1

Introduction

Recent years have seen an explosion of 3D computer generated animation. The

entertainment industry has played a crucial role, pushing computer graphics tech-

nology to the limit. Studios producing computer animated films are releasing at

least one movie per year, while digital characters are becoming commonplace in

traditional films. Animation is an important ingredient in computer games as well,

and cinematic shorts are becoming more commonplace. The public is enjoying it:

seven of the ten top grossing films in the United States1 have scenes with some form

of computer animation, and the computer gaming industry is one of the fastest

growing industries of recent times.

This high demand has resulted in a need for improving the efficiency of the

computer animation process. Although one should not truncate the time spent

in the initial artistic process, such as the design and construction of appealing

characters, there are several technical steps in the animation pipeline that offer

the opportunity of automation.

1According to figures provided in November, 2004, by Exhibitor Relations Co,
Inc. [ERC].

1



2

One such step is the rigging step. Rigging is the process of defining and im-

plementing the possible motions of a virtual character and providing controls to

execute them, much like tying strings onto a marionette. This is a complex and

time-consuming procedure requiring both artistic and technical savvy. However,

when we restrict ourselves to a particular type of character—say, human beings—

then every new character will have the same basic motions. This correspondence

provides an opportunity for automating the rigging process. Such an automated

system must be flexible to account for variations in the characters’ physical char-

acteristics, such as height and weight.

In practice, this problem is more complex than it seems, especially when deal-

ing with the human face; the most expressive part of the body, communicating

both language and emotion. Human beings have developed an acute sensitivity

to facial expressions and artifacts in facial movement are immediately noticeable.

Additionally, although humans all share the same underlying facial structure, the

range of face types is immense.

Current facial animation techniques, discussed in the following chapters, at-

tempt to overcome some of these issues. For example, parameterized models pro-

vide ready-made, configurable and animatable faces, but the number of characters

which can be represented are limited by the number of conformal parameters.

Morphing systems, on the other hand, can represent virtually any character, but

they depend on facial expression libraries which must be built for each character.

Additionally, these popular morphing algorithms do not simulate the motions in

the face correctly.

In this work, we present a system for automating the rigging process of hu-

man faces, allowing the artist to immediately concentrate on the animation phase.



3

Our approach is to parameterize the rig construction on the surface topology of a

reference model which is optimized to support the deformations of a human face.

This model can then be deformed to match new faces using previously developed

techniques. The reference rig is then easily reconstructed onto deformed copies

of the reference model. The animation parameters of our rig are based on the

underlying expressive musculature of the face. To implement the rig, we have

developed a novel, procedural skin/muscle model which supports any number of

muscle contractions about a particular region of skin. This model is flexible in that

it allows the artist to control the final shape of the skin deformation. Additionally,

we present a flexible environment for animating new models quickly and effectively.

The remainder of this thesis is organized as follows: Chapter 2 provides back-

ground information on the structure and movement of the human face, the percep-

tion of emotion, and the computer animation pipeline. Related work is covered in

Chapter 3. Chapter 4 provides a description of the reference head model and rig,

also developing the skin/muscle model. The procedure for deforming the reference

model to match scanned geometry is the subject of Chapter 5, while Chapter 6 de-

scribes the final overall system, including the animation user interface. Conclusions

and future work are provided in Chapter 7.



Chapter 4

A Generic Face Model and Rig

The goal of this research is to speed up the rigging process of a human face by

applying a predefined rig to new geometric face models. We accomplish this by

deforming a reference model and rig to match models generated by a facial digitizer.

The reference model is expressive, capable of a large number of facial movements

and emotions, and flexible, working in a large number of geometric configurations.

We have chosen muscle contractions as the driving parameters for the reference

rig since, as explained in Chapter 2, they define the basic motions of the human

face. Additionally, other, more intuitive interfaces can be constructed on top of

these low-level controls.

To implement the rig, we have developed a novel skin/muscle model based on

wire deformers and point constraints. The wire deformers intuitively act as skin

attachment points for the muscles and the point constraints average out the skin

displacement due to various muscle contractions. Furthermore, the point constraint

weights allow the artist to fine tune the shape of the deformation, providing more

control over the appearance of the face.

This chapter describes the generic model and rig in detail. We first cover

108



109

the basic concepts required to understand the deformation chain employed by the

reference rig in Section 4.1. In Section 4.2, we introduce the skin/muscle model

developed for the rig, and we conclude with a detailed description of the reference

model in Section 4.3.

4.1 Fundamental Concepts

4.1.1 Constraints

Computerized surface models specify the position of their vertices with respect to

an arbitrary origin, also known as the pivot point. By changing the position and

orientation of the pivot coordinate system, the entire surface is repositioned within

the scene. A system of hierarchical transforms works by applying the transform

chain to the pivot point, thus altering the locations of surfaces.

However, it is sometimes desirable to constrain the behavior of the pivot point’s

coordinate system. For example, a rig can require the animator to specify the

orientation on an object while constraining both eyes to match this orientation.

Another example constrains the orientation of the eyes to point toward the control

object. These control systems are illustrated in Figures 4.1 and 4.2. In both cases,

the eye shapes are referred to as constrained objects and the controlling object is

called the target object.

Our generic rig uses three types of constraints.

Point Constraint: Forces the position of the constrained object’s pivot to match

the position of the target object’s pivot. The constrained object’s orientation

remains unaffected.

Orientation Constraint: Matches the orientation of the constrained object’s co-



110

Figure 4.1: Example of an orientation constraint. In the above images,
the character’s eyes are constrained to match the orientation of the red
control figure.

Figure 4.2: Example of an aim constraint. In the above images, the
character’s eyes are forced to look at, or aim toward, the red diamond
on the control figure.

ordinate system to the target object’s coordinate system. The position re-

mains unaffected.

Aim Constraint: Forces the constrained object’s coordinate system to orient

itself so that it looks at, or aims toward, the pivot point of the target object.

The position of the constrained object remains unaffected.

Note that these constraints support more than one target object. In this case,

the constrained object’s final position or orientation is calculated as if each target

object was the only target, and the results are blended using user provided weights.

These weights are normalized to ensure that the final position and orientation are

bounded by the target positions and orientations. A point constraint with multiple



111

Figure 4.3: An example of a weighted point constraint. The red cone is
point constrained to the orange cones. In the first image, the weights
for cones 1, 2, and 3 are all equal to 1.0, whereas in the second image the
weights are 1.0, 2.0, and 6.0, respectively. By normalizing the weights,
the pivot point of the red cone is constrained to the triangle defined by
the orange cones.

targets is illustrated in Figure 4.3.

4.1.2 Deformers

As mentioned previously, deformers are procedural manipulations which change

the positions of a surface’s vertices or control points, thus deforming it. Note

that a deformer need not change the positions of all of a surface’s vertices. In

fact, it is possible to define a deformation set to specify those points which a

certain deformer should act upon. The benefits are two-fold. First, the artists is

given greater control over the extent of the deformation. Second, the number of

computations in a high-resolution model is greatly reduced. This is analogous to

the definition of regions in Pasquariello and Pelachaud’s Greta model [PP01].

Cluster deformers

Cluster deformers provide a way to attach a second pivot point to a selection of

vertices or control points of a curve or surface. This new pivot point is generally

different from the original pivot which defines the curve or surface’s position in



112

Figure 4.4: An example of how cluster deformers can be used to con-
strain individual vertices of a surface. In the images above, a cluster
has been applied to a single vertex of the polygonal plane. The cluster
handle, shown by a black letter “C,” has been point-constrained to the
pivot point of the green sphere. Therefore, as the sphere is moved, the
cluster handle follows, bringing along the vertex. The cluster handle,
therefore, acts as a second pivot point for the vertex, independent of
the surface pivot point.

space. Transformations applied to the cluster handle (representing the new pivot

point) are also applied to the vertices in the cluster’s deformation set. This is

useful when the artist wants direct vertex manipulation during animation.

Clusters are also used for constraining regions of a surface. Since constraints

affect surface pivot points only, the artist can use a cluster to provide an alternate

pivot for part of a surface, as shown in Figure 4.4.

Another degree of freedom is provided by using cluster weights. These user

defined weights control the degree to which the cluster transform is applied to

the elements of the deformer set. Figure 4.5 shows the results of changing cluster

weights on an object.



113

Figure 4.5: The images above show the effects of cluster weights on
a deformed object. The left image shows the polygon surface before
deformation. The orange vertices represent the elements of the cluster
deformer set. At center, the cluster has been displaced upward, moving
the vertices in the deformer set along with it. The image on the right
shows the deformed surface after changing the cluster weight on the
outer rows of vertices to 0.5 (the default weight is 1.0).

Joints and skins

Imagine for a moment that you are playing with a hand puppet. As you open and

close your hand, different parts of the puppet move, achieving expressive poses.

Consider each finger in your hand as an animation control and let the puppet

represent the surface of your character. As you articulate your hand, you are

altering the shape of the puppet surface. This is the essence of the skin deformer.

The name is derived from an analogy to nature: the driving elements (your fingers)

are considered “bones” surrounded by a “skin” (the deformable surface).

The skin deformer cannot exist without a corresponding set of driving trans-

forms. These transforms are usually linked together to create a rigid articulation

system, such as a human skeleton, but this is not entirely necessary. The trans-

forms are commonly referred to as bones or joints1.

There are two ways to bind a skin deformer to a surface using a particular

1The term “bone” is used in discreet 3ds max and the term “joint” is used by
Alias Maya.



114

set of joints. In rigid binding, each vertex on the surface is associated with a

single joint. On the other hand, smooth binding allows more than one joint to

determine the final vertex position. User-defined weights determine how much each

joint’s transform affects a vertex. This finer control over the deformation allows

the surface to deform more smoothly. Note that in both cases, the deformation

is dependent on the original configuration of the joint system when the skin is

attached. This configuration is called the bind pose or the preferred orientation.

Examples of both skin types are shown in Figure 4.6. The interested reader can

find a description of the deformation algorithm in [LCF00].

Figure 4.6: Examples of smooth and rigid skin deformers are shown
above. Pictured from left to right are the undeformed surface, the
surface deformed by a rigid skin, and the surface deformed by a smooth
skin with a maximum of five influence joints. The joint systems are
highlighted in red.

Wires

Wire deformers were inspired by sculpting armatures [SF98]. Using a wire curve,

the artist can deform surface geometries directly, almost as if creating a rough



115

sketch of the 3D model. A simplified version of the wire deformer, as used in this

work, is described here. The reader is referred to [SF98] for more comprehensive

treatment.

The wire deformer is completely specified by two curves of equal parametric

range (a base wire and a deforming wire), a dropoff distance value, and a dropoff

function. The dropoff function is a decreasing function defined on the interval

[0, 1], where the derivatives at the interval endpoints are usually zero. This work

uses the dropoff function f(x) = (1− x2)2, for x ∈ [0, 1].

Intuitively, the deformer measures the vector difference between corresponding

points on the base and deforming wires. This deformation is then applied to the

vertices within the dropoff distance from the base wire, weighted by the dropoff

function.

More specifically, consider the point P in the deformation set, and let B and

D be the base and deforming wires, respectively (see Figure 4.7). Additionally, let

f(x) be the dropoff function and let d0 be the dropoff distance. Finally, let u be

the curve parameter of the point on B closest to P , and denote this point as B(u).

The wire deformer finds the corresponding point D(u) on the deforming wire and

calculates the vector displacement ~r between B(u) and D(u). The final position

P ′ of P is found by adding ~r to P , weighted by the value of f(d/d0). Here, d is the

distance between P and B(u). Note that if d > d0, the weighting function is not

defined. In this case, the wire deformer has no effect on the position of P . Also

note that unless the base wire or the dropoff distance are modified, the calculation

of the parameter u can be cached to speed up computation.

Figure 4.8 shows the effects of the wire deformer on a surface and the effects

of varying the dropoff distance.



116

Figure 4.7: This diagram illustrates the wire deformer algorithm, as
described in the text. Note that ~r is shown as a bold letter ‘r’ above.

Push-to-surface

The name of the push-to-surface deformer gives its functionality away. This de-

former moves vertices behind a reference surface to a position on the surface. The

definition of “behind” is determined by a user-specified reference direction.

The deformation algorithm is very simple. For each vertex in the deformation

set, we define a ray with its origin at the vertex and pointing in the reference

direction. If the ray intersects the reference surface, the vertex is moved to the

point of intersection; otherwise, its position is unchanged. An example of this

deformer in action is shown in Figure 4.9.



117

Figure 4.8: The effects of a wire deformer are shown above. The base
wires are highlighted in green and the deforming wires in red. The two
surfaces on the left have the wire dropoff distance set to 1.0, while the
ones on the right have a dropoff of 3.0.

4.2 Skin/Muscle Model

The generic rig used in our animation system was developed using a mixture of

structural and ad hoc components. Since the rig will animate a variety of geomet-

rically different faces, we have based the animation parameters on the common

human musculo-skeletal structure. However, there is no formal structural basis for

the deformations employed by the skin/muscle model used in the rig; these simply

provide good results. Nevertheless, there are a few intuitive principles which led

to the development of this model.

From our discussion in Chapter 2 we know that a number of muscles attach

to neighboring facial areas. Therefore, simultaneous contractions of these muscles

will pull the same patch of skin in more than one direction. Additionally, the dis-



118

Figure 4.9: An example of the push-to-surface deformer. The top image
shows the reference surface in a purple color, before the deformation is
applied to the blue surface. The middle image shows the effects of the
deformation, and the bottom image shows the effects of altering the
reference direction.



119

Figure 4.10: Joints were chosen to model muscle contractions due to
their visual feedback. The images, from left to right, show a relaxed
and contracted muscle joint, respectively.

placement of skin due to muscle contraction is strongest near the muscle’s insertion

point, dropping off as one moves away from this region. Our model takes these

properties into account.

The basic elements of the model are muscles and skin. Muscles are defined by

an origin and an insertion point, and the skin is simply the deformable surface.

These elements are coupled together by a deformation chain, which is triggered by

muscle contractions. To simplify the description of this deformation chain, we will

describe its components as we piece it together.

The muscle contraction is modeled as a scaling transformation about the mus-

cle’s origin in the direction of the insertion point. Although any object can be used

to represent this muscle transformation, we have chosen to use joints due to their

intuitive visual feedback, shown in Figure 4.10.

The muscle contraction affects the skin surface indirectly using wire deformers.

As the muscles contract, the wires change shape, thereby affecting the skin. This

procedure is shown in the simple diagram of Figure 4.11. You can think of the

wire as skin tissue being pulled by the muscle. Figure 4.12 shows a sample setup

with two joints affecting a wire, which we will use to illustrate the construction of

the deformation chain.

As stated above, a muscle contraction does not affect all points on the skin



120

Figure 4.11: Simple version of the skin/muscle deformation chain.

Figure 4.12: A sample skin/muscle setup. The two joints, shown in
red, represent two muscles in this system. The skin surface, shown in
blue, will be deformed by the green wire, which is currently in its base
position.



121

Figure 4.13: A cluster is constructed for each of the control vertices
of the deforming curve in the wire deformer. The cluster handles are
indicated above by the letter “C.”

Figure 4.14: Modified version of the skin/muscle deformation chain.

equally. Therefore, the muscle must pull on the wire deformer’s individual vertices

rather than on its pivot point. To enable this, we build a cluster for each of the

control vertices of the wire, as shown in Figure 4.13. The expanded deformation

chain is shown in figure 4.14.

One way to tie the muscle joint contraction to the wire cluster is via parenting.

This simply requires making the cluster transform a child of the joint transform in

the scene hierarchy. There are two drawbacks to this approach. First, parenting is

absolute—the cluster is either a child of the joint or it is not. This does not provide

the flexibility to control a given joint’s influence over a wire cluster. Second, since

the cluster can only have one parent, it is unclear how more than one muscle joint



122

can modify a single cluster.

Instead, we tie the joints and clusters together using point constraints. We

use locators, also called points, to help specify the constraint targets. Locators are

simple, non-renderable shapes which provide coordinate frames in the transform

hierarchy for other objects to use as reference. They are usually rendered in the

viewport as a set of axes. We create a locator for every joint affecting a given

cluster, placing the pivot point at the cluster’s pivot, as shown in Figure 4.15.

Each locator is then parented to its corresponding joint so that joint contractions

will affect its position. An additional, unparented locator is placed at the cluster

pivot to keep track of the clusters original position. Finally, the cluster is point

constrained to the set of locators. By altering the constraint weights, the user can

control the degree to which the contraction of a given joint affects the displace-

ment of the cluster, thereby controlling how much the wire deformer changes. An

example of the chain in action is given in Figures 4.15 and 4.16, and the final

deformation chain is illustrated in Figure 4.17.

By tying the wires and joints together using point constraints, we ensure that

the wire displacement can respond simultaneously to more than one muscle con-

traction. Because the clusters’ final positions are controlled by a weighted average

of the targets, the effect of multiple contractions is dampened and thus the skin

behavior is not too erratic. Finally, point constraint weights provide the flexibil-

ity which allows the artist to control the effects of a given muscle contraction on

a patch of skin. This flexibility is the key to the expressiveness of the reference

model.



123

Figure 4.15: Use of point constraints in the skin/muscle model. In
this example, there are three target locators per cluster: one for each
joint and one unparented locator. Each locator is rendered as three
intersecting lines. The top image shows the initial position of the target
locator shapes and the lower images show the effects of the muscle
contractions on these targets. The contracting muscle and its associated
locator targets are highlighted in green. As the targets move, the point
constraint adjusts the position of the clusters, deforming the wire. Note
that the constraint weights have been specified to deform the center of
the wire more than the endpoints. The effects of these contractions on
the skin appear in Figure 4.16.



124

Figure 4.16: An example skin/muscle system in action. As a muscle
joint contracts, it alters the positions of the cluster point constraint
targets associated with it. This forces the clusters to move, thereby
altering the shape of the wire deformer and thus deforming the skin.
The images show the skin deformation caused by the muscle contractions
shown in Figure 4.15.



125

Figure 4.17: The final deformation chain in the skin/muscle model.

4.3 Reference Model

The reference head model, affectionately named “Murphy,” is a generic human

character capable of a wide variety of facial movement and expression. It is com-

prised of two separate components: a polygonal face model and a muscle-based

rig.

4.3.1 Polygonal Face Model

The reference head model was sculpted using Alias Maya 5.0 [Ali] software following

the procedure outlined in [Osi03]. Initially, the mouth, eye, and ear regions where

roughly sculpted using NURBS surfaces (see Figure 4.18). More detail was added

after converting these surfaces to polygons. A single face mask was created by

combining the polygonal surfaces into one and filling in the holes. In order to create

a symmetric model, a copy of half of the face was mirrored about the meridian and



126

Figure 4.18: Construction of a generic head model.



127

combined with the original half, producing a full face model. The eyes were then

closed to aid in the scan-fitting process (see next chapter). Additional tweaks were

performed on Murphy to remove the cartoonish look and improve the topology

of the surface for deformation. Finally, we applied a simplistic texture to provide

a reference for the eyebrow positions and to enhance the human quality of the

character.

Murphy’s topology was optimized for facial animation, as shown in Figure 4.19.

We used a radial topology for the mouth and eye regions to facilitate the radial

movement of the orbicularis oris and orbicularis oculi muscles. To aid the deepen-

ing of the nasolabial fold, the radial point layout around the mouth is continued

from the lips to the region above the nostrils. Furthermore, extra edges were

added to expressive regions of the face where creases form. These regions include

the forehead, the nose, and the region below and lateral to the eyes. Note also

that Murphy’s bounding box is centered about the origin and he is looking down

the positive z axis, with the y axis pointing up.

Figure 4.20 shows the eyes, teeth, and tongue objects, which were modeled as

separate surfaces.

4.3.2 Muscle-Based Rig

The facial rig provides the controls that bring Murphy to life. The controls are

based on human facial structure and make use of the skin/muscle model introduced

above. The rig itself was implemented in Alias Maya 5.0 and can be decomposed

into three components: the facial mask rig, the eye rig, and the tongue rig.



128

Figure 4.19: Features of Murphy’s topology are shown in this image.
The area highlighted in light blue shows the radial topology used around
the mouth and eye regions. The edges highlighted in yellow are addi-
tional edges included for creating creases.

Figure 4.20: Models for the eyes, teeth, and tongue. Note that the
tongue shape, which is attached to the lower teeth, is hidden by the
upper teeth.



129

Facial mask

The facial mask rig accounts for 95% of all movement in the face. It is responsible

for simulating all muscle contractions, skin creases, and neck and jaw rotations.

Therefore, it is the most complex component of Murphy’s rig.

Figure 4.21: Deformation chain for the facial rig.

A simplified deformation chain diagram for the facial mask rig is shown in

Figure 4.21. Conceptually, the chain is divided into four components. Initially, the

deformers representing muscle contractions are performed using the skin/muscle

model. Since this model does not account for skin sliding over bone, a skull non-

penetration deformation follows. Next, a skin creasing deformation, triggered by

certain muscle contractions, further enhances the expressions of the forehead and

eye regions. Finally, deformations controlling head and jaw rotations (termed

bone movements) and eyelid opening/closing are applied. The reasons for placing

the gross motor movements of the head and jaw at the end of the chain will be



130

explained later in this section.

Figure 4.22: Muscles used in Murphy’s rig.

Figure 4.22 shows the muscles implemented in the rig. Vertices on Murphy’s

polygonal mesh were selected to act as origin and insertion points for each muscle,

thereby parameterizing the muscle construction to the model topology. Addition-

ally, the muscle origin position was scaled uniformly by 0.95 about the center of

Murphy’s bounding box before creation of the joint to simulate the subcutaneous

attachment to the skull, as illustrated in Figure 4.23. With the exception of the

procerus and mentalis, all muscles have symmetric joints on the left- and right-

hand sides of the face. The frontalis muscle has two components per face half,

allowing for contractions of the inner and outer portions of the muscle.

Another feature of note on the mentalis muscle is that the origin and insertion

points are switched, thereby simulating a muscle contraction by scaling the joint

outward. This orientation worked better in practice than the standard treatment



131

Figure 4.23: This view of Murphy’s left eye shows how the muscle joints
are constructed from the vertices in the topology of the face mask. Note
that the ends of the joints are positioned at the vertex locations—the
roots of the joints are displaced to simulate attachment to the skull (see
text).

since, in contrast to the other muscles of the mouth, the mentalis pushes on the

lips instead of pulling.

Observe that the sphincter muscles are notably absent from this muscle system

(see Figure 2.7 for reference). In case of the orbicularis oculi, two joints have

been used to simulate the skin rising in the cheek region due to contractions (see

Figure 4.22). Only the incisivis fibers of the orbicularis oris have been included in

this rig. The levator palpebrae muscle is also excluded from this system, as it is

implemented in the final deformation component of the rig. A comparison of the

muscle joints to the human musculature is shown in Figure 4.24.

The rig muscles attach to sixteen wires on the skin, illustrated in Figure 4.25.

Intuitively, these wires represent the areas of the skin that are most affected by

muscle contractions. Once again, with the exception of the upper and lower central

wires around the mouth, each wire has a symmetric twin on the opposite side of

the face. The wires are constructed by interpolating specific vertex positions on



132

Figure 4.24: Comparison of Murphy’s rig muscles to the human muscu-
lature. Note that the risorius muscle, which appears to be missing, is
actually hidden by the triangularis muscle, as shown in Figure 4.22.

Figure 4.25: The wires used in Murphy’s rig.



133

the face mesh, maintaining the topological parameterization. Although we used

cubic NURBS curves initially for the wires, experiments showed that linear curves

provided similar results with lower computational costs2. Table 4.1 shows which

muscles are connected to each wire using the skin/muscle deformation chain. The

weights on the cluster point constraints in each wire were adjusted manually until

the desired facial contraction effects were obtained.

Due to the proximity of the upper and lower lips in the generic face mesh,

vertices in the lower lip are within the dropoff distance of the upper lip wires

and vice versa, which is a source of undesirable deformations. To correct this

problem, the region around the mouth was carefully partitioned into deformation

sets specific to each wire. These deformation sets are illustrated in Figure 4.26. An

additional benefit of this partitioning is the reduction of computation in each wire

deformer. The deformation sets for the wires around the eyes and cheek regions

were also specified, as shown in Figure 4.27.

As briefly stated previously, the skin/muscle model has no provisions for sim-

ulating skin sliding over a skull. This is not a problem in the mouth region since

the face geometry does not follow the skull lines closely there. However, this does

create a problem in the forehead region, specially when the eyebrows are raised

(contraction of the frontalis muscle), as shown in Figure 4.28. As the muscle joints

pull on the skin, the region of the eye representing the eyebrow ridge bulge rises

with the wire, giving the face an unnatural, stretched-out look. The second stage

of the facial deformation chain fixes this using a push-to-surface deformer, which

pushes out the skin in the skull region and restores the natural look of raised

eyebrows.

2Linear curves use a simpler algorithm for closest distance to a point (used in
the wire deformer) and have a smaller number of control points.



134

Table 4.1: Muscle to wire connections in Murphy’s rig. Unless otherwise
noted, each muscle and wire correspond to the same side of the face
mesh.

Wire Muscles
Frontalis (both components)

Forehead Procerus
Corrugator
Frontalis (both components)

Eyebrow Procerus
Corrugator

Nose Orbicularis Oculi (inner)
Cheek Orbicularis Oculi (outer)

NasoLabial Levator Labii (nasal)
Levator Labii (mid)
Levator Labii (nasal, both sides)

Mouth Upper Center Levator Labii (mid, both sides)
Zygomatic Major (both sides)
Orbicularis Oris Incisivis (both sides)
Levator Labii (nasal)
Levator Labii (mid)

Mouth Upper Corner Zygomatic Major
Risorius
Triangularis
Orbicularis Oris Incisivis
Zygomatic Major
Risorius

Mouth Lower Corner Triangularis
Depressor Labii
Mentalis
Orbicularis Oris Incisivis
Zygomatic Major (both sides)
Risorius (both sides)

Mouth Lower Center Triangularis (both sides)
Depressor Labii (both sides)
Mentalis
Orbicularis Oris Incisivis (both sides)



135

Figure 4.26: Deformation sets corresponding to the wire deformers around the mouth region.



136

Figure 4.27: Deformation sets corresponding to the wire deformers
around the forehead and cheek regions.

Figure 4.29 shows the procedure we use to generate the skull surface directly

from Murphy’s topology. First, we generate a set of cubic NURBS curves over the

forehead surface. Each curve is constrained to pass through a series of face mask

vertices contained within a vertical section of the forehead. The curves are then

lofted to create a bicubic NURBS surface used by the push-to-surface deformer.

We use the z axis vector ([0 0 1]T ) to define the forward direction of the deformer,

which is the same direction Murphy looks toward.

The push-to-surface deformer is the bottleneck of the facial deformation chain.

The slowdown occurs from the number of ray/surface intersection tests performed

against the bicubic NURBS skull surface. Therefore, we have attempted to trim

down the skull deformation set as much as possible. The final set is shown on

Figure 4.29.



137

Figure 4.28: Simulation the skull using a push-to-surface deformer. The
images on the left show Murphy raising his eyebrows without the skull
deformations. The face looks unnaturally stretched out. On the right,
the face regains its natural look by use of a push to surface deformation.



138

Figure 4.29: Details of the skull surface generation and deformation.
Pictured on the left are the NURBS curves used to define the skull
surface. These curves are constrained to pass through a series of face
mask vertices contained within a vertical section of the forehead. The
curves are then lofted to produce the skull surface shown on the center
image. Finally, the vertices of the skull push-to-surface deformation set
are highlighted in yellow on the far right.

Once the skull deformations are applied, the forehead appears fairly flat. How-

ever, when the eyebrows are raised, the skin of the forehead should crease. The job

of the next set of deformations in the facial rig chain is to deepen the skin creases

in the face. Figure 4.30 illustrates the results of this step.

Note that we do not solely apply creasing deformations to the forehead region.

Creases are an important component of facial expression, appearing also in the

areas around the eye and nose. We have added extra edges in these regions to

enhance Murphy’s expressions.

The creases themselves are implemented by creating cluster deformers on se-

lected vertices. The clusters are displaced slightly, usually in the negative z di-

rection, to deepen the skin crease. The degree of displacement is controlled by

the muscle contraction parameter. Cluster weights are used to blend creases to-

gether when the corresponding regions of influence of the trigger muscle overlap



139

Figure 4.30: The effects of the creasing deformations in the third step of
the facial rig deformation chain. The images on the left show Murphy
before this step is applied, and the results of the creasing deformations
are shown on the right. Note how the deep creases enhance the facial
expression.

(for example, in the forehead). Figure 4.31 shows the vertices affected by creasing

deformations. The colors correspond to individual cluster deformers and show how

the cluster weights blend creases together.

Once the creases are in place, we arrive at the last step in the facial mask

deformation chain. This step implements deformations that simulate the head

rotating, the jaw opening, and the eyelids opening and closing. The unifying factor

behind these movements is their rotational character: neck vertebrae rotate one

over the other, the jaw rotates as the mouth opens, and the eyelids “rotate” about

the center of the eye. Joints and skinning provide an intuitive implementation for

this type of deformation.

Figure 4.32 shows the joints used to skin Murphy. In order not to confuse these

joints with the muscle joints described previously, we call these bone joints. We use



140

Figure 4.31: The creasing deformation clusters used in Murphy’s rig. The vertices involved in these defor-
mations are highlighted in white. Each color corresponds to an individual cluster, and the number values
represent the weight of the vertex in the cluster of that color. Note how the weights blend the creases
together in the forehead and down the meridian.



141

Figure 4.32: Joints used for Murphy’s skinning deformation.

a single joint for the head rotations and another for the jaw rotations. There are

also a total of four eyelid joints, one per eyelid. We use smooth binding to attach

the skin to the joints, limiting the maximum number of joint influences to two per

vertex. Although this is a small number, in practice we obtain good results due to

the simplicity of our joint skeleton.

With the exception of the eyelid joints, the bone joints are constructed by taking

the midpoint of selected vertices on the face mesh. The eyelid joints themselves

are positioned at the pivot points of the eye shapes. To maintain the topological

parameterization, we store the skin weights per joint based on the vertex indices

in the face mesh. Figure 4.33 shows the results from applying the smooth skin

deformation on Murphy.

The inquisitive reader may wonder why this deformation comes last. Since the

skin and muscles stretch as bones rotate (for example, when opening the mouth),

would it not make more sense to place this deformation at the beginning of the

deformation chain? Indeed, although this approach would increase the structural



142

Figure 4.33: Effects of the skinning deformation.

and anatomical correctness of our model, in practice the complexity of the system

would increase dramatically. In order to produce the correct skin/muscle deforma-

tions, the muscle joints and skin wires must rotate and deform along with the facial

mask, as illustrated in Figure 4.34. Consequently, the cluster/point constraint sys-

tems must be relocated as well. However, the rigging software does not allow the

application of skinning deformers to locators. To work around this limitation, we

opted for the simpler approach of pushing the skinning deformation to the end of

the chain, which provides equally satisfactory results.

As a final detail, we note that eyelids do not really rotate about the center of

the eye. As shown in Figure 4.35, this simplified approach can sometimes fail and

cause intersections of the eyelid and eye shapes. We use a sculptor deformer to

solve this problem. A sculptor deformer is essentially a push-to-surface deformer,

with two differences: the surface is always a sphere and the displacement direction

in not constant. Instead, all rays are traced from the same user specified location.

We place the sculpting origin at the center of the eye shape, and the sculpting



143

Figure 4.34: The images above illustrate the problems of applying the
skinning deformation before the muscle deformations. As the bone
joints move, they must pull the muscle joints and wires along with
them, maintaining the relative positions of the wires to the skin sur-
face. Otherwise, as shown on the right, the wire deformations will not
be acting at the correct skin surface locations.

sphere is placed to match the sphere defined by the cornea. The deformation sets

for the sculptors and the improved results are also shown in Figure 4.35.

Eyes

The eye rig, which simply controls the eyes’ gazing direction, is implemented using

aim constraints. Given that the eyes naturally diverge between 5 and 15 degrees

away from the meridian [Osi03], we do not directly aim the eye axis to the controls.

Rather, we place the divergent eye shape as a child to a locator. This locator is

then constrained to aim at the control shape, which is initially placed directly in

front of the locator. To move the eyes together, the aim control shapes are made

children to a larger control shape. Thus, the artist can move the larger shape to

move the gaze direction of both eyes at once, using the smaller control for fine

tuning. This is useful when the character is looking at an object near the face or

to give the character a cross-eyed appearance. Figure 4.36 illustrates the details



144

Figure 4.35: The eyelid sculptor deformation and deformation sets. The
top images show how the sculptor prevents intersections between the
eye and eyelid surfaces. The lower image shows the deformation sets
for these deformers.

of the eye rig.

Tongue

The tongue rig allows Murphy to move his tongue up and down, left to right,

and in and out of the mouth. The movements are implemented with a smooth

skinning deformer, using the joint skeleton shown in Figure 4.37. The figure also

shows some tongue configurations achievable with this joint system.



145

Figure 4.36: Details of Murphy’s eye rigs are shown above. The top
row shows the locator shapes which are parents to the eye shapes, high-
lighting the diverging angle of the eyes. The parent locators are aim
constrained to control shapes, located in the direction of the green ar-
row and shown in the bottom row. The bottom left image shows the
default location of the aim controls, and the center and right images
show the effects of moving the large control and the smaller controls,
respectively.

Figure 4.37: Details of Murphy’s tongue rig. On the far left the joints
used for smoothly skinning the rig are highlighted in green. The center
and left images show the two possible configurations of the tongue using
the skinning deformer.



146

4.4 Summary

We have presented the reference head model and rig used in our animation system.

The rig uses a muscle-based parameterization to drive the deformations of the

face. In order to transfer the rig easily between different head models, we have

parameterized the construction of the rig on the topology of the reference surface.

An ad hoc skin/muscle model, based on wire deformers and point constraints,

was developed to implement the rig. The model uses point constraints to average

out the influence of various muscles on a region of skin, and the point constraint

weights give the artist control over the final deformations of the skin surface, which

are implemented by the wire deformers.

The head surface of the generic model has been optimized for animation. Using

this surface, the skin/muscle model, and additional deformations, we have devel-

oped a realistic character: Murphy. Figure 4.38 shows Murphy posed in the six

universal expressions, illustrating the flexibility of our model.



147

Figure 4.38: Illustration of Murphy portraying the six universal expres-
sions. From left to right, top to bottom, are sadness, anger, joy, disgust,
surprise, and fear.



Chapter 5

Fitting Facial Scan Data

Our next task is to apply the reference facial rig developed in the previous chapter

to new head models. In order to do so, we deform the reference model to match

the new models, maintaining the mesh topology unchanged. The reference facial

rig can then be rebuilt or procedurally reattached to the new geometry, as it is

parameterized on the topology only. Thus, the new head model can be quickly

rigged and animated after the fitting procedure is applied. For the fitting proce-

dure, we build on the wealth of research already conducted on the subject, which

we have described in Chapter 3.

Maintaining a single topology is not a limitation, but a strength of the proce-

dure. By transferring the reference topology, we ensure that the new surface model

has a topological layout that matches the requirements of the deformations in the

reference rig.

In this work, we have used digitized faces produced by a Cyberware scanner

as new face models. We chose these models because they are accurate reflections

of typical human faces and they are easily generated in a matter of seconds. In

addition, we have based our deformation procedure on the one developed by Jeong

148



149

Figure 5.1: Triangulated reference model.

et al. [JKHS02], which requires minimal user intervention and produces fair results

(see Figure 3.24). We described the details of Jeong’s algorithm in Chapter 3, so

this chapter will focus on the improvements of our implementation.

Jeong’s algorithm is optimized for use with triangular polygonal reference

meshes. Therefore, we have triangulated the original quad reference mesh to im-

plement the fitting algorithm. The new mesh is shown in Figure 5.1. Note that this

does not affect the rigging procedure described in the previous chapter. Although

the edge and face topology of the reference model change with triangulation, the

vertex topology, which the reference rig is based on, remains unchanged.

The remainder of this chapter proceeds as follows: first, we discuss the details

of the scan acquisition procedure. Next, we describe the user interface we designed

to provide an initial scan alignment. Later, we briefly review Jeong’s three scan-

fitting steps and then discuss our implementation. Finally, we conclude with our

results. An outline of the entire fitting procedure is shown in Figure 5.2.



150

Figure 5.2: Outline of the scan fitting procedure.



151

5.1 Scan Acquisition

Before the scan fitting procedure is applied, we must obtain a digitized head. In

this work we have used digitized facial data generated by the Cyberware 3030/RGB

scanhead and PS motion system described in Chapter 3. Subjects were scanned

using default settings: full circle scan with samples every 0.75 degrees. The ori-

entation of the subjects was uncalibrated, although the up direction was defined

by the y axis. The scan output was stored in PLY format [PLY] with distances

measured in meters.

The subjects were asked to close their eyes during the scan and to assume

a neutral expression with a closed mouth. Since we have modeled separate eye

surfaces in our rig, it is unnecessary to capture eye geometry; we capture the

closed upper eyelid instead. Also, the relaxed, neutral expression matches the

expression on the reference mesh.

As hinted on Figure 3.6, the subjects also wore a swim cap during the scanning

procedure. The swim cap improves the scanned data by removing most of the noise

and holes typical of the hair region. Additionally, our experiments have shown

that, for our purposes, the fitting procedure works better when the subjects’ hair

is covered by the swim cap, as will be shown later in this chapter.

5.2 Scan Alignment

Since our scan data orientation is uncalibrated, we have developed a user interface

to roughly align the scan in the reference direction. This interface is pictured in

Figure 5.3. Four OpenGL viewports show orthographic projections of the three

canonical axes and one perspective projection with a modifiable camera. Using the



152

Figure 5.3: User interface for scan alignment and definition of clip planes, showing the silhouette difference
visualization with two active clipping planes. Controls and clip plane parameters are on the right-hand side
of the window.



153

controls on the right-hand side of the window, the user can rotate and translate

the scan. A Center Scan button centers the bounding box of the scan at the

origin, matching the location of the reference mesh. It then resizes the bounding

box of the reference mesh to match the scan’s bounding box. Controls allow for

loading and saving the scan, for showing and hiding the reference mesh, and for

visualizing the silhouette difference image.

Optional clipping planes for use in the silhouette fitting step can also be spec-

ified using this interface. The purpose of these clipping planes will be discussed

in Section 5.3. A maximum of two clipping planes are supported, and they are

defined by a plane normal and a point on the plane. The user is allowed to specify

whether or not to use the clipping planes for rendering and whether or not to

render the planes themselves.

Upon selecting Save, the user defined transform is applied to the scan before

the file is saved. The clipping plane information is saved in a separate file, which

is loaded by the next procedure.

5.3 Review of Jeong’s Algorithm

Before we discuss our implementation of the surface fitting procedure, we briefly

review Jeong’s algorithm. For a comprehensive description, the reader is referred

to Chapter 3 or to [JKHS02].

Jeong’s fitting algorithm, which fits a triangular mesh to a set of unorganized

points obtained from a facial scan, is composed of three steps: the silhouette

alignment step, the local alignment step, and the global alignment step.

The purpose of the silhouette alignment step is to find an affine transform which

minimizes the silhouette difference between the reference mesh and the scan points.



154

The silhouette difference function is defined by XOR-ing together flat-shaded ren-

derings of the reference model and scan cloud in three canonical axes. The function

value is the sum of the number of white pixels in the three XOR-ed images. Fig-

ures 3.18 and 3.19 illustrate this procedure. To avoid artificial difference pixels

caused by differences in the length of the neck or by scan artifacts in the hair re-

gion, two clipping planes are used to remove these areas from the difference image.

Using an iterative procedure (Powell’s method), the silhouette difference function

is minimized, producing an initial registration between the reference model and

the scan cloud.

To eliminate differences in proportion between the facial scan and the reference

model, a local alignment step is applied. This step further registers salient features

in the face by applying local deformations in the areas of interest, blending the

deformation into the surrounding area. The local areas are predefined for the

reference model as bounding boxes around the features of interest: the ears, nose,

and mouth. To find the optimal local deformations, defined as a local similarity

transform, an energy minimization procedure, based again on Powell’s method, is

applied to the parts of the scan cloud and reference mesh within each box. For

convenience, we restate the energy functionals here. For each alignment box b ∈ B

we let Vb and Pb represent the sets of reference vertices and scan points inside of

b, respectively.

Elocal(Vb, Pb) = Edist(Vb, Pb) + Estretch(Vb) (5.1)

Edist(Vb, Pb) =
∑

p∈Pb

‖p− Π(Vb, p)‖2 (5.2)

Estretch(Vb) =
∑

e∈edges(Vb)

1

2
k‖le − re‖

2 (5.3)

Here, Edist penalizes the distance from the scan points to the reference mesh, and



155

Estretch penalizes large changes in the reference mesh’s scale. Diagrams explaining

these terms can be found in Figures 3.15 and 3.22. The optimal transforms are

then applied locally at each alignment box and blended into the surrounding re-

gion. The blending displacement for a given vertex is calculated by combining the

displacements of predefined landmarks in each bounding box, weighted according

to the distance from the vertex to the landmark.

Finally, the global alignment step produces the final polygonal model from the

scan cloud. This step is also based on an energy minimization procedure which

optimizes the positions of the vertices in the reference model. We repeat the energy

function below, using V and P as the sets of vertex positions and scan cloud points.

Eglobal(V, P ) = Edist(V, P ) + λEsmooth(V )

+µEbinding(V ) + νEconstraint(V ) (5.4)

Esmooth(V ) =
∑

v∈V

∥

∥

∥

∥

∥

v −

∑

w∈star(v) w

valence(v)

∥

∥

∥

∥

∥

2

(5.5)

Ebinding(V ) =
∑

(u,v)∈binding(V )

‖u− v‖2 (5.6)

Econstraint(V ) =
∑

v∈constrained(V )

‖v − v̂‖2 (5.7)

The Edist term is given by Equation 5.2. The term Esmooth encourages the resulting

polygonal surface to be locally smooth by penalizing the distance between a mesh

vertex and the centroid of its neighbors, as shown in Figure 3.16. The Ebinding term

prevents certain areas from being flattened by the Esmooth term, such as the back

of the ears. It is also useful to keep the boundaries at the mouth and eyes closed.

Finally, the term Econstraint is useful to maintain the vertices of the inner lips and

eyes at their current locations instead of allowing them to be pulled out to the scan

surface by the Edist term. The constants λ, µ, and ν are arbitrary and control the

influence of each energy component in the final result. By approximating Edist as



156

a linear term, the minimization problem reduces to a linear least squares system

which is easily solved to obtain the optimal vertex positions for the reference mesh.

5.4 Silhouette Alignment

We have implemented Jeong et al.’s initial silhouette alignment step without any

significant changes. However, upon loading the scan, we scale it uniformly by 100

to convert the units to centimeters, which are more convenient to work with in the

rigging software.

For each canonical viewing direction, we create an 256x256 image, which is

the resolution recommended by Jeong. Although we tried rendering these images

directly into a frame buffer window, we found that other windows on the desktop af-

fected the result of the glHistogram() count. Therefore, the images are rendered

into a pixel buffer instead. The implementation of Powell’s method was taken

from [PTVF02]. On our system, which consisted of an Intel Pentium 4 proces-

sor [Int] running at 2.4GHz and an NVIDIA Quadro 4 750 XGL card [NVI]1,

the optimization procedure took an average of ten minutes per scan.

Figures 5.4 and 5.5 shows results for this procedure, which we have found not to

be robust. In most cases, a fair alignment is obtained, but occasionally, as shown in

Figure 5.5, disastrous results occur. We have not investigated methods for solving

this problem. Instead, we have painstakingly tweaked the clipping planes for each

scan until we achieved a decent alignment. In some cases, an alignment which

produced accurate results after completing all of the steps in the fitting process

1Intel and Pentium are trademarks or registered trademarks of Intel Corpora-
tion or its subsidiaries in the United States and other countries. NVIDIA and other
NVIDIA Marks are registered trademarks or trademarks of NVIDIA Corporation
in the United States and other countries.



157

Figure 5.4: Correct results from the silhouette alignment procedure ap-
plied to Dhruva’s (top) and Marissa’s (bottom) facial scans, proceeding
from top to bottom. For each scan, the initial silhouette difference is
presented first and the final below it. In each row, three images corre-
sponding to the three canonical views are presented. The green lines
show the locations of the clipping planes used for each scan.



158

Figure 5.5: Results from the silhouette fitting procedure applied to Se-
bastian’s scan, producing incorrect results. Again, the initial silhouette
difference is presented above the final difference. Although the number
of white pixels is at a minimum in the final count, notice that the ears
fit together but the nose and mouth regions have moved away from the
desired orientation.

was not found.

For those scans with good alignment, we stored the optimal transform τ and

applied it to the reference model before continuing on to the next step.

5.5 Local Alignment

Our implementation of the local alignment step differs slightly from Jeong’s im-

plementation. Although we have used the same energy functionals described in

Section 5.3, we evaluate them differently.

We have chosen to use five local alignment boxes instead of the four proposed

by Jeong et al. The boxes and corresponding landmarks are shown in Figure 5.6.

The new box is used to align the eyebrow regions of the scan and the reference

mesh, accounting for differences in proportion in the middle third of the skull.



159

Figure 5.6: Local alignment boxes defined on our reference model. Note
that we have used five alignment boxes instead of the four suggested by
Jeong (see Figure 3.21). There is one box for each ear and one box
each for the nose, mouth, and eyebrows. The alignment landmarks are
highlighted in yellow. Note that the third landmark for the ear region
is occluded by the ear.

Without this box, as shown in Figure 5.7, the boundary between the eyelids will

sometimes creep to the middle of the eye, giving the final fitted mesh an unnatural

look. We have also moved the alignment landmarks for each box to areas near the

box boundary, since this is where the exponential blending function should have

a stronger effect. We used three landmarks for each ear, four for the nose, six for

the mouth, and eight for the eyebrows.

Recall that Jeong’s formulation of the Edist term, unlike Marschner’s, allows

points in the scan to project to an area of the reference mesh whose normal points

in the opposite direction (see Chapter 3). To overcome this discrepancy, we recall

that the Cyberware scanner cannot capture internal or self-occluding surfaces of

the face, such as the interior of the lips and the area behind the ears. Therefore, we

do not allow points in the scan to project to such occluded regions in the reference

model. These non-projectable regions are shown in Figure 5.8 and include the



160

Figure 5.7: Comparison of results of using four versus five local align-
ment boxes. On the left, we see the original Cyberware scan of Dhruva
for comparison to the fitted surfaces. The shape in the center shows the
eyelid boundary at the middle of the eye, which looks unnatural. Using
a fifth alignment box, we push this boundary down, obtaining the shape
on the right.

region behind the ears and the interior parts of the eyes, nose, and mouth.

To speed up the computation of projections for the Edist term, we build a

bounding sphere hierarchy and use the closest point algorithm developed by Maier

et al. [DMM03]. The hierarchy is applied to the triangles which have at least one

vertex within the alignment box and are not in the set of non-projectable faces.

Like Jeong, we then apply Powell’s method to find the optimal transform. However,

we have found that evaluating Edist accurately for each evaluation of Elocal is too

slow to be of practical use. Following Marschner, we have therefore approximated

the term by expressing the projected points Π(V, p) as linear combinations of the

vertices in V . In practice, we use the barycentric coordinates determined from the

triangle on which the projected points lie.

Again following Marschner, we improve upon this approximation by iterating



161

Figure 5.8: The non-projectable regions of the reference mesh are high-
lighted in green in this figure.

over calls to Powell’s method, computing new approximations of Edist before each

call. After calling Powell, we compare the final energy value Elocal to the one

obtained in the previous iteration, halting when the difference between these values

is less that one percent of the current value. Since this condition alone does not

ensure termination, we limit the number of iterations to fifty.

Once the transforms for each alignment box have been found, we apply them

to the reference mesh and use Jeong’s blending formula (Equation 3.9) in the

surrounding regions. A diagram of the entire procedure is shown in Figure 5.9.

5.6 Global Fitting

Our implementation of the global fitting step also differs slightly from Jeong et

al. Recall that this step performs the final optimization of the reference vertex

positions using an energy minimization procedure.

The binding edges and constrained points we have specified, shown in Fig-

ure 5.10, follow Jeong’s specification. We use binding edges in the ear region to

prevent the back of the ear from smoothing out and collapsing the ear ridge. In



162

Figure 5.9: Schematic diagram of our implementation of the local align-
ment step.



163

Figure 5.10: Binding edges and constrained points used in the global
fitting step. The two images above show the binding edges that are
actually edges in the reference mesh highlighted in green. The endpoints
of the non-existent binding edges are highlighted in yellow in the same
images. The lower image shows the constrained vertices in light blue.
Note that none of the constrained vertices is also an endpoint for a
binding edge, since the former lie further away from the visible surface.



164

Figure 5.11: Barycentric constraints defined in the interior nose. The
wireframe image on the right is a blow up of the nose region, includ-
ing some of the internal nose faces. The vertices shown in green are
projected onto the red triangles, which are defined from vertices in the
reference mesh. The green vertices are then constrained to the barycen-
tric location of their projection. A symmetric setup is used for the other
side of the nose.

the boundaries of the eyes and mouth, we specify binding edges which are not part

of the mesh to keep the borders closed. Constrained points are used to keep the

inner points in the eye and mouth boundaries from being pushed toward the outer

surfaces.

We also considered constraining the vertices in the interior of the nose, but we

were afraid that the constraint would allow the vertices to poke through the exterior

nose surface. However, we needed some form of constraint to prevent the smooth-

ness term from flattening out the interior nose region. We therefore developed

a barycentric constraint, which is shown in Figure 5.11. For each barycentrically

constrained point, we chose three other vertices on the reference mesh, forming a

triangle. We then constrain the vertex to the barycentric coordinates of the closest

point on this triangle. This is similar to the linearization of the Edist term.

Mathematically, using the variables defined in Figure 5.12, we define a barycen-



165

Figure 5.12: A graphical explanation of the definition of a barycentric
constraint κ. The triangles and constrained vertices are those shown in
Figure 5.11. Here, α, β, and γ represent the areas of △pbc, △pca, and
△pab, respectively.

tric constraint κ as a 7-tuple

κ = (pκ, aκ, bκ, cκ, ακ, βκ, γκ), (5.8)

where pκ is the constrained vertex, aκ, bκ, and cκ are the reference vertices defining

the constraining triangle, and ακ, βκ, and γκ are the corresponding barycentric

coordinates for the projection of pκ unto triangle aκbκcκ. The barycentric energy

term penalizes the distance between pκ and its projection, and is defined as

Ebarycentric(V ) =
∑

κ∈bary(V )

‖ακaκ + βκbκ + γκcκ − pκ‖
2. (5.9)

In practice, we do not add this extra term to Eglobal. Instead, to all the vertices

in V we apply either a barycentric constraint or a smoothness constraint, since we

are using the barycentric constraints to avoid over-smoothing the nose region. The

modified smoothness term then becomes

E ′

smooth(V ) = Ebarycentric(V ) + Esmooth(V − bary(V )). (5.10)

We substitute E ′

smooth for Esmooth in our final formulation of Eglobal.

We evaluate Edist once again using a bounding sphere hierarchy which ex-

cludes the set of non-projectable regions. To evaluate Esmooth, we implemented



166

Figure 5.13: A comparison of results from trying to smooth out the
forehead during scan fitting. The shape on the left is the output from
the original fitting procedure, replicated from the right of Figure 5.7.
At center, the smoothness constant λ was set to 2.0, but the forehead
still shows unacceptable artifacts. After adding barycentric constraints
to the forehead, the smooth shape of the right is obtained.

the tri-edge data structure [Loo00], which stores adjacency information required

to compute the function. The values of λ, µ, and ν were all set to one.

Using Marschner’s approximation for Edist, the minimization of Eglobal is a

linear least squares problem. To find the solution, we express Eglobal as a sparse

linear system

Av = r, (5.11)

where v is a vector containing the points in V (see Appendix A for a derivation).

We store this system in a sparse matrix representation similar to the one suggested

by Press et al. [PTVF02] and use their implementation of the conjugate gradient

method to solve it2. Note that we actually solve three systems—one for each

coordinate of the points v ∈ V . However, the matrix A remains the same for each

system, so it is only computed once.

As shown on the far left of Figure 5.13, the results from the fitting procedure as

2Press et al. actually implement the biconjugate gradient method [PTVF02].



167

Figure 5.14: Close-up of the artifacts in the fitted forehead shape from
the far right of Figure 5.13. The areas circled in red highlight the criss
crossing of vertices. Note how these artifacts are limited to the regions
containing very slim triangles.

described so far produce artifacts in the forehead region. Upon closer inspection,

as shown in Figure 5.14, we see that the vertices surrounding thin triangles in

the forehead are criss crossing over each other, producing odd discontinuities in

shading. These vertices border the triangles which were added to the forehead to

enhance skin creasing (see Figure 4.19). Increasing the smoothing constant λ to

2.0 still does not produce optimal results, as shown in Figure 5.13.

This problem stems from the thin and long shape of the triangles in the creasing

regions. Because of their shape, the number of scan points projecting onto these

triangles is fairly small. However, the number of vertices which project onto the

long edges of these triangles can be fairly large. This increased pull on the edges

of the triangles is responsible for pulling nearby vertices in opposite directions,

leading to criss crossing.

To solve this problem, we remove the thin triangles by tying the positions of the



168

Figure 5.15: The positions of the vertices in the forehead highlighted in
yellow on the left image are tied together during the fitting procedure.
The resulting mesh is shown on the right. To restore the position of the
outer crease vertices, barycentric constraints are used.

vertices shown on the left of Figure 5.15. The resulting mesh appears on the right

side of the figure. We use this mesh to calculate smoothness terms for the central

vertex of the crease, as shown in Figure 5.16. However, since we want to keep

the thin triangles for creasing, we restore the positions of the outer crease vertices

using barycentric constraints. This time we constrain the vertices to lie on the edge

defined by the central crease vertex and the closest vertex on the opposite side of

the crease edge. This is easily done by setting two of the vertices in a constraint κ

(say, aκ and bκ) to the mentioned vertices and setting the coordinate for the third

vertex (γκ, in this case) to zero.

With the addition of these new barycentric constraints, and maintaining the

smoothness value λ = 2.0, we obtain the results on the right of Figure 5.13. Note

how the forehead has been smoothed out with the new constraints.

Once the global alignment procedure is finished, we perform one final trans-

formation. We take the original transform τ found during the silhouette fitting

step and apply the inverse of the translation and rotation components only. This

rigid transformation realigns the fitted result with the original orientation of the



169

Figure 5.16: Close-up of a forehead crease, showing which vertices are tied together, which vertices are
barycentrically constrained, and which vertices are the target vertices in the constraint.



170

reference mesh, allowing the rigging procedure to assume the y axis points up and

the z axis points forward.

5.7 Results

The fitting procedure described above has been applied to approximately 25 scans,

with mixed results. Figure 5.17 shows some of the most accurate fits. Note that

the fitted surface always looks smoother than the scan, since it has fewer triangles

to describe the surface.

Some issues in the fitting procedure still need to be addressed. As stated

before, the silhouette fitting procedure is not very robust. This will sometimes

cause problems that the local alignment cannot fix. For example, in Figure 5.18,

the silhouette fit and local alignment fitted both the lower and upper lips of the

reference mesh to the upper lip of the scan. The result is a mouth line placed at

the wrong position.

The procedure also has trouble fitting to scans of people belonging to the Asian

races. This is due to the differences in silhouettes and profiles between Asians and

Caucasians. Even when the silhouette alignment produces a good fit, the local

alignment box for the eyes has trouble finding an adequate alignment, as shown

in Figure 5.19. This is due to the flatter region near the glabella characteristic of

Asian faces.

Finally, we consider what happens to the the fitted mesh when the subject is

scanned without the swim cap. As shown in Figure 5.20, the fitted mesh looks

much like the scanned individual. However, upon inspection of the topology, we

find that the forehead region no longer has any creases defined. The geometry

added for the creases has now become a part of the hair region, making the fitted



171

Figure 5.17: Images of the best surface fitting results. For comparison, the original scan is shown to the left
of each fitted surface.



172

Figure 5.18: Examples of a bad fit around the lip area. In these scans,
both lips of the reference mesh are matched to the upper lip of the scan,
so the line of the mouth is placed incorrectly.



173

Figure 5.19: Examples of failed fittings of Asian faces. Even though
the silhouette alignment has found an adequate fit, the local and global
alignment procedures fail to place the eye boundaries at the correct
locations.



174

Figure 5.20: Problems fitting scans without a swim cap. As shown
at center, the fitted surface can produce accurate geometry. However,
upon inspection of the mesh topology, shown at the right, we see that
the creases in the forehead are no longer defined, since they have been
moved up to the hair region. Therefore, this fitted surface is unsuitable
for animation using the rig presented in this work.

surface unusable for animation with the rigging system presented in this work.

In hindsight, this drifting of the topology to other regions of the mesh would

disqualify it from use with a topological parameterization of the rig. By parame-

terizing the rig construction on the topology and deforming the reference model,

we are implicitly assuming that corresponding vertices on both models will lie in

the same regions of the face; for example, the tip of the nose will be the same

vertex in both models, and so will the outer corner of the left eye. This property

is not guaranteed by this method. A constraint-based or feature-based approach

would be more useful. Additionally, better results could be obtained if the fitting

procedure is limited to the front of the face, disregarding inexpressive parts of the

human head (such as the ears).

Another possibility would be to allow more than one reference topology. This

approach has a few drawbacks. First, the reference rig must now be parameterized



175

to each of the new topologies, which is a non-trivial process. Second, it is unclear

if the optimal topology for a given face model can be selected before running the

fitting procedure. Without such an algorithm, all topologies must be attempted,

which increases the fitting time for each surface.

5.8 Summary

We have presented a surface fitting method suitable for deforming the reference

head model to digitized human faces. The method leaves the topology of the

reference model unchanged, which allows us to quickly rebuild the reference rig on

the new geometry. Thus, the fitted model can be quickly rigged and animated, as

will be shown in the next chapter.



Chapter 6

Rigging and Animating Fitted

Scans

In the previous chapters we developed a reference model and rig for a generic

human face. The rig has been parameterized to the topology of the reference head

surface in order to rebuild or reattach it easily. We have also developed a method

to deform the reference surface mesh to conform to digitized facial data produced

by a Cyberware 3D scan. By combining these two systems, we are able to work

on the animation of a particular person’s face quickly and effectively.

In this chapter, we merge the work described previously into a functional facial

animation system. The system provides interfaces which allow the user to load

a fitted scan, attach the reference rig, and animate easily and effectively. These

interfaces have been implemented in Alias Maya 5.0 since the reference rig was

implemented using the same software.

The animation interfaces provide a convenient mechanism for manipulating the

values of rig parameters. However, we have no guarantee that the rig developed

for Murphy will deform fitted facial scans in the correct manner; for example, we

176



177

do not know whether setting the rig parameter values in a smiling configuration

will make a fitted mesh smile. We show in this chapter that the muscle-based rig

does, in general, deform fitted faces correctly. Additionally, if the artist is not

entirely satisfied with the resulting expressions, he/she is free to modify them to

his satisfaction. Therefore, our animation system jumpstarts the artist into the

final “tweaking phase” of the modeling and rigging steps in the animation pipeline.

The remainder of this chapter is organized as follows. First, we present an in-

terface for loading and rigging fitted scans in Section 6.1. In Section 6.2 we describe

a second interface which provides a versatile and flexible animation environment.

We close this chapter with a discussion of the results obtained from our system in

Section 6.3.

6.1 Rigging the Fitted Face

Before a fitted scan can be animated, it must be loaded into the animation software

and rigged. This procedure is simplified by the user interface we have developed,

which provides a simple and convenient method for applying the reference rig to

a fitted scan. The actual procedure consists of two steps: a loading stage and a

rigging stage. The interface is likewise divided into two components, but only one

of them is enabled at a particular time.

6.1.1 Loading the Models

The purpose of the first step of the rig setup procedure is to load all of the surface

model information defining the face. The user interface for this task is pictured in

Figure 6.1. Using this interface, the user selects a name for the head model and a

fitted surface to load. The surface, produced from the fitting procedure described



178

Figure 6.1: The loading and rigging interface is pictured with the loading
step enabled. At the top, the user can specify a file from which to load
the fitted model. A Browse button is available to allow searching for
files. Immediately below, the user specifies a name for the model. At
bottom, the user can select whether to use a quadrilateral mesh or
the default triangular mesh. The bottom-right Go button executes the
loading step of the procedure.

in the previous chapter, is specified as a file in PLY format. There is also a Browse

button to allow the user to search for the desired file.

At bottom, the checkbox named Convert to quad mesh allows the user to

select whether he/she would like a triangular mesh or a quad mesh. Recall from

Chapter 4 that the reference model, Murphy, is constructed as a quad mesh, but

in Chapter 5 we triangulated this model to run the scan fitting procedure. The

output of the fitting procedure is therefore a triangular model. However, since the

vertex topology of the two meshes is the same, we are free to apply either of the

two polygonal topologies to the model, as shown in Figure 6.2.



179

Figure 6.2: The triangular and quad topologies applied to Adam’s fitted
scan. Adam’s original scan appears above the fitted mesh in the left
column. The right column shows both the quad mesh (above) and the
triangular mesh (below).



180

Figure 6.3: Results from the loading procedure. The fitted model for
Adam is shown on the left and in wireframe on the right, which also
shows the approximate positions of the teeth and eye models.

In practice, if the user chooses the triangular topology, the system simply loads

the user-specified file. When the quad topology is chosen, the system loads both

the user-specified file, which contains the default triangular topology, and a copy

of the quad reference model. The vertex positions of the former model are then

copied onto the latter.

Once the user has selected the desired topology, he/she can execute the loading

procedure by clicking on the Go button at the bottom-right corner of the window.

The system then proceeds as follows: first, the user specified model is loaded and

the appropriate topology is applied. Next, the surfaces for the eyes and teeth

are loaded along with their respective materials. These surfaces are placed in

approximate locations within the head model based on the vertex topology of the

fitted mesh. Finally, the user interface for the second step of the setup procedure

is enabled. The resulting loaded surfaces are shown in Figure 6.3.



181

Figure 6.4: The loading and rigging interface is shown with the second
step enabled. Six buttons allow the user to easily select the eyes and
teeth for accurate positioning. Another three buttons control the color
of the iris in the eye shapes. The Finish button at the lower-right corner
executes the automated rigging procedure.

6.1.2 Rigging the Face

Although the system could continue and attach the reference rig to the fitted

model at this point, we pause here for various reasons. As explained previously,

the location of the helping geometry (the eyes and the teeth) is only an estimate

of the optimal position. Therefore, we allow the user to position the surfaces

interactively. To aid the user in this task, the interface to the second step of the

rigging procedure provides controls to select these surfaces, as shown in Figure 6.4.

The user now has a chance to tweak the geometry of the model, fixing any

problems he/she encounters. This is also a convenient time to shade and texture

the head model—an operation which is normally done before deformations are



182

Figure 6.5: Two example textures applied to Adam’s fitted model. The
texture on the left is the same texture developed for Murphy in Chap-
ter 4, while the texture on the right is the original texture produced by
the Cyberware scanner.

applied. Figure 6.5 shows some examples of textured face models. To aid in the

shading task, the user interface provides three buttons which change the color of

the eyes. The options provided are brown, green, and blue.

Once the user is satisfied with the shape and shading of the model and the

positions of the extra geometry, he/she can click the Finish button on the lower-

right corner of the window shown in Figure 6.4 to execute the automated rigging

process. The button runs a script that procedurally builds the reference rig on the

fitted model. The resulting model, along with some control curves, is shown in

Figure 6.6. The function of the control curves will be explained in Section 6.2.1.

6.2 Animation

To aid the animation process, we have developed a second user interface which

provides a complete animation environment optimized for the reference rig. The



183

Figure 6.6: The models shown in Figure 6.5 appear in their fully rigged
state here, after completion of the rigging step. The control icons for
placement, head rotation, eye position, and eyelid position are also
shown.

interface is flexible since it provides more than one interface for the rig controls

and it allows the user to modify the limits of the control values.

The animation interface is composed of four panels, as shown in Figure 6.7.

The bottom panel contains a time control which allows for interactive selection of

the current frame and sound scrubbing, useful in lip synching. At the right is a

perspective viewport showing the animatable model and the control icons. On the

left there are two panels: the top panel, known as the configuration panel, contains

controls which are useful during animation but do not necessarily affect the rig

parameters. The lower panel is the character animation panel, which contains

most of the animation controls related directly to rig parameters. The details of

the interface are presented below.



184

Figure 6.7: The animation user interface.



185

Figure 6.8: Control icons used in the animation interface.

6.2.1 Control Icons

The animation interface provides a total of seven control icons, shown in Figure 6.8.

The icons control parameters which are more easily manipulated directly in the

viewport window. The control icons are:

Placement Control: Located below the neck, this icon controls the overall posi-

tion and orientation of the face model. It is shaped as a rounded arrowhead,

showing the animator which direction points to the front. The animator can

use this control to find the center position once the face has been turned to

either side.

Head Rotation Control: Shaped as a cube, the icon controls the rotation of

the head over the neck, simulating movement from the neck vertebrae. The

animator can use this control to nod, shake the head, or let the head drop

to the side.

Gaze Control: This icon was presented in Chapter 4. It is shaped in a figure ‘8’



186

Figure 6.9: The configuration panel of the animation interface.

and controls the direction in which the eyes focus.

Eye Direction Controls: There are two of these icons, one for each eye. These

were also presented in Chapter 4 and allow the animator to fine-tune the

direction in which each eye is gazing individually.

Eyelid Controls: There are two of these icons, shaped as vertical double arrows.

When moved up and down, they control the opening and closing of the

eyelids.

6.2.2 Configuration Panel

The configuration panel contains controls which affect the animation environment,

although it also contains some keyframing controls. The name “configuration

panel” is therefore a misnomer, but we continue to use it for historical reasons.

A closeup of the configuration panel is shown in Figure 6.9. Two checkboxes



187

preceded by the label Control Visibility show and hide the control icons relating

to head rotation and gaze. Just below, another checkbox enables or disables the

skull deformer in the rig. Recall from Chapter 4 that the skull deformer is the most

computationally expensive deformer. In practice, leaving this deformer active slows

down the animation system to less than interactive rates. However, by turning

it off, the animation system can respond at interactive rates and provides the

animator with approximate feedback on the final look of the face. Therefore, the

animator can use this button to disable the skull deformer for interactive work and

turn it back on for final renderings.

Below the skull deformer control is the Sound group, which provides controls

to select the current sound track that is displayed in the sound scrubber control

at the bottom of the animation window. Another button allows the user to insert

new sound bites into the scene.

Following the Sound group is the Playback group. This group provides three

buttons to control playback of the animation. The number of frames displayed

in the time control at the bottom of the window is changed using the text boxes

found in this group.

The Character group follows. Characters are sets of attributes which can be

assigned key frames as a group. They can also be grouped hierarchically, such that

setting a key frame on a parent character will set key frames on all attributes of

all its children. A hierarchical character set has been defined for the reference rig,

and it is accessible through the controls in this group. Using a pop-up list control,

the user can select a character and key it with the button immediately to the right.

Table 6.1 shows the character breakdown of the parameters in the rig.

Finally, at the bottom of the panel, we find the Keyframe group, which pro-



188

Table 6.1: Hierarchical character breakdown of the parameters in the facial rig. Parent characters are located
to the right of each character or attribute. The number of attributes contained in the lower level characters
are shown in parentheses. Note how the parent character’s name is derived from the name given to the face
model—in this case, Adam.

WorldSpaceChar placement control translation and rotation (6)

PositioningChar NeckRotationChar rotation of the neck (3)

EyelidChar position of the eyelids (2)

EyeMotionChar EyeOrientationChar position of three eye control targets (9)

adamChar JawChar jaw rotations and jutting (3)

MouthMotionChar TongueChar tongue motions (6)

EyeMusclesChar eye muscles, except for orbicularis oculi (7)

MusclesChar MouthMusclesChar mouth muscles (15)

CheekMusclesChar orbicularis oculi muscles (4)



189

vides a quick means to keyframe some of the parameters managed by the control

icons of the rig.

6.2.3 Animation Panel

The animation panel is actually composed of three tabs which provide three dif-

ferent interfaces to the parameters of the rig. They are the Low-level tab, the

Descriptive tab, and the Expression tab.

Low-level controls

The Low-level tab provides direct access to the rig parameters which are not

managed by control icons. These include all of the muscle joint contractions and

the movements of the jaw and tongue.

Figure 6.10 shows the complete tab, with enlargements shown in Figures 6.11,

6.12, and 6.13. The controls in the tab are separated into a Muscles group and

a Jaw group. In the Muscles group there is an entry for each of the muscle

contraction parameters defined in the rig. Proceeding left to right, each entry

contains a label with the muscle name followed by a textbox which shows the

current value of the muscle contraction. This box can also be used to type in

the desired contraction value. The slider which follows allows the animator to

change the contraction value interactively, and keys can be added with the Set

Key button on the right (see Figure 6.11). Further to the right are two text

boxes, shown in Figure 6.12, which control the extremum values of the slider for

this muscle. The Lock Extrema checkbox locks these values so that they are not

accidentally modified. The values for the extrema are saved between animation

sessions, so the animator need only set them once.



190

Figure 6.10: The Low-level controls tab in the animation user inter-
face. Magnifications of the red, green, and blue boxes are shown in
Figures 6.11, 6.12, and 6.13, respectively.



191

Figure 6.11: An enlargement of the left side of the Muscles group in the Low-level tab. The area shown
corresponds to the red box in Figure 6.10.



192

Figure 6.12: An enlargement of the right side of the Muscles group
in the low-level tab. The area shown corresponds to the green box in
Figure 6.10.

Figure 6.13: Enlargement of the Jaw group in the Low-level tab. The
area shown corresponds to the blue box in Figure 6.10.



193

Figure 6.14: The Descriptive control tab for the animation interface. A
closeup of the Muscle Controls group, framed by the red box, appears
in Figure 6.15.

The Jaw group is similar in layout to the Muscles group, lacking only the

extrema controls. This group contains controls for all of the parameters involving

the movements of the jaw and the tongue, and it is pictured in Figure 6.13.

Descriptive controls

This tab, like the Low-level tab, is also divided into two groups: a Muscle

Controls group and a Jaw group, as shown in Figure 6.14. The Jaw group in

this tab is an exact copy of the Jaw group from the Low-level tab.

An enlargement of the Muscle Controls group is shown in Figure 6.15. This



194

Figure 6.15: An enlargement of the Muscle Controls group of the Descriptive tab, shown in Figure 6.14
inside the red box.



195

Figure 6.16: Change of bearings in the control sliders.

group provides controls to the same parameters as the Muscles group in the Low-

level tab, but the labels for the controls are much more descriptive and the layout

is more intuitive. For example, instead of using the label “Zygomatic Major,” we

use the label “Smile/Wide.” Table 6.2 shows the mapping from low-level controls

to descriptive controls.

Also, the sliders for both of these muscles are found on a single row of the

interface. The slider on the left controls the right side of the face and vice versa.

Although this sounds counterintuitive, consider that when you face a person, her

right side appears on your left and vice versa, as shown in Figure 6.16. Thus, the

slider on the left controls the region of the face which appears on the left.

The Set Key button which appears on the far right of each row sets key values

for all of the parameter values in each row.



196

Table 6.2: Mapping from Low-level control names to Descriptive names.

Low-Level Name Descriptive Name

Frontalis Inner Lift Inner Brow

Frontalis Outer Lift Outer Brow

Procerus Lower Brows

Corrugator Squeeze Brow

Orbicularis Oris Inner Sneer Intensity

Orbicularis Oris Outer Squint

Levator Labii Nasal Sneer

Levator Labii Middle Sneer Width

Zygomatic Major Smile/Wide

Risorius Stretch Lower Lip

Orbicularis Oris Incisivis Mouth Narrow

Triangularis Lower Mouth Corner

Depressor Labii Lower Lip Down

Mentalis Lower Lip Up



197

Figure 6.17: The Expressions tab in the animation interface. For each
expression, the icon and text provide a button which sets the parameters
of the rig to the appropriate values for the expression.



198

Expression library

The Expressions tab, shown in Figure 6.17, provides a library of facial expression

which the animator can quickly draw upon. We define expressions simply as a

collection of rig parameter values. Fifteen expressions are available, described

in the interface by a name and an icon showing Murphy emoting the particular

expression. The icons are actually buttons which, when pressed, run a script

setting the rig parameters to the corresponding expression values. The animator,

therefore, can quickly select an expression to pose the facial model. Using the

controls described in the previous tabs, the animator can change this initial pose

to suit his needs.

6.3 Results

As stated in the beginning of this chapter, there is no guarantee that the refer-

ence rig developed for Murphy will produce the appropriate deformations on other

meshes. However, we have found that the muscle based rig generally produces the

correct expression for appropriate configurations of parameter values in the rig.

To illustrate our conclusion, we refer to the face models shown in Figure 6.18.

Murphy is located at the top left in this set for convenient access to the reference

results. Note that we have included Adam’s scan twice: once with the texture

generated from the scanner and once using Murphy’s reference texture. This will

allow us to examine the effects of texture on the perceived expression. Finally,

note that Chris’ scan (located at bottom right) did not require the use of a swim

cap given Chris’s short hair.

Figures 6.19 through 6.24 show the head models from Figure 6.18 portraying



199

Figure 6.18: The head models used to illustrate the correctness of the generic rig deformations applied to
fitted head scans. On the top left corner we show Murphy, the reference model. The other meshes on the
top row correspond to Adam, first textured with Murphy’s reference texture and then textured with the
scan texture. On the bottom row, from left to right, we find head models for Ellie, Dhruva, and Chris.



200

Figure 6.19: The sample head models showing extreme sadness (weeping).



201

Figure 6.20: The sample head models portraying extreme anger (rage).



202

Figure 6.21: The sample head models portraying joy.



203

Figure 6.22: The sample head models showing disgust.



204

Figure 6.23: The sample head models showing surprise.



205

Figure 6.24: The sample head models portraying fear.



206

each of the six universal expressions. For the most part, the expression portrayed

is unmistakable: parameters which produce an angry face in Murphy also produce

angry faces in the fitted scans, and likewise for the other expressions. There are,

however, some details which could be improved.

Of the six universal expressions, the least convincing is weeping. There are a

few causes for this. First, the upper teeth are showing in all of the models. As

explained in Chapter 2, this is very uncommon in the weeping expression. Second,

the corners of the mouth are not pulled down far enough to reflect the strong

action of the risorius muscle. The action of the mentalis muscle is also masked

somewhat since we have not implemented a simulation of pockmarks in the chin.

Note that these problems can all be corrected by the animator by extending the

limits of the risorius muscle contraction or by implementing his own deformation

for the pockmarks.

Aside from the particular concerns for the weeping expression, there are more

general concerns as well. For example, there are a number of issues involving

the eyes. In Figures 6.23 and 6.24, the expressions of surprise and fear are not

convincing in Ellie’s and Chris’s scans (bottom, corners) because their eyes do not

appear to open wide as they should. Figure 6.25 compares the default and wide eye

configurations for Dhruva’s and Ellie’s eyes. Although Dhruva’s eyes open wide,

Ellie’s eyes do not open past the default position. In fact, the eyelid has moved

behind the skin of the upper eye (note the evidence of self-intersections in the

eyelid model). The relative position of the skin over the iris, therefore, does not

appear to rise, thus eliminating the most important visual queue for determining

how wide the eye is. There are two explanations for these problems. First, the

fitting procedure can pull the vertices of the upper eye too close to the eye opening.



207

Figure 6.25: Comparison between the default and open eye configura-
tions for Dhruva’s and Ellie’s fitted scans (top and bottom rows, respec-
tively). Note how Dhruva’s eyes are able to open wide. Ellie’s eyelids,
however, are hidden behind the skin of the upper eye and therefore the
eyelid line does not rise over the iris.

This sets an upper limit on the line between the skin and the iris which cannot

be changed by opening and closing the eye. Second, recall from Chapter 4 that

the eyelid motion is simulated as a rotational transform about the center of the

eye. Real eyelids do not move in this fashion, but are lifted instead by the levator

palpebrae muscle. It is possible that using a more structurally-based deformation

about the eye might overcome the problems due to the fitting procedure.

Other issues which affect the correct portrayal of expressions involve shading.

In Figures 6.18 through 6.24, the models textured with Murphy’s texture use

a Blinn/Phong material while the models with scan textures use a Lambertian

material, which better reflects the properties of skin. The Lambertian material,



208

Figure 6.26: The crease masking effects of shading are evident from
these images. The top row shows Adam’s scan textured with Murphy’s
original texture and shaded with a Blinn/Phong material, which makes
the creases in the eyes and forehead evident. At center, the texture
has been switched to the scan texture, and the model is shaded with a
Lambertian material. This material masks the creases, which reappear
once the Blinn/Phong material is applied (bottom row).



209

unfortunately, has a masking effect on the creases around the eyes and the forehead;

that is, the material hides the creases from view, as seen in Figure 6.26. The

absence of the creases reduces the intensity of the emoted expression, as can be

seen in Figures 6.23 and 6.24. However, if the Blinn/Phong material is applied to

these models (bottom of Figure 6.26), the creases reappear, although the surface

acquires a plastic sheen not typical of human skin. Since neither of these shading

models accurately reflects the properties of skin, a more complex shader is highly

recommended. However, in terms of facial expression, it is important that the

shading algorithm highlight the creases in the model surface.

Finally, note that Dhruva’s swim cap grows two points whenever the emoted

expression requires lowering the eyebrows, as in Figures 6.19, 6.20, and 6.22. Since

the swim cap was not placed exactly at the hair line during Dhruva’s scan, some

of the white color is spilling into the areas of the forehead that actually move.

Thus, careful placement of the swim cap is important during the initial scanning

procedure.

Aside from these defects, the faces appear to move and emote realistically,

even when the emoted expression is asymmetric, not universal, or a combination of

expressions, as shown in Figures 6.27–6.30. Asymmetries in the face are maintained

during the deformations as well—see, for example, Adam’s chin.

6.4 Summary

We have combined the work developed in the previous chapters into a compre-

hensive animation system. This system allows the artist to quickly load and rig a

model of a human head. Additionally, a flexible animation environment is available

to jumpstart the animation process.



210

Figure 6.27: The sample head models portraying a joyous surprise, a combined expression.



211

Figure 6.28: The sample head models smiling. Compare to the fake smile shown in Figure 6.29.



212

Figure 6.29: The sample head models portraying a fake smile. Compare to the genuine smile shown in
Figure 6.28.



213

Figure 6.30: The sample head models showing a quizzical expression, which is asymmetric on the face.



214

Although the reference rig is constructed on new geometry, the deformations

applied produce realistic expressions. However, if the animator is not satisfied with

a particular expression, he or she is free to tweak both the face model and the rig

deformations to produce better expressions. It should be pointed out that building

and rigging a model from scratch, even for a professional animator, requires an

estimated 100 man-hours of work1, while a full run of our system (scanning, fitting,

and rigging) can be accomplished in under one hour. Thus, the time savings are

enormous, even if final tweaking is necessary. Therefore, this approach is efficient

and effective, and ultimately systems of this type will reduce the time required to

generate realistic facial animations.

1This figure is extrapolated from values presented in [Osi03].



Chapter 7

Conclusions and Future Work

We have presented a system for the automated rigging of human face models. Our

system takes advantage of previous work which deforms the surface of a reference

face model to match digitized face models generated by a Cyberware facial scanner.

To automate the rigging procedure, we have parameterized the construction of the

reference rig on the vertex topology of the reference model. The rig can then

be procedurally reconstructed onto deformed copies of the reference model. The

animation parameters in our rig are structural in nature, based on the expressive

muscles of the face. A novel skin/muscle model, based on wire deformers and

point constraints is used to implement this parameterization. The model supports

any number of muscle contractions about a particular skin patch (for example,

the corner of the mouth) while allowing the artist to control the shape of the

deformations. Finally, we presented a user interface for quickly loading and rigging

new models and a flexible environment for animation.

The models and resulting facial deformations produced by our system are real-

istic and expressive, although we have not provided any objective measure of the

“realism” of our generated models. However, our main goal has been to reduce

215



216

the amount of time required to rig new face models. Thus, our system provides a

good starting point for the animator to tweak the shapes or deformations which

are not to his or her liking. Considering the amount of time the same artist would

need to create and rig a head model from scratch, the time savings provided by

our system are significant. In the future, systems of this type will greatly reduce

the amount of time required for generating realistic facial animations of different

characters.

Our system offers other advantages over popular modeling and rigging methods

such as parameterized models and morphing systems. For instance, the number

of characters a parameterized face model can represent is limited by the range of

values of its conformal parameters. In our system, the number of characters is

limited only by the number of configurations achievable by displacing the vertices

of the reference model, providing a much wider range.

Also, it is well known that morphing systems can be used to animate any

character’s face. However, the only achievable expressions in these systems are

combinations of target shapes which have been previously modeled or captured.

This extra modeling work is not necessary in our system—only the default, neutral

expression is required. This can be modeled or captured using the reference model

surface as a template, and the reference rig will be capable of generating a wide

range of expressions. Our approach, therefore, saves time and storage space by

reducing the number of surface models needed to create an animatable face. Ad-

ditionally, if a morphing system is required due to design constraints, our system

can be used to generate the target shapes or shape templates.

Although effective at generating believable facial animation, the current imple-

mentation of our system can be improved. As mentioned in Chapter 5, the scan



217

fitting procedure implemented in this work provides no guarantee that the vertices

in the reference and fitted models will be located in corresponding regions of the

face. Since our system implicitly assumes that this correspondence exists, we rec-

ommend that future implementations use either feature-based or constraint-based

fitting algorithms. Another option is to limit the fitted region to the facial mask

only, since the rest of the head is not involved in facial motion.

Enhancements should be made to the reference rig as well. A significant defi-

ciency is the lack of sphincter muscles, which should be used in the eye and mouth

regions. Such muscles could be implemented by a scaling transformation about the

center of the muscle, and control over the final shape of this deformation should

be given to the animator. Complications can also arise due to the interaction of

skin with the underlying facial structure. This issue must be addressed to avoid

self-intersections and intersections with the teeth and the eyes. Although sculptor

and push-to-surface deformers can help, their computational expense might pro-

hibit interactive responses. How to prevent these intersections procedurally is an

area of future research.

Our system currently makes no attempt at modeling or rendering hair or skin

accurately, relying on basic texturing routines. Future developments should incor-

porate more advance procedures for added realism.

Although we have formulated our rig for animation by a trained artist, current

industry trends have focused on driving animation using motion-captured data.

Additionally, MPEG-4 Facial Animation FAP streams also provide prerecorded

motion data for driving face models in real time. Whether topologically parame-

terized rigs can be driven by these technologies should be explored.

Finally, although we have focused entirely on the human face in this work,



218

we believe the concepts presented are flexible enough to be used on non-human

characters.



Appendix A

Expressing Eglobal as a Sparse

Linear System

We derive here the mathematical formulation which expresses Eglobal as a sparse

linear system solvable using the conjugate gradient method. Let the set of vertices

V of the reference mesh be represented by a column vector v. Close inspection

of Equations 5.4–5.7, 5.9, and 5.10, using the linearized version of Edist, shows us

that each term in Eglobal is a linear combination of the vertices in V , which we can

express as

Eglobal(V ) → Eglobal(v) =
∑

i

‖ci · v + bi‖
2. (A.1)

Here, ci is the vector of coefficients of the linear combination and ki is the constant

term. Expressing the dot product as ci
Tv and expanding the square, we obtain

Eglobal(v) =
∑

i

(ci
Tv)2 + 2bici

Tv + b2
i . (A.2)

Considering each term independently, we immediately observe that
∑

i b
2
i is

simply a constant, which we denote as K. Now, since ci is a column vector, we

denote its elements ans cji, where j represents the row index. This allows us to

219



220

express the first term of Equation A.2 as

∑

i

(ci
Tv) =

∑

i

(
∑

j

cji
Tvj)

2

=
∑

i

(
∑

j

cji
Tvj)(

∑

k

cki
Tvk)

=
∑

i

∑

j

∑

k

cji
Tvjcki

Tvk

=
∑

i

∑

j

∑

k

vjcji
Tcikvk

= vTCTCv, (A.3)

where we have expressed the sparse matrix [cij] as C. Note that the product of

the matrices CTC is a square, symmetric, positive definite matrix.

Finally, using the same constructions as above, we consider the term

∑

i

2bici
Tv = 2

∑

i

∑

j

bicji
Tvj

= 2
∑

i

∑

j

bicijvj

= 2bTCv. (A.4)

Combining Equations A.3 and A.4 together with K, we obtain

Eglobal(v) = vTCTCv + 2bTCv + K. (A.5)

Equation A.5 is a standard quadratic form which can be minimized by solving the

linear system

CTCv − bTC = 0. (A.6)

Using A = CTC and r = bTC, Equation A.6 reduces to Equation 5.11.



References

[Ali] Maya 5.0. Alias Corp. Inc. Toronto, Canada.

[BV99] Volker Blanz and Thomas Vetter. A morphable model for the syn-
thesis of 3d faces. In Proceedings of the 26th annual conference on
Computer graphics and interactive techniques, pages 187–194. ACM
Press/Addison-Wesley Publishing Co., 1999.

[Cyb] Head and Face Color 3D Scanner model 3030RGB/PS. Cyberware
Laboratory Inc. Monterey, CA, USA.

[Dar65] Charles Darwin. The Expression of the Emotions in Man and An-
imals. The University of Chicago Press, 1965. Edited by Konrad
Lorenz.

[dB90] G.-B. Duchenne de Boulogne. The Mechanism Of Human Facial Ex-
pression. Cambridge University Press, 1990. Edited and translated
by R. Andrew Cuthbertson.

[Dis] 3ds max 6.0. Discreet, a division of Autodesk, Inc. Montreal,
Canada.

[DMM03] Jürgen Hesser Dennis Maier and Reinhard Männer. Fast and accu-
rate closest point search on triangulated surfaces and its application
to head motion estimation. In 3rd WSEAS International Confer-
ence on SIGNAL, SPEECH and IMAGE PROCESSING (WSEAS
ICOSSIP 2003), Rethymna, Crete Island, Greece, October 2003.

[DP63] Peter B. Denes and Elliot N. Pinson. The Speech Chain: The physics
and biology of spoken language. Bell Telephone Laboratories, Incor-
porated, 1963. Printed by Waverly Press, Inc.

[EF76] Paul Ekman and Wallace V. Friesen. Measuring facial movement.
Journal of Environmental Psychology and Nonverbal Behavior, 1:56–
75, 1976.

221



222

[EF78] Paul Ekman and Wallace V. Friesen. Facial Action Coding System
(FACS): A technique for the measurement of facial action. Consult-
ing Psychologists Press, Palo Alto, CA, 1978.

[EF82] Paul Ekman and Wallace V. Friesen. Measuring facial movement
with the facial action coding system. In Paul Ekman, editor, Emotion
in the Human Face, chapter 9, pages 178–211. Cambridge University
Press, second edition, 1982.

[EFE82] Paul Ekman, Wallace V. Friesen, and Phoebe Ellsworth. What are
the similarities and differences in facial behavior across cultures? In
Paul Ekman, editor, Emotion in the Human Face, chapter 7, pages
128–143. Cambridge University Press, second edition, 1982.

[EO82] Paul Ekman and Harriet Oster. Review of research, 1970–1980. In
Paul Ekman, editor, Emotion in the Human Face, chapter 8, pages
147–177. Cambridge University Press, second edition, 1982.

[ERC] Exhibitor Relations Co., Inc. Encino, CA, USA.

[Fai90] Gary Faigin. The Artist’s Complete Guide to Facial Expression.
Watson-Guptill Publications, 1990.

[GGW+98] Brian Guenter, Cindy Grimm, Daniel Wood, Henrique Malvar, and
Fredric Pighin. Making faces. In Proceedings of the 25th annual
conference on Computer graphics and interactive techniques, pages
55–66. ACM Press, 1998.

[Gou71] H. Gouraud. Continuous shading of curved surfaces. IEEE Trans-
actions on Computers, 20(6):623–629, June 1971.

[HDD+94] Hugues Hoppe, Tony DeRose, Tom Duchamp, Mark Halstead, Hu-
bert Jin, John McDonald, Jean Schweitzer, and Werner Stuet-
zle. Piecewise smooth surface reconstruction. Computer Graphics,
28(Annual Conference Series):295–302, 1994.

[Int] Intel Corporation. Colorado Springs, CO, USA.

[JKHS02] Won-Ki Jeong, Kolja Kähler, Jörg Haber, and Hans-Peter Seidel.
Automatic generation of subdivision surface head models from point
cloud data. In Proc. Graphics Interface, pages 181–188, May 2002.

[KHS01] Kolja Kähler, Jörg Haber, and Hans-Peter Seidel. Geometry-based
muscle modeling for facial animation. In Proceedings of Graphics In-
terface 2001, pages 37–46. Canadian Information Processing Society,
2001.



223

[KHS03] Kolja Kähler, Jörg Haber, and Hans-Peter Seidel. Reanimating the
dead: reconstruction of expressive faces from skull data. ACM Trans.
Graph., 22(3):554–561, 2003.

[KHYS02] Kolja Kähler, Jörg Haber, Hitoshi Yamauchi, and Hans-Peter Seidel.
Head shop: generating animated head models with anatomical struc-
ture. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics
symposium on Computer animation, pages 55–63. ACM Press, 2002.

[KMMTT92] Prem Kalra, Angelo Mangili, Nadia Magnenat-Thalmann, and
Daniel Thalmann. Simulation of facial muscle actions based on ra-
tional free form deformations. In A. Kilgour and L. Kjelldahl, ed-
itors, Computer Graphics Forum (EUROGRAPHICS ’92 Proceed-
ings), volume 11 of 3, pages 59–69, 1992.

[Kun99] Andrew Kunz. Face vectors: An abstraction for data-driven 3-D
facial animation. Master’s thesis, Cornell University, 1999.

[LCF00] J. P. Lewis, Matt Cordner, and Nickson Fong. Pose space defor-
mation: a unified approach to shape interpolation and skeleton-
driven deformation. In Proceedings of the 27th annual conference on
Computer graphics and interactive techniques, pages 165–172. ACM
Press/Addison-Wesley Publishing Co., 2000.

[LMH00] Aaron Lee, Henry Moreton, and Hugues Hoppe. Displaced subdi-
vision surfaces. In Proceedings of the 27th annual conference on
Computer graphics and interactive techniques, pages 85–94. ACM
Press/Addison-Wesley Publishing Co., 2000.

[Loo00] Charles Loop. Managing adjacency in triangular meshes, 2000. Mi-
crosoft Research Technical Report, MSR-TR-2000-24.

[LTW93] Yuencheng Lee, Demetri Terzopoulos, and Keith Waters. Construct-
ing physics-based facial models of individuals. In Proceedings of
Graphics Interface ’93, pages 1–8, Toronto, Ontario, Canada, 1993.

[LTW95] Yuencheng Lee, Demetri Terzopoulos, and Keith Waters. Realistic
modeling for facial animation. In Proceedings of the 22nd annual
conference on Computer graphics and interactive techniques, pages
55–62. ACM Press, 1995.

[Mar04] Chris Maraffi. Maya Character Creation, Modeling and Animation
Controls. New Riders Publishing, 2004.

[MGR00] Stephen R. Marschner, Brian K. Guenter, and Sashi Raghupathy.
Modeling and rendering for realistic facial animation. In Proceedings
of the Eurographics Workshop on Rendering Techniques 2000, pages
231–242. Springer-Verlag, 2000.



224

[MTPT88] N. Magnenat-Thalmann, N. E. Primeau, and D. Thalmann. Ab-
stract muscle actions procedures for human face animation. Visual
Computer, 3(5):290–297, 1988.

[MTT87] N. Magnenat-Thalmann and D. Thalmann. The direction of syn-
thetic actors in the film rendez-vous à montréal. IEEE Computer
Graphics and Applications, 7(12):9–19, December 1987.

[Mur04] Bruce Murray. English phonemes, spellings, exam-
ple words, and meaningful names. Website, 2004.
http://www.auburn.edu/˜murraba/spellings.html.

[NN01] Jun-yong Noh and Ulrich Neumann. Expression cloning. In Pro-
ceedings of the 28th Annual Conference on Computer Graphics and
Interactive Techniques, pages 277–288. ACM Press, 2001.

[NVI] NVIDIA Corporation. Santa Clara, CA, USA.

[O’R95] Michael O’Rourke. Principles of Three-Dimensional Computer An-
imation. W. W. Norton & Company, Inc., first edition, 1995.

[Osi03] Jason Osipa. Stop Staring, Facial Modeling and Animation Done
Right. SYBEX, Inc., 2003.

[Par72a] Frederic I. Parke. Computer generated animation of faces. In Pro-
ceedings of the ACM National Conference, volume 1, pages 451–457,
1972.

[Par72b] Frederic I. Parke. Computer generated animation of faces. Master’s
thesis, University of Utah, 1972. UTEC-CSc-72-120.

[Par74] Frederic I. Parke. A Parametric Model for Human Faces. PhD thesis,
University of Utah, 1974. UTEC-CSc-75-047.

[Par82] Frederic I. Parke. Parameterized models for facial animation. IEEE
Computer Graphics and Applications, 2(9):61–68, November 1982.

[PB81] Stephen M. Platt and Norman I. Badler. Animating facial expres-
sions. In Proceedings of the 8th annual conference on Computer
graphics and interactive techniques, pages 245–252. ACM Press,
1981.

[Pel02] Catherine Pelachaud. Visual text-to-speech. In Igor S. Pandzic and
Robert Forchheimer, editors, MPEG-4 Facial Animation: The Stan-
dard, Implementation and Applications, chapter 8, pages 125–140.
John Wiley & Sons, Ltd., 2002.



225

[PF02] Igor S. Pandzic and Robert Forchheimer, editors. MPEG-4 Facial
Animation: The Standard, Implementation and Applications. John
Wiley & Sons, Ltd., 2002.

[PHL+98] Frédéric Pighin, Jamie Hecker, Dani Lischinski, Richard Szeliski, and
David H. Salesin. Synthesizing realistic facial expressions from pho-
tographs. In Proceedings of the 25th annual conference on Computer
graphics and interactive techniques, pages 75–84. ACM Press, 1998.

[Pir95] Mark Piretti. Realistic facial animation. Internal Report, Program
of Computer Graphics, Cornell University, May 1995.

[PLY] Ply file format. Website. http://astronomy.swin.edu.au/˜pbourke/-
geomformats/ply/.

[PP01] S. Pasquariello and C. Pelachaud. Greta: A simple facial anima-
tion engine. In Proc. of the 6th Online World Conference on Soft
Computing in Industrial Applications, Session on Soft Computing
for Intelligent 3D Agents, September 2001.

[PT97] Les Piegl and Wayne Tiller. The NURBS Book. Springer-Verlag,
second edition, 1997.

[PTVF02] William H. Press, Saul A. Teukolsky, William T. Vetterling, and
Brian P. Flannery. Numerical Recipes in C++: The Art of Scientific
Computing. Cambridge University Press, second edition, 2002.

[PW96] Frederic I. Parke and Keith Waters. Computer Facial Animation. A
K Peters, Ltd., 1996.

[SB94] Robert Sekuler and Randolph Blake. Perception. McGraw-Hill, Inc.,
third edition, 1994.

[SF98] Karan Singh and Eugene Fiume. Wires: a geometric deforma-
tion technique. In Proceedings of the 25th annual conference on
Computer graphics and interactive techniques, pages 405–414. ACM
Press, 1998.

[TMPS03] Adrien Treuille, Antoine McNamara, Zoran Popović, and Jos Stam.
Keyframe control of smoke simulations. ACM Trans. Graph.,
22(3):716–723, 2003.

[TW90] D. Terzopoulos and K. Waters. Physically-based facial modeling,
analysis, and animation. Visualization and Computer Animation,
1:73–80, 1990.

[Vid] FaceStation 2, Vidiator Technology (US) Inc. Website.
http://www.vidiator.com/products facestation.html.



226

[Wat87] Keith Waters. A muscle model for animation three-dimensional facial
expression. In Proceedings of the 14th annual conference on Com-
puter graphics and interactive techniques, pages 17–24. ACM Press,
1987.

[WT91] K. Waters and D. Terzopoulos. Modeling and animating faces using
scanned data. Visualization and Computer Animation, 2:123–128,
1991.

[ZSCS04] Li Zhang, Noah Snavely, Brian Curless, and Steven M. Seitz. Space-
time faces: High-resolution capture for modeling and animation. In
ACM Annual Conference on Computer Graphics, page to appear,
August 2004.

[ZSS96] Denis Zorin, Peter Schröder, and Wim Sweldens. Interpolating sub-
division for meshes with arbitrary topology. In Proceedings of the
23rd annual conference on Computer graphics and interactive tech-
niques, pages 189–192. ACM Press, 1996.


