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Abstract

Many researchers has conjectured, argued, or in some cases demonstrated, that bio-plausibility can bring

about emergent properties such as adaptability, scalability, fault-tolerance, self-repair, reliability, and

autonomy to bio-inspired intelligent systems. Evolutionary-developmental (evo-devo) spiking neural

networks are a very bio-plausible mixture of such bio-inspired intelligent systems that have been pro-

posed and studied by a few researchers. However, the general trend is that the complexity and thus

the computational cost grow with the bio-plausibility of the system. FPGAs (Field-Programmable Gate

Arrays) have been used and proved to be one of the flexible and cost efficient hardware platforms for re-

search and development of such evo-devo systems. However, mapping a bio-plausible evo-devo spiking

neural network to an FPGA is a daunting task full of different constraints and trade-offs that makes it, if

not infeasible, very challenging.

This thesis explores the challenges, trade-offs, constraints, practical issues, and some possible ap-

proaches in achieving bio-plausibility in creating evolutionary developmental spiking neural microcir-

cuits in an FPGA through a practical investigation along with a series of case studies. In this study, the

system performance, cost, reliability, scalability, availability, and design and testing time and complex-

ity are defined as measures for feasibility of a system and structural accuracy and consistency with the

current knowledge in biology as measures for bio-plausibility. Investigation of the challenges starts with

the hardware platform selection and then neuron, cortex, and evo-devo models and integration of these

models into a whole bio-inspired intelligent system are examined one by one. For further practical in-

vestigation, a new PLAQIF Digital Neuron model, a novel Cortex model, and a new multicellular LGRN

evo-devo model are designed, implemented and tested as case studies. Results and their implications

for the researchers, designers of such systems, and FPGA manufacturers are discussed and concluded in

form of general trends, trade-offs, suggestions, and recommendations.
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Chapter 1

Introduction

Nature has always inspired man. We imitate nature to find solutions to our problems even with a min-

imum knowledge of the underlying principles. However, our engineered solutions are not the same as

natural solutions. Otto Lilienthal for example, one of the pioneers of aviation, was clearly inspired by

the way birds fly [220], but we do not see a Boeing 747 flying with moving feathery wings. A B747

has fixed metallic wings filled with aviation fuel to power its jet engines. Our engineered designs,

though inspired by nature, are constrained and formed by our current technology. Similarly, the brain is

clearly the source of inspiration in the report by John von Neumann, one of the pioneers of computing,

where he first describes the basic architecture of today’s computers [394]. The brain is arguably the

most complex natural organ with parallel processing, distributed memory, stochastic computing, self-

organisation, self-regulation, autonomy, learning, fault-tolerance, robustness and many other amazing

features [51, 73, 200, 264]. Yet, von Neumann’s architecture is ultimately a centralised, synchronous,

sequential, precise and brittle design, which he, himself, was dissatisfied with until he died [393, 395].

His design was again a product of the engineering trade-offs, technological constraints, dominant men-

tality of his time [22], and his knowledge of neuroscience, and had in fact very little in common with

how the brain works. Now, with the emergence of the new technologies such as reconfigurable electronic

devices and advancements in biology and neuroscience, we have a better chance than before to bridge

this gap between computers and the brain. Yet again we have these trade-offs. How similar should we

make our designs to the biological solutions? What are these trade-offs? What is the right balance? And

how to achieve that balance? It is the aim of this thesis to answer some of these questions.

Computation and computer architectures frequently challenge our ability to find the right balance

between natural inspiration and engineering design. It is a common observation that almost everything

in nature appears to be computing something [22]. Brains, immune systems, embryogenesis, evolution,

swarming insects, and ecosystems, every one of these natural systems and phenomena has remarkable

features that are very useful if we could reproduce and exploit them in our engineered computing solu-

tions. Many pioneers in computing such as von-Neumann, Alan Turing, and Claude Shannon were well

aware of these features, and were seeking to reproduce them into engineering designs (For example,

Von-Neumann’s self-reproducing automata [393], and Turing’s chemical morphogenesis [368]). That is

exactly what Bio-inspired Computing (Biologically Inspired Computing) is pursuing today.
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Bio-inspired computing imitates natural processes such as evolution, development and learning

and biological systems and organs such as the brain, chromosomes, and immune systems in order to

replicate some of the features that are very useful in today’s computing systems; properties such as

adaptability, scalability, robustness, parallelism, distributed and stochastic processing, self-organisation,

self-regulation, autonomy, fault-tolerance, regeneration, and self-repair.

Computing systems can benefit from these properties in many different ways. The intrinsic par-

allelism, and distributed processing of the bio-inspired computing solutions may simplify scalability

challenges in multiprocessor and distributed systems and bring about robustness and fault tolerance.

Some of these features may help computing systems in changing environments or tackling ill-defined

problems. The no-free-lunch theorem [403] implies that for both static and time-dependent problems,

there is no single algorithm that can perform better than all other algorithms on all problems. This is

particularly evident in the case of traditional approaches to computing, which have difficulties solving

natural problems such as learning, pattern recognition, optimisation, and automatic design using fixed,

precise and deterministic algorithms. They can show an acceptable performance only on a very limited

range of problems. For example, a statistical or heuristic object detection algorithm may perform very

well for detecting faces in input images but generally cannot be easily adapted for detecting hands, tools

or distorted faces.

In contrast, natural systems and to some extent bio-inspired computing solutions can adapt them-

selves to perform very well on a wider range of natural problems in changing environments. The main

advantage of the natural systems is their intrinsic adaptability. Adaptability is the generic feature of the

natural systems that manifests itself in different aspects and over various time scales. Looking closely,

almost all other advantageous properties of the natural systems are different forms of adaptation. Natural

systems are scalable, meaning that they can grow (through their life-time or evolve through generations)

to employ more resources in order to tackle more difficult problems or deal with larger amount of work

than before. They are fault-tolerant. That is to be able to cope with resource loss or failure and to re-

generate (reorganise resources) to recover. Natural systems are robust, which means they are capable of

graceful degradation in case of a change in their environment. Natural systems evolve, develop, regen-

erate, and learn to adapt to their changing environment. This constant and open-ended adaptation to an

ever-changing ecosystem full of other adaptive systems brings about ever more complex self-sufficient

systems that do not need human design, analysis or maintenance. The automatic design, self-sufficiency

and autonomy are attractive features that may address the challenges of the ever-increasing complexity

of the electronic systems.

1.1 Bio-plausibility
The bio-inspired design process involves answering two important questions: Which processes and struc-

tures in the inspiring natural system give rise to the desired features? To what extent do the quality of

these features depends on the details of those processes and structures? Looking at a natural system

from a hierarchical point of view, these questions lead to a principal question in design of bio-inspired

systems: which level of abstraction is the right level in modelling of natural systems? Since natural
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systems are evolved and developed in a bottom-up manner, each layer depends on the lower layers and it

is reasonable to assume that all the details are more or less relevant to the general function of the system.

For example, the interactions between the atoms in the process of gene expression contribute a lot to

higher-order processes of development and evolution and it is beneficial to include them in a model of

the evolution. However, it is physically impossible to include all these details in a bio-inspired system.

Thus some abstractions and therefore some structural inaccuracies are inevitable. Moreover, we do not

have a complete understanding of all the details in biology. Therefore, it not only matters how abstract

and inaccurate our model of reality is but also how plausible our model is from a biologist’s point of

view. We can call this combined measure of inaccuracy and the plausibility of the abstracted model

“bio-plausibility” for short.

While many researchers have pointed out that bio-inspired computing needs to go beyond simplistic,

superficial and heavily abstracted models of natural processes and a higher level of bio-plausibility is

beneficial [16, 365, 89], the complexity and the massive processing power and resources needed for such

detailed models stop them from creating such bio-plausible systems. In practice, designers need to trade

bio-plausibility of the model off against feasibility factors such as size, speed, energy consumption,

heat dissipation, reliability, cost, and time-to-market. However, the emergence and development of

new technologies such as multicore processors, FPGAs (Field-Programmable Gate Arrays), and GPUs

(Graphics Processing Units) is pushing back the boundaries of feasible bio-plausible models and there

are numerous new things to explore. This thesis focuses on the challenges and some potentials of creating

a bio-plausible intelligent system similar to the brain using such new technologies.

1.2 An Artificial Brain in Silicon
Intelligent systems are used in all aspects of day-to-day life, from fraud detection, market forecasting and

epidemic prediction to HCI (Human-Computer Interaction) and bio-informatics. You can find intelligent

controllers in our car engines, washing machines, and robotic vacuum cleaners. Many of these intelligent

systems are based on the traditional von Neumann-Turing model of computing, which is seriously chal-

lenged by the parallel, stochastic, ever-changing nature of some real-life problems and environments.

While von Neumann-Turing paradigm lends itself to precise calculations based on fixed and determinis-

tic algorithms for well-defined problems and processes, it is not quite suitable for solving intractable and

ill-defined problems in changing environments [13, 423, 356]. Globalisation, climate change and the rise

of the natural disasters have created a very dynamic and erratic social, economical, and physical envi-

ronment with many unpredictable trend shifts. Intelligent systems used in such a dynamic environment

need to be adaptable. Otherwise, every time new trends emerge in their environment, they may simply

fail or need adjustment, revision or even redesign. Imagine a company that has developed a market

forecasting system for decades and suddenly, in the middle of an unprecedented global financial crisis,

when needed the most, it fails. Moreover, it is rendered useless, as it can never adapt to the new financial

regime and requires costly radical changes. Or, consider a mobile network traffic management system

that at the time of a natural catastrophe collapses and leaves people incommunicado. A bio-inspired

adaptable intelligent network management system distributed over the network nodes or hubs may bene-
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fit from a small local disaster to learn how to deal with a global catastrophe. Adaptability of bio-inspired

computing is a very desired feature for such situations.

Among different fields of bio-inspired computing aiming at creating intelligent systems by imitat-

ing the brain, neural networks are one of the most famous topics. The first models of artificial neural

networks proved to be too simplistic and not similar to the brain [108]. Nevertheless, they inspired

statisticians and computer scientists to develop very successful non-linear statistical models and learning

algorithms that comprise an important part of the machine learning techniques today [108]. Biologically

more plausible models of neural networks such as recurrent spiking neural networks proved to be even

more useful and even more promising in processing spatiotemporal data than traditional artificial neural

networks [241]. Such recurrent networks can be very robust to noise and other changes in the environ-

ment and have an intrinsic fault-tolerance [241]. Evolving such networks using evolutionary computing

can adapt them to a changing environment or optimise them to enhance the solution for specific problems.

Adding bio-plausible details of neurodevelopment to the evolutionary system can bring about features

such as fault-tolerance, self-organisation, regeneration, and self-repair and meanwhile may improve the

evolvability and scalability of the system [128, 311]. We can call such a system, which incorporates three

natural processes of learning, development and evolution, an evolutionary developmental (evo-devo for

short) recurrent spiking neural network. Nevertheless, including all these complexities necessitates a

very powerful yet malleable hardware platform.

There are many promising hardware technologies for implementing such evo-devo systems. Among

them, maybe FPGAs (Field Programmable Gate Arrays) are the most practical solution for different rea-

sons. An FPGA is essentially a pool of fundamental digital circuit elements that can be reconfigured in

numerous ways to implement virtually any possible digital circuit. While they inherit the maturity of the

digital VLSI silicon fabrication technology, they are particularly best suited to the asynchronous, parallel

and distributed nature of bio-inspired computing. It is possible to achieve fine-grain parallelism with a

network of small specific-purpose processors on a single FPGA, which allows much higher computa-

tional throughput than multi-core general-purpose processor architectures. FPGAs allow different dis-

tributed memory architectures to avoid memory bottlenecks typical of GPU (Graphics Processing Unit)

architectures. While FPGA clock speeds, power consumptions, and capacities are no match for those

of ASICs (Application Specific Integrated Circuits), their highly parallel architectures, short time-to-

market and low NRE (nonrecurring engineering) costs make them very appealing for many applications

including research. They can be dynamically reconfigured to modify one part of the circuit while the rest

of the circuit is running. This is a very desirable feature for implementing a developmental regenerative

neural network. Moreover, the intrinsic fault-tolerance of such a neural network can only appear in a

truly distributed and parallel architecture, which is possible on an FPGA. Therefore, the focus here is on

the implementation of evo-devo recurrent spiking neural networks on FPGAs. We call such an evolu-

tionary developmental recurrent spiking neural network implemented in an FPGA an “evo-devo neural

microcircuit” for short.

All the promised features of an evo-devo neural microcircuit, if achievable, are highly desirable in
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different intelligent systems. Fault-tolerance is particularly needed in mission critical applications such

as military, medical or aerospace systems where uninterrupted and reliable service is required. In cases

such as satellites or other remote facilities where maintenance costs are very high, environments are

unpredictably changing, and facilities have a long life cycle, a low-maintenance, fault-tolerant, robust

and adaptable system can be very cost effective. Scalability of such systems allows them to exploit more

hardware resources with a minimum effort. The possibility of automatic customisation of the system for

specific problems or environments in the first place using evolution is another advantage of such system

over fully human-designed systems. Depending on the accuracy of the models, such a bio-plausible

neural system can also be used as a simulator in neuroscience research endeavours.

1.3 Research Problem
New advances in hardware technologies and better knowledge of neuroscience and neurodevelopment

calls for a reassessment of the promise and challenges of achieving bio-plausibility using such new

technologies. Digital hardware technologies are advancing very fast and the feasibility criteria are always

changing and need to be updated. Figure 1.1 illustrates an abstraction of the expected general trade-

off between feasibility and bio-plausibility in bio-inspired digital systems and how this trend might be

changing by new digital technologies. The vertical axis of the graph represents the bio-plausibility

of bio-inspired models from bio-irrelevant to bio-accurate. The horizontal axis represents all different

dimensions of simulation feasibility (cost, speed, scale,...) as one dimension. Each curve shows the

upper bound of feasibility and bio-plausibility using a specific generation of digital technology. On the

extreme left of the graph, non-mathematical conceptual models reside that are completely impossible

to simulate. Therefore, the existence of these models of natural systems are only bounded by current

biological knowledge. This is demonstrated by the asymptote on the left-hand-side of the graph. Some

famous brain simulation projects are depicted on the graph as examples.

The new findings of the neuroscience have also changed the landscape of bio-plausible models.

Although, bio-plausible models of learning are still under study and the neurodevelopment process is still

not very well understood, there are new discoveries that can be used to create speculative but plausible

and useful models of learning and neurodevelopment processes.

Bio-plausibility has been viewed from a limited angle by many researchers in the field of bio-

inspired computing. Bio-plausibility can have a broader sense, notably when it is viewed in the light of

the interaction between different natural processes of development, evolution, learning, and all of them

within an environment [157]. Usually in evolutionary computing an agent is viewed as a solution to a

problem while biological agents are actually embodied in their challenging environments. Moreover,

some models focus only on the bio-plausibility of the neuron model. Some extend this to the synapse

model and even bio-plausible learning techniques. Very few studies have actually investigated the effect

of using a bio-plausible evolutionary neurodevelopment model along with a bio-plausible neural model

[191, 190, 192].

The prohibitive computational cost of having a bio-plausible evolutionary developmental algo-

rithm on top of a neural model has practically precluded many researchers from investigating such
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Figure 1.1: A schematic graph showing the trade-off between feasibility and bio-plausibility of bio-inspired systems and

the expected effect of new technologies in changing this trend. The horizontal axis represents all the different dimensions

of the simulation feasibility (cost, performance, scale,...) as one dimension. Each curve shows the upper band of feasibility

and bio-plausibility using a generation of digital technology. Some famous brain simulation projects are depicted on the

graph as examples
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all-embracing bio-plausible models and those that succeeded did not have hardware (and specifically

FPGA) implementation constraints in mind. There is certainly a need for a holistic reconsideration of

the broader meanings of bio-plausibility in evo-devo neural microcircuits. It is only recently that POE

systems have been studied in this light [370]. Nevertheless, for economical reasons, custom POEtic chips

[6] are not practical and mature compared to FPGAs. Only small POEtic chips have been manufactured

in small numbers or sub-optimally prototyped on FPGAs [310, 6].

Despite many advantages of FPGAs, they are not designed for evo-devo neural microcircuits. There

are many challenges in conforming bio-inspired applications to FPGA architectures. It is to be investi-

gated how to use current reconfigurable devices such as FPGAs effectively to achieve a better balance

between feasibility and bio-plausibility, and how future reconfigurable devices can be designed to suit

such bio-inspired applications. This also requires a better understanding of these trade-offs in the design

of such systems.

The history of GPUs teaches us that it makes sense to begin with commercially ubiquitous and

relatively cheaper platforms before designing custom chips. GPUs, fuelled by the gaming industry, were

ubiquitous and relatively cheap and programmers started to use them as highly parallel processors for

general computations. This led to GPGPU (General-Purpose computing on Graphics Processing Units)

and emergence of standards, programming tools, and custom GPGPU devices later [143, 317, 316].

Aiming for higher levels of bio-plausibility on commercially available chips might similarly lead to the

new design ideas, standards, potentials, and market force for large investments in custom bio-plausible

chips.

Achieving all these interesting qualities in a bio-plausible evo-devo neural microcircuit is a daunt-

ing task that requires a plethora of exploration, investigation and experimentation with different models

of neurodevelopment, evolution and learning. Moreover, these models must be more bio-plausible than

models that researchers have already accepted as useful or feasible. The process of running an evo-devo

neural microcircuit involves iterative nested loops of evolution, development, simulation and learning

over a diverse training set from a problem class. This can be even more time consuming in an experi-

mental setting where there are dozens of parameters to tune and many different techniques to investigate.

There are many promises for amazing nature-like features in digital systems that justify the effort to ex-

plore the new landscape of feasibility and bio-plausibility of neural-microcircuits on the actual hardware.

This work focuses on the investigation of the bio-plausibility of evo-devo neural microcircuits in FPGAs

in a broader sense, highlighting the challenges of that level of bio-plausibility, and studying the trade-offs

and constraints involved in the design of such systems in FPGAs during the design, implementation, and

testing of such a system on a selected commercial FPGA.

1.4 Aim

The aim of this thesis is to investigate the challenges of achieving bio-plausibility in evo-devo neural

microcircuits feasible in an FPGA.
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1.4.1 Definitions

The word “model” is used throughout this work to refer to a simulated model of a biological system as an

engineered solution that runs directly, or by means of software implementation, on digital hardware and

does not refer to a theory used in scientific method or a simulation model that is used for development

and testing of hypothesises unless explicitly stated.

A biologically plausible (bio-plausible for short) model is defined here as a bio-inspired model

that “does not require unrealistic computations” [320, 400] and assumptions that are inconsistent with

the current knowledge of the actual mechanism in the target biological system. Bio-plausibility is a

qualitative property of a model that is weaker than structural accuracy, which requires strong evidence

of similarity between the mechanisms in the model and the target system [Webb2001]. Bio-plausibility

is discussed and defined in section 2.1 in detail.

A neural microcircuit is defined, in this thesis, as a bio-plausible heterogeneous recurrent neural

network comprised of different types of neurons directly mapped to hardware, with no unrealistic as-

sumptions for the neural coding. This terminology is used to contrast this type of neural networks with

simplistic neural models that are homogeneous, feed-forward, non-spiking or loosely mapped to hard-

ware or are completely implemented in software.

An evo-devo neural microcircuit is such a neural microcircuit that is evolved using evolutionary

algorithms with a bio-plausible developmental genotype-phenotype mapping.

Feasibility is measured by different factors that make a solution practical as an engineered solution

or as a platform for research toward such solutions. Factors can include design time and complexity,

cost, speed, size, scalability, accessibility, and fabrication constraints in respect to the current techno-

logical limits in FPGAs and, when possible, those of foreseeable future technologies. These factors are

discussed and defined in section 2.2 in detail.

1.5 Scope
The investigation is carried out through practical design, feasibility study and implementation of a case

study solution. Analysis is used where different implementations or conducting many experiments are

not feasible. This work focuses on the challenges caused by contradiction between hardware restric-

tions of FPGAs and requirements of an evo-devo system. It also investigates the possible trade-offs

between speed, size, scalability, fault-tolerance, reliability, robustness, design time and complexity, and

bio-plausibility, and seeks a balanced point in the design space suitable for a relatively bio-plausible

evo-devo solution as the case study. The field of evo-devo neural microcircuits is still very young. It

is too early for an exhaustive study of all the feasibility factors, bio-plausibility aspects, and trade-offs.

Therefore other feasibility factors such as power consumption, heat dissipation, reliability, and human

and economic factors are considered out of the scope of this thesis. However, some of these factors are

inevitably assessed briefly during the research project planning. Similarly, this work focuses on investi-

gation of some aspects of bio-plausibility and their trade-offs during the case study. The importance and

effects of different factors and their relations are studied in a qualitative way. This is due to the novelty
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of the field and lack of enough groundwork in the field (such as standards, metrics, and benchmarks) for

a theoretical analysis or an experimental approach with statistical evidence. It is the aim of this work to

provide the insight that can lead to more rigorous studies of the subject.

This work is a study of some of the significant possible design choices and solutions that are deemed

relevant for the goal of achieving bio-plausibility in FPGA-based evo-devo neural microcircuits. Despite

the existing standard design procedures and practices, the bio-inspired digital design process has re-

mained a creative, artistic, and non-linear process to some extent. There is always a possibility that an

ingenious design can radically change a trade-off equation resulting in a better solution or approach.

However, we anticipate that the experience gained in this case study will provide insights for future

designers of such systems.

1.6 Objectives
This research is aimed at providing insight into the challenges of achieving bio-plausibility in evo-devo

neural microcircuits in FPGAs through analysis and practical design of a case study solution. To accom-

plish this aim, the following objectives are defined for the project:

1. Defining bio-plausibility and feasibility in the context of the bio-plausible evo-devo neural micro-

circuits in FPGAs

2. Reviewing the state of the art in FPGAs and related technologies, current bio-plausible models of

the brain and neurodevelopment, and studies similar to this work

3. Investigating the challenges, constraints, and trade-offs in the hardware platform selection

4. Assessing the challenges, options, trade-offs, and constraints involved in the design, implementa-

tion, testing and, evaluation of a bio-plausible neuron model suitable for an evo-devo system on

an FPGA

5. Assessing the challenges, options, trade-offs, and constraints involved in the design, implemen-

tation, testing and, evaluation of a bio-plausible reconfigurable structure on FPGA suitable for

evo-devo neural microcircuits

6. Assessing the challenges, options, trade-offs, and constraints involved in the design, implementa-

tion, testing and, evaluation of a bio-plausible neurodevelopmental evolutionary model for grow-

ing neural microcircuits in FPGAs

7. Assessing the challenges, options, trade-offs, and constraints involved in the integration, end-to-

end testing, and evaluation of a bio-plausible evo-devo neural microcircuit system

1.7 Publications
Different steps of this study have been peer reviewed, published and presented in relevant international

conferences. A list of papers already published based on this work follows:
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• Shayani, H. Bentley, P.J. and Tyrrell, A.M. (2009) A Multi-cellular Developmental Representation

for Evolution of Adaptive Spiking Neural Microcircuits in an FPGA, International NASA/ESA

Conference on Adaptive Hardware and Systems, 3-10, San Francisco, July, 2009.

• Krohn, J., Bentley, P. J., and Shayani, H. (2009) The Challenge of Irrationality: Fractal Protein

Recipes for PI. In Proc of the Genetic and Evolutionary Computation Conference (GECCO 2009).

July 8-12, 2009.

• Shayani, H., Bentley, P. J. and Tyrrell, A. (2008) A Cellular Structure for Online Routing of Digital

Spiking Neuron Axons and Dendrites on FPGAs. In Proc of The 8th International Conference on

Evolvable Systems: From Biology to Hardware (ICES 2008). Prague, September 21-24, 2008.

• Shayani, H., Bentley, P. J. and Tyrrell, A. (2008) Hardware Implementation of a Bio-Plausible

Neuron Model for Evolution and Growth of Spiking Neural Networks on FPGA. In Proc of

NASA/ESA Conference on Adaptive Hardware and Systems. IEEE Computer Society CPS. pp.

236-243.

• Shayani, H., Bentley, P. J. and Tyrrell, A. (2008) An FPGA-based Model suitable for Evolution

and Development of Spiking Neural Networks. In Proc of 16th European Symposium on Artificial

Neural Networks, Advances in Computational Intelligence and Learning. Bruges (Belgium), 23-

25 April 2008. pp. 197-202.

1.8 Thesis Structure
The following chapter starts with a definition of bio-plausibility and feasibility (objective 1) and con-

tinues with a review of the relevant literature (objective 2). Chapter 3 discusses the hardware platform

selection and its challenges (objective 3). Chapters 4 to 6, focus on the challenges, options and trade-

offs in the design, implementation, testing and evaluation of bio-plausible neuron model, reconfigurable

structure on FPGA, and evo-devo model (objectives 4-6) respectively. Chapter 7 discusses the integra-

tion and testing of the whole system (objective 7). The thesis is summarised and concluded in chapter

8.



Chapter 2

Background

In this chapter, related literature and research are reviewed and the latest FPGA-related technologies,

methods, developments, and applications of spiking neural networks, evolvable hardware, hardware

based evolutionary neural networks, similar studies, and related subjects are discussed. It starts with two

separate sections on the definitions of bio-plausibility and feasibility in the context of this research.

2.1 Bio-plausibility
To be able to accomplish a focused literature review on feasibility of bio-plausible systems, first, it is

essential to define bio-plausibility and feasibility as a ground for comparison in our specific context.

In its original context of biomedicine, biological plausibility is the consistency of a hypothetical causal

relationship with the current biological and medical knowledge about that relationship [159]. The same

terminology and its shorter version - bio-plausibility - has been used in the context of modelling, simula-

tion, robotics and artificial life to refer to the similarity of the behaviour and mechanism underlying the

behaviour of a model, simulator, robot or artificial agent with the existing biological knowledge about

those of the actual natural systems [115, 400].

In [400], Webb classifies different aspects of models of natural systems in seven dimensions:

1. Biological relevance: It shows if this model can be used to generate and test hypothesises about an

identified biological system. This is important when the model is used for biological study rather

than as an inspiration in engineering. From a biomedical and biological standpoint bio-plausibility

can refer to the biological relevance of a model.

2. Level: What are the basic elements of the model that have no internal structure or their internal

structures are ignored? For instance, a model can be based on the atoms and modelling their

interactions while ignoring the internal structure of the atoms or might be a very high-level model

that ignores all the internal structure of societies and only focuses on the interaction between

societies.

3. Generality: How many different biological systems can be represented by this model? For exam-

ple, a neural model can be used only to model a specific type of the biological neuron in human

brain but another model is expected to represent different type of mammalian neurons. As dif-

ferent researchers has pointed out [400] this could be a result of higher level, abstraction, or even
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detail in modelling, which might actually lead us to a significant finding in biology or a useful

general solution in engineering.

4. Abstraction: The complexity of the model compared to the biological system and the amount of

detail included in the model. Without abstraction modelling does not make sense. More abstract

means less detail, fewer and simpler mechanisms than the target system. Abstraction makes the

model understandable in science and feasible in engineering. This abstraction may or may not lead

to generality. However, usually, general abstract models are interesting and very useful. Abstrac-

tion should not be confused with the level. Apart from the level of modelling, the complexity of a

model also depends on how a modeller achieves the same behaviour in the model. For example, a

high-level model of cognitive process in the brain may be more complex than a brain model based

on the ion channel properties of neuron membranes, while both are showing the same behaviour.

5. Structural accuracy: The similarity of the mechanism behind the behaviour of the model to that

of the target biological system. This is directly affected by our current knowledge of the actual

mechanisms in biological systems. This is not necessarily proportional to the amount of details

included in the model, as these details also need to be correct to contribute to the accuracy of the

model. Similarly, accuracy is not directly related to the level of the model. For example, a high-

level model could be very accurate up to that level while a very low-level model could be quite

inaccurate on many levels. In [400] Webb explains that bio-plausibility can refer to the accuracy

of a model.

6. Performance match: The similarity of the behaviour of the model to that of the target biological

system.

7. Medium: The physical medium that has been used to implement the model.

On the matter of biological plausibility and its definitions, Webb mentions that “biological plausibility” is

widely used to say that a model is “applicable to some real biological system”; or to refer to the biological

accuracy of the assumptions that the model is based on. These definitions overlap with both biological

relevance and structural accuracy in the above classification. It can also describe that the model “does not

require biologically unrealistic computations” and is consistent with the current knowledge of the actual

mechanism in the target biological system [320]. Webb prefers this latter interpretation of “plausibility”

that weakly relates bio-plausibility to the structural accuracy of the model when there are not very strong

reasons for accuracy but at the same time it is not implausible that the actual mechanism in the target

biological system is similar to the model and compatible with its assumptions.

It must be noted that bio-plausibility and all the above dimensions can be viewed from two different

perspectives:

1. Modelling as a tool in biology for developing theories and hypothesises and testing them [256];

2. Designing biologically inspired systems in an engineered application [103].
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Webb acknowledges the distinction between these two methods and focuses on the former. How-

ever, it is clear that the dimensions she has introduced are very useful in bio-inspired engineering as well.

From the definitions of the dimensions and the discussions in [400], it is clear that these dimensions are

interrelated and not necessarily orthogonal. For example, while the complexity (abstraction) of the model

largely depends on the modelling approach, it also depends on the level. The generality of a model can

be increased by adding details (complexity) such as parameters, or by a valid abstraction that reflects the

general properties of a group of biological targets. Figure 2.1 shows some of the interrelations between

Webb’s modelling dimensions that can be concluded from [400].

Modelling
Approach

Medium

Level

Abstraction
(Complexity)

Generality

Accuracy
(Bio-plausibility)

Relevance Match
(Performance)

Figure 2.1: Some of the main interrelations between Webb’s modelling dimensions concluded from [400].

In the former view to modelling, a certain level of relevance is necessary. This requires a certain

level of performance match and accuracy. The goal is to use the abstraction to form an understandable

hypothesis or test it. This may or may not lead to generality as a desired feature, which depends on

the modelling approach and the fact that such generality existed in a group of target systems in the first

place. A modeller chooses the medium, level, and abstraction in a way that a certain level of accuracy,

and thus relevance, is reached, which makes the model useful in biology.

In contrast to this method, in the bio-inspired engineering approach to modelling, a certain level of

performance is required and accuracy (bio-plausibility) is the means to match that performance. Abstrac-

tion contributes to the feasibility of the model as it reduces the complexity. Generality is again a desired

extra feature of the model that may or may not be attained. In the bio-inspired engineering approach,

medium, level, and abstraction are chosen in a way that the required performance is attained while the
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model is kept feasible in terms of complexity.

We define bio-plausibility, in bio-inspired engineering context, using the same two definitions from

Webb’s taxonomy [400], as “structural accuracy” when detailed knowledge about the internal structure

of the target system is available, or as “consistency with the current knowledge” when such details are

not discovered yet. Focusing on the brains, neural microcircuits and neurodevelopment and evolution, it

is clear that the current knowledge about the target system is far from adequate in many areas. However,

the second definition of bio-plausibility, based on the consistency with the available knowledge, can be

used effectively in those areas.

2.2 Feasibility
As the second important factor in this work is the feasibility of the bio-plausible models, it is imperative

to define feasibility in such a way that allows comparison of different models in the literature. Feasibility

is originally a binary measure that shows if a system is practical or impractical to design, build or use.

It is affected by a set of different constraints. By sufficient relaxation of these constraints any solution

would become feasible. Some of these constraints can be found in digital and embedded systems design

and engineering literature [397, 202, 90, 98, 297]. In classical digital design or integrated circuit design

textbooks, there is no mention of feasibility. They refer to quality measures of digital designs instead.

For example [297] divides quality measures of digital integrated circuits into:

1. Costs

Fixed or non-recurring costs: This is mainly design cost that is a function of the complexity,

specification aggressiveness, productivity of the designer(s) plus indirect overhead of the company

or laboratory.

Variable cost: This is the cost of each manufactured product, which mainly consists of a

quintic function of the silicon die area that is related to the complexity as well.

2. Functionality and robustness - reliability of the product

3. Performance - This is the computational power of the system. This depends on the latencies of the

components and the maximum clock frequencies, etc.

4. Power and energy consumption: this is the amount of energy that the circuit needs to consume and

relatively the heat that must be dissipated from the circuit.

Similar factors such as performance, cost, size, security, reliability, scalability, and power con-

sumption are considered for computer systems in computer architecture and organisation textbooks

[345, 288, 153]. In the general context of all different digital design approaches, the most important

of all these factors are flexibility, performance, cost of ownership and running cost. Cost of ownership

is mainly dominated by die area. The running cost is also mainly proportional to energy consump-

tion. It is possible to asses different design approaches using power and area efficiency figures based

on performance-cost ratios of milliWatt per Million Operations Per Second (mW/MOPS) and MOPS
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per each square millimetre (MOPS/mm2) [278]. Figure 2.2 from [278] shows how different design ap-

proaches are distributed over the 2D space of power and area efficiency. A general trend of increasing

flexibility is also evident as we move from optimised ASICs (Application Specific Integrated Circuit)

towards general-purpose processors. Figure 2.3 from [38] depicts the relation of flexibility, power dis-

sipation and performance. Blume et. al. used reciprocal of the time needed for a new design for

quantifying the flexibility in [38]. Figure 2.3 clearly demonstrates why using FPGAs can be a balanced

solution to the flexibility-performance tradeoff.

26 Tobias G. Noll et al.

[26]. Figure 2.1 sketches the results (actually in mW/MOPS = nJ/operations and
MOPS/mm2, respectively) from a long term study performed by our group on the
implementation of many applications applying all these different styles [4]. The di-
agram quantitatively proves which is called the “energy vs. flexibility conflict” or
what Bob Brodersen from UCB Berkeley meant by his famous quote “flexibility has
a price tag” [5].

Fig. 2.1 Energy and area efficiency of today’s implementation styles for digital computing and
logic (all entries properly scaled to a 130-nm CMOS technology).

As can be seen from Fig. 2.1 these alternatives span more than five orders of mag-
nitude in energy efficiency, what is crucial in practically speaking every application
today, and in area efficiency, what is crucial as silicon is and will be “not for free”.
Apart from that, the most important observation from this comparison is that re-
configurable FPGAs feature an attractive compromise between flexibility and these
efficiencies (see also [9, 7]). Another important conclusion from Fig. 2.1 is that for
an energy and/or area critical System-on-Chip(SoC) each building block should be
implemented in that style what is just allowing for the minimal degree of flexibility,
resulting in the need for so-called heterogeneous SoC architectures. Consequently,
one of the most challenging issues in today’s SoC design is to predict or estimate
the “right degree” of required flexibility during the specification phase.

Figure 2.2: From [278], energy and area efficiency of different digital design approaches.

It is also possible to consider all these factors as different types of costs functions:

1. Design costs (Non-Recurring Engineering - NRE costs, a function of the design time and com-

plexity)

2. Implementation costs (material and labour costs, implementation time, and complexity, availabil-

ity)

3. Testing costs (time, complexity, accessibility)

4. Life-cycle costs (power consumption, heat dissipation, space, time, weight, reliability, mainte-

nance, flexibility, scalability, performance, accessibility)
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volume and a reduction of mask costs per chip can be
achieved.

• Runtime adaptation due to switching between sev-
eral standards (e.g. audio standards), or due to adap-
tation to channel quality (e.g. in the communication
domain).

Therefore, the underlying architecture of many hard-
ware platforms has to include architecture blocks that
provide sufficient flexibility to match the correspond-
ing requirements.

Generally, dedicated hardware implementations of-
fer orders of magnitude better computational perfor-
mance (or throughput) at orders of magnitude lower
power dissipation. But flexibility of those implemen-
tations is restricted to weak programmability (e.g.
switching of coefficients etc.) considered at design
time.

A qualitative comparison of flexibility, performance
and power consumption among today’s available build-
ing block implementation alternatives (“architecture

Figure 1. Comparison concerning flexibility, performance and power consumption.

Figure 2. Partitioning and mapping of a system to a heterogeneous architecture.

blocks”) is depicted in Fig. 1. Flexibility is quantified
here in the reciprocal of the time needed for a new
design. The comparison shows a huge difference in or-
ders of magnitude concerning flexibility, performance
and power dissipation between the architecture blocks.
These differences will be proved by examples in the
succeeding sections.

Only a well-balanced combination of different ar-
chitecture blocks on a sophisticated, high performance
SoC provides the required performance (throughput
rate) at reasonable costs (area, power dissipation) on
one hand and ensures sufficient flexibility on the other.

Therefore, according to the required performance
and flexibility systems have to be partitioned into sys-
tem blocks, which have to be mapped to the appropri-
ate architecture blocks (see Fig. 2). In order to meet
the challenging demands of such a partitioning and
mapping process it is important to provide models and
methodologies which assist designers with metrics and
with an early assessment of the capabilities of a given
platform [2, 6, 7]. Thus, it is beneficial to explore the

Figure 2.3: From[38], flexibility, power dissipation and performance of different digital design approaches. Flexibility is

measured in the reciprocal of the design time.

The closest field to this study in the literature, discussing these factors and the tradeoffs between

them, is reconfigurable computing [57, 278]. Although literature in this field cover many benefits of

using FPGAs and reconfigurable computing, they mostly lack a review of the effects of bio-inspired

approaches on these factors. Most of the studies talk about the power wall issue that stops manufacturers

increasing the density of the power dissipation endlessly and how reconfigurable hardware can mitigate

this problem. They also talk about performance benefits of parallelism and fault-tolerance in reconfig-

urable platforms. Not many studies focus on the potentials of using bio-inspired techniques at extremes

towards solving these problems [371]. For example, the general tradeoff between performance and en-

ergy consumption in digital systems is a known fact and using many low-power processors in parallel

as a scalable solution to the power wall issue has been suggested before [113]. However, the brain uses

many billions of much slower and extremely low-powered processing elements (neurons and synapses)

in parallel resulting a much higher efficiency. Another example is the limitation of the silicon die size

in IC manufacturing. The probability of a defect in a larger die increases with die size, which drasti-

cally reduces the yield ratio [297]. Using effective bio-inspired techniques can bring fault-tolerance and

self-repair to digital systems allowing much larger, denser, and cheaper integrated circuits [371, 283].

In the more specific context of spiking neural network simulation some studies look into these tradeoffs

with emphasis on scalability and flexibility [113] rather than bio-plausibility. Schrauwen et. al. studied

the tradeoff between scalability, area, and performance for a not very bio-plausible neuron model [330].

Tyrrell et. al.[371, 283] have also studied different aspects of the bio-inspired reconfigurable comput-

ing on custom devices with focus on fault-tolerance. There appears to be no readily available study

that specifically focuses on the tradeoffs in the design of bio-plausible evo-devo neural microcircuits on

FPGAs.
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For the purpose of this study, feasibility is defined in the context of bio-inspired neural microcircuits

in FPGAs. In this context, feasibility shows how tight are the constraints that can be satisfied by a design

as an engineered product or as a platform for research towards such product. However, instead of looking

for the whole Pareto front in the whole design space [90], this work focuses on the most important factors

in this context, looking for potential new frontiers in the useful regions of the design space. Therefore,

here, feasibility is mainly measured based on these seven factors:

1. Hardware cost (inversely proportional to compactness)

2. Performance (simulation and evolution speed)

3. Scalability (number of neurons, synapses, ...)

4. Design time and complexity (inversely proportional to simplicity)

also includes flexibility (for research purposes)

5. Testing time and complexity (inversely proportional to simplicity)

also includes observability (for debugging, testing, and research)

6. Availability

7. Reliability (robustness, fault-tolerance, etc.)

2.3 Field Programmable Gate Arrays (FPGAs)
A Field Programmable Gate Array (FPGA) [309] is a digital integrated circuit that consist of many

Configurable Logic Blocks (CLBs), configurable input/output blocks, configurable routing blocks and

many wires connecting these resources. Figure 2.4[30] shows the general concept of the FPGA architec-

ture. In this figure, routing blocks are shown as switch boxes and connection boxes. Each CLB mainly

comprises a few Look-Up-Tables (LUTs), flip-flops, adders, and multiplexers that can be configured to

create a small combinational or sequential digital circuit. LUTs can be reconfigured in different modes to

form shift registers or small RAM blocks as well. All these reconfigurable blocks can be electronically

programmed (reconfigured) by a user or a designer after manufacturing to create virtually any arbitrary

digital circuit. Recent devices have distributed static RAM and FIFO blocks, multiplier blocks, DSP

(Digital Signal Processing) blocks, Hi-speed IO blocks, processors cores, different types of other hard

IP Cores (Intellectual Property Cores - a predesigned module), and higher number of configurable logic

blocks (CLBs) compared to the previous models. New devices with up to two million logic cells (ap-

proximately equal to 30 million gates) are already available off-the-shelf [412]. According to Moore’s

law even faster and larger FPGAs are on their way.

Although FPGAs have many disadvantages compared to ASICs, they proved to be useful and cost-

effective in many areas. FPGAs are more expensive per chip as they need more silicon area, consume

more power and offer lower clock rates than ASICs. An empirical study on different designs on FPGAs

and ASICs [212] shows that on average a circuit on an FPGA needs 35 times more area, is 3.4 to
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Figure 2.1: Overview of FPGA Architecture [Betz et al., 1999]

topology.

Figure 2.1 shows a traditional mesh-based FPGA architecture. The configurable logic blocks
(CLBs) are arranged on a 2D grid and are interconnected by a programmable routing net-
work. The Input/Output (I/O) blocks on the periphery of FPGA chip are also connected to
the programmable routing network. The routing network comprises of horizontal and verti-
cal routing channel tracks. Switch boxes connect horizontal and vertical routing tracks of the
routing network. Connection boxes connect logic and I/O block pins with adjacent routing
tracks. A software flow converts a target hardware circuit into interconnected CLBs and I/O
instances, and then maps them on the FPGA. The software flow also generates a bitstream,
which is programmed on the FPGA to execute the target hardware circuit. The mesh-based
FPGA, and its software flow is described in detail as below.

2.1.1 Configurable Logic Block

A configurable logic block (CLB) is a basic component of an FPGA that implements logic
functionality of a target application design. A CLB can comprise of a single basic logic ele-
ment (BLE), or a cluster of locally interconnected BLEs. A simple BLE consists of a Look-Up
Table (LUT), and a Flip-Flop. A LUT with k inputs (LUT-k) contains 2k configuration bits; it
can implement any k-input boolean function. Figure 2.2 shows a simple BLE comprising of a
4 input Look-Up Table (LUT-4) and a D-type Flip-Flop. The LUT-4 uses 16 SRAM (static ran-

Figure 2.4: General conceptual of FPGA architecture [30]

4.6 times slower and consumes 14 times more power than an equivalent standard-cell implementation

on ASIC. Nevertheless, the possibility of field-reconfiguration simplifies debugging and updating the

design, and significantly reduces the time-to-market and Non-Recurring Engineering (NRE) costs, which

make FPGAs popular particularly in low-volume applications and research. They have been successfully

used in different applications [309] such as digital signal processing [333], reconfigurable computing,

communication processing [141], and rapid system prototyping of ASIC designs [309]. They are also

very useful in research and are commonly accepted as the main digital platform for intrinsic evolvable

hardware[131].

There are two major FPGA vendors and competitors, Xilinx and Altera, that according to Wikinvest,

together share more than 80% of the fast growing FPGA market. They are followed by Lattice Semi-

conductors Inc. with 11%. This is clearly a duopoly that indicates a matured industry and market. Other

vendors mostly focus on non-SRAM-based (e.g. anti-fuse or Flash-based) FPGAs. New developments

such as 3D FPGAs, stacking and time-multiplexed FPGAs [285] show a promising horizon.

2.3.1 Design

Although FPGA design tools and techniques and workflows are similar to those of standard-cell ASICs

to some extent, each vendor has provided its own vendor-specific design suite for design and recon-

figuration of their devices. For example, Xilinx provides the traditional ISE Design Suite that allows

users to design using HDLs (Hardware Description Languages) and other high-level system descrip-

tions, simulate, debug, and synthesise their designs, map, pack, place and rout them, verify them, and

finally, generate reconfiguration bitstreams. Vendors provide designers with a set of IP cores (including
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soft-core processors) to speed up and simplify the design process. Quite recently, Xilinx also introduced

Vivado Design Suite that also allows designers to use C, C++ and System-C source codes as specifica-

tions of IP cores. Altera provides Quartus II as the design software solution. Design suites from both

companies can work closely with third-party design, simulation, and synthesis tools such as Matlab and

Simulink from Mathworks, and LeonardoSpectrum and ModelSim from Mentor Graphics.

2.3.2 Reconfiguration

Reconfiguration process [309] involves interfacing with the internal reconfiguration controller of the

chip and writing configuration data into the configuration memory that controls the connections and

functionality of the reconfigurable blocks. As the configuration memory is SRAM based and volatile,

every time the FPGA is powered-up, the chip needs to be reconfigured. This is performed by sending a

bitstream (a binary file) to the configuration controller of the chip through a port. FPGAs usually have

different internal and external ports and modes for accessing the configuration memory. For example,

Virtex-5 family of Xilinx FPGAs apart from supporting the standard serial JTAG/Boundary-scan port,

have a serial/parallel port with master or slave mode called SelectMAP that can be used in different

ways [411]. They also have an Internal Configuration Access Port (ICAP) that can be used by FPGA to

reconfigure itself or read/verify its internal state [411]. For an FPGA to be able to reconfigure itself, it

needs to support two other features: partial reconfiguration and dynamic reconfiguration.

2.3.3 Partial Reconfiguration

Partial Reconfiguration (PR) [20, 309, 411, 184] refers to the alteration of the state of only part of the

configuration memory, thus functionality of a portion of the circuit, without touching the rest. This

significantly reduces the length of the reconfiguration bitstream and reconfiguration delay [357]. Some

FPGAs are capable of running without interruption while they are being partially reconfigured. This is

known as DPR (Dynamic partial reconfiguration) or Run-Time Reconfiguration [309, 219, 184]. This

feature makes it possible for part of the FPGA to reconfigure the rest of it. This is very useful as it allows

designers to swap modules that are not used simultaneously[20]. Partial reconfiguration and dynamic

partial reconfiguration are also very useful in evolvable hardware and bio-inspired designs as it speeds

up the reconfiguration process and allows a circuit to adapt and develop in real time [54, 184, 373]. Only

recently, Altera started to support dynamic and partial reconfiguration in its new 32nm FPGAs such as

Stratix V [8]. Until few years ago Xilinx was the only major manufacturer of SRAM based FPGAs

capable of partial dynamic reconfiguration.

Xilinx supports two design flows for PR (partial reconfiguration) using ISE design tools: module-

based PR and difference-based PR [219, 406]. In module-based flow the swappable modules in the

design are positioned in large blocks at specific locations in the FPGA and connected by interfacing

resources called Bus Macros to the rest of the design in order to fix interfacing lines in place to guarantee

that all the lines will be connected properly after reconfiguration [219, 184]. Module-based PR bit-

streams contain only the reconfiguration data for the block that contains the module. In difference-

based PR, the modification is usually very small and is affecting only a few places in the configuration

memory. This technique can be used to modify the content of a block RAM or an LUT (look-up-table)
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that changes the functionality of the circuit. In this case the bitstream contains the minimum number of

frames (smallest reconfigurable data unit) needed to reconfigure those parts of the configuration memory

and reconfiguration process is very fast [219, 406]. This is done by manually making small changes in

the design using Xilinx’s FPGA editor tool and saving the bitstream and then generating the difference-

based bitstream by comparing before and after bitstreams using tools provided by Xilinx [406]. Both

of these work flows are only useful when there are limited number of predefined compatible modules to

swap or a predefined set of minor modifications needed.

For run-time and versatile reconfigurations, as needed in evolvable hardware, the reconfiguring

agent (e.g. PC or an embedded processor) needs to generate bitstreams on-the-fly. This requires com-

plete knowledge of the bitstream file formats. Although the general structure of the Xilinx bitstreams are

well documented and released, the low-level specification of bitstream files for new families of Xilinx

FPGAs are proprietary and not released. To address this need, Xilinx introduced JBits and JRoute APIs

(Application Programming Interfaces) and a set of tools (called XHWIF) that allow reconfiguration of

Virtex devices using these Java libraries and interfacing tools [279, 341]. However, these tools are not

open source or properly maintained by Xilinx and they never supported any other FPGA devices beyond

Virtex II [279]. Later, Xilinx introduced driver libraries for the OPBHWICAP and XPSHWICAP IP

cores that can be used along with on-chip processor cores (e.g. MicroBlaze) to perform some of the

useful partial reconfiguration tasks such as modifying LUT contents or flip-flop states in real-time. Un-

fortunately, both these drivers and the IP core are very limited in speed and functionality and are not

portable to unlicensed processors. Other IP cores with orders of magnitude higher speed than original

XPSHWICAP have been designed and benchmarked by different researchers for Xilinx Virtex II Pro,

Virtex-4, and Virtex-5 family of devices [77, 226, 144, 31]. However, these cores are generally de-

signed for module and difference-based PR and do not appear to necessarily work with Xilinx drivers

for versatile reconfigurations such as LUT content modifications [77, 226, 144, 31].

Some attempts to reverse-engineer the bitstream file formats in order to directly generate or manip-

ulate bitstreams have been very promising [279, 372]. It has been shown [279] that by using Xilinx tools

and some statistical and logical inference it is possible to reverse engineer the bitstream file formats.

2.4 Neural Networks
Nature’s solution to create an adaptable and embodied intelligent agent is a nervous system or a biologi-

cal neural network [103]. Nervous systems mainly consist of two types of cells: neurons and glial cells.

Neurons are the main processing elements [186, 73, 103, 121, 239, 150]. They consist of a body, called

soma, with relatively long extensions called dendrites and axons. Dendrites are essentially the inputs of

a neuron that gather all the signals from other neurons, mix them and send them to the soma. A single

axon, which may also divide into branches at the end, sends the output of the neuron to other neurons

or actuators (e.g. muscles) through small electrochemical devices called synapses at the contact point of

the axons with dendrites or cell bodies. Glial cells provide support and nutrition for neurons and act as

“glue” between them [213]. Recently, they were suspected to be also involved in the synapse formation

as well as axon and dendrite development [293, 213, 67].
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Neurons communicate by sending electrical pulses called Action Potentials (APs) or spikes [186].

These are electrochemical waves that travel through axons and when they reach to the synapses release

special molecules, called neurotransmitters. These neurotransmitters can open very small gates, called

ion channels, on the surface of the dendrite on the other side of the synapse. This allows electrically

charged molecules, called ions, to pass the dendrite membrane and change the electrical potential across

the membrane. These dendrite potentials mix and interact in complex ways and consequently affect

the membrane potential of the soma [149]. Soma membrane is also covered with different types of

ion channels that are sensitive to this voltage across the membrane. When the membrane potential

goes higher than some level it affects more ion channels leading to an ion rush and a rapid increase

(depolarisation) and then a quick drop (repolarisation) of the membrane potential that initiates an action

potential that travels down the axons as a spike. There are different types of neurons with slightly

different behaviours. Some neurons, called inhibitory neurons, release neurotransmitters that decrease

or block the activation of other neurons. There are about 850,000 neurons in the brains of honeybees

while the human brain comprises about 1011 neurons [113]. Neurons in the human brain are usually

connected to 1000 to 10000 other neurons [113]. Neurons can fire (spike) up to 250 to 300 times a

second [103].

2.4.1 Artificial Neural Networks

Artificial Neural Networks (ANN) or Neural Networks for short, are a set of bio-inspired computational

models of the function or structure of the brains and nervous systems that are simulated in computer

software or custom-designed hardware. They usually comprise a directed graph with a number of nodes

(cells) representing the neurons, and many connections (links) representing the axons, dendrites and

synapses between neurons[37, 103, 358].

Despite the extensive studies and brilliant achievements in using artificial neural networks, they

have so far not been as successful as their biological counterparts [37, 358]. This could be partly due to

extensive abstractions and over-simplifications in the artificial neural network models. The McCulloch-

Pitts model [254], and sigmoid threshold neurons [37] are two classical neuron models of this kind in

the literature. Limiting the architectures to feed-forward networks, modelling complex electrochemical

signals and processes with relatively simple equations, and neglecting temporal dynamics of the signals

and processes, are all examples of such simplifications to name a few. The field of neural networks

has been largely formed by these type of simplistic rate models that neglect the timing and temporal

dynamics of the neurons and networks [37, 358]. Recently, after many critiques and “hype cycles” and

consequently periods of suspension in research, this field is attracting attention again thanks to introduc-

tion of new bio-plausible models that take into account some of the complexities of the biological neural

networks. Using spiking neuron models and temporal coding have been proven to result in computa-

tionally more powerful networks [239]. Reservoir Computing is also a new bio-plausible method for

design and training of recurrent neural networks that has been very successful in spatiotemporal pattern

recognition [332, 390]. Hierarchical Temporal Memory (HTM) is another recent bio-plausible model

that has attracted a lot of attention [150, 281]. In the following sections, each one of these new models
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and methods are reviewed in more detail.

2.4.2 Spiking Neural Networks

Biological neurons communicate through their axons and dendrites by sending (arguably) identical

spikes. While in simpler models (rate models [37]) only spike rates is considered, in Spiking Neural

Networks (SNNs) [239, 121] the precise timing of each spike can also convey contextual information.

There has been an endless debate about the importance of spike timings and whether only the spiking

rate of the neurons matters in the brain. Although the coding scheme of the brain is not completely

deciphered yet, there is enough evidence that delay, phase, and synchrony of the spikes can be used for

communication in context of a spiking neural network [239, 121, 43].

Spiking neural networks have some advantages over other types of artificial neural network models

in terms of computational power and capabilities. Spiking neurons, being more similar to their biolog-

ical counterparts than rate neurons, are likely to be a good solution for creating embodied intelligent

agents, as they are nature’s solution to the same set of problems through billions years of trial and error

by evolution. Moreover, the bio-plausibility of SNNs allows a mutual transfer of concepts, techniques,

and results between neuroscience and artificial intelligence communities [106]. Spiking neural networks

have more computational power than other artificial neural networks. Many functions exist that can be

implemented by a single spiking neuron but take hundreds of hidden units on a sigmoidal neural network

[237]. On the other hand, any function that can be computed on a small sigmoidal neural network can

also be implemented using a small spiking one [238]. Even very noisy spiking neural networks can be

used for computing a function to an arbitrary level of reliability [236]. Noisy spiking neural networks

can simulate sigmoidal neural networks with the same number of nodes but with more computational

power [238]. Spiking neurons have short term memory and can use a temporal coding for inter-neuronal

communication. This allows them to process time series easily [241]. Temporal nature of the signals

and processes in spiking neural networks provides useful information to a local learning process at each

synapse. Spike Timing Dependent Plasticity (STDP) has been already observed in biological neural

networks through experiment [35] and different timing dependent Hebbian algorithms can be used for

unsupervised or reinforced learning. This makes spiking neural networks a very interesting option for im-

plementing embodied agents where a labelled training dataset does not already exist. Moreover, locality

of the learning processes allows a fully parallel implementation of the learning algorithm. Furthermore,

the event-based nature of the signals with identical spikes makes digital hardware a good candidate for

efficient parallel implementation of spiking neural networks [44].

As one of the most bio-plausible families of neural network models to date, spiking neural networks

are the focus of this thesis, and different important and therefore useful (in this context) spiking neural

network models are reviewed in the following sections.

2.4.3 Spiking Neuron Models

Results of Hodgkin and Huxley’s extensive experiments on the giant axon of the squid, which resulted

in the award of the Nobel prize in 1963 established a fundamental model of biological neurons [158].

Based on that, more plausible models for artificial neural networks were proposed, which take some
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subtleties of biological neurons into account. These models, which are called spiking neuron models (or

pulsed neural models), are also used in creating artificial Spiking Neural Networks (SNN) [239].

Hodgkin-Huxley Model

Hodgkin-Huxley neuron model [73, 158] is based on the ionic mechanisms underlying the initiation and

propagation of action potentials in the neuron [73, 158]. In this model, the cell membrane is considered

as a capacitor with capacitanceC. Dynamics of the voltage across the membrane (u) and external driving

current I(t) are described by the differential equation [239]:

C
du

dt
= −

∑
k

Ik + I(t) (2.1)

where
∑
Ik is the sum of the ionic currents through the membrane, which consists of sodium and

potassium ion channel contributions (indexed by Na and K) and leakage L [239]:∑
k

Ik = gNam
3h(u− VNa) + gKn

4(u− VK) + gL(u− VL) (2.2)

where gNa, gK , and gL are conductances of corresponding ion channels and membrane leakage; VNa,

VK , and VL are reversal potentials (modelling the diffusive flow of the ions); and m, n, and h are vari-

ables, which can be described with three additional differential equations [239]:

ṁ = αm(u)(1−m)− βm(u)m

ṅ = αn(u)(1− n)− βn(u)n

ḣ = αh(u)(1− h)− βh(u)h (2.3)

where α and β are in turn empirical functions of u.

As is clear from equations 2.1, 2.2, and 2.3 this is a complex model and computationally demanding

[169]. However, it is still the most plausible model that is accepted as the reference model and all other

models are based on this or are compared to this model in terms of bio-plausibility [169].

Multi-compartment Models

The Hodgkin-Huxley model is a single-compartment model that ignores the spatial electrical potential

and current inside neurons and describes the membrane potential of a neuron by a single variable (u).

multi-compartment models [73, 239] consider these details by approximating the shape of the neuron

with many uniform cylindrical compartments using cable theory [73]. Computer simulations of a large-

scale networks of neurons with these models are computationally intractable.

Leaky Integrate-and-Fire Model (LIF)

One of the most common models used in simulation of the spiking neuron models, specially in hardware

implementations, is Leaky Integrate-and-Fire (LIF) model [121]. This is mainly because of its simplicity

and because it is computationally cheaper to simulate than other models [169]. A neuron is simply

modelled as a capacitor C in parallel with a leakage resistor R and input current I(t). The input current

and voltage of the membrane are then governed by equation:

I =
u

R
+ C

du

dt
(2.4)
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which can be turned into a standard leaky integrator equation with time constant τm = RC:

τm
du

dt
= −u(t) +RI(t). (2.5)

This equation does not account for the firing. So, a firing condition is added to this equation. When

the membrane voltage u(t) becomes greater than a threshold θ, a spike is emitted by the neuron and the

membrane voltage is reset to ur < θ. As this reset value is far below the threshold voltage, neuron will

not fire for a while even in presence of input current. This will create a relative refractory period. In a

more detailed version of the model, an absolute refractory period can be added by keeping u(t) at ur for

absolute refractory period ∆abs after a firing at time t(f). Then integration restarts at time t(f) + ∆abs.

When a neuron (indexed by j) fires at time t(f)
j , it contributes to the input current of the downstream

neuron (indexed by i) by wijα(t − t
(f)
j ) where wij is efficacy of the synapse between neuron i and

neuron j, and α(s) is a pulse function. By adding an external current Iexti (t) for sensory neurons, the

input current for neuron i can be calculated by equation:

Ii(t) =
∑
j

wij
∑
f

α(t− t(f)
j ) + Iexti (t). (2.6)

The α(s) function can considered as Dirac pulse function, α(s) = qδ(s). A more realistic choice for

this function could be an exponential decay function with time constant τs:

α(s) =
q

τs
exp(− q

τs
)Θ(s) (2.7)

Θ(s) =

 1, s ≥ 0

0, otherwise

More detailed versions of this model are available, which also include a finite rise time for α(s) and

an axonal transmission delay [121]. This model captures the fundamental behaviour of the biological

neurons and it is computationally less demanding than previous models. However, many features of

Hodgkin-Huxley model are not supported by LIF model [169].

Spike Response Model (SRM)

Since a neuron can be assumed to be reset to the same state after each firing, in Spike Response Model

[239, 121], it is possible to calculate the membrane voltage of a neuron using kernel functions (η, ε, and

κ) of time after the last firing of the neuron (t− t̂i):

ui(t) = η(t− t̂i) +
∑
j

wij
∑
f

εij(t− t̂i, t− t(f)
j )

+

∫ ∞
0

κ(t− t̂i, s)Iext(t− s)ds. (2.8)

The function η(t − t̂i) produces the spike form and the refractory period. The Kernel εij(t −

t̂i, t − t(f)
j ) express the effect of a spike from pre-synaptic neuron j on the membrane voltage of the

post-synaptic neuron i. The kernel κ(t − t̂i, s) is response of the membrane voltage to external current

Iext. A neuron fires when the membrane voltage ui(t) exceeds a threshold θ. This model can become

equivalent to LIF model for particular kernel functions. This model can also estimate Hodgkin-Huxley
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model up to 90% of accuracy (in terms of firing coincidence) by selecting the right kernel functions.

This is another simple model, which can be used in simulations. By neglecting the dependency of ε and

κ on (t− t̂i) and losing some accuracy, even a simpler model, called SRM0, can be obtained.

Quadratic Integrate-and-Fire Model (QIF)

A biologically more plausible model than LIF is a non-linear model called Quadratic Integrate-and-Fire

(QIF), also known as the theta-neuron or the Ermentrout-Kopell canonical model [121]. In this model

the derivative of the membrane potential depends on a quadratic function of the membrane potential.

The dynamics of this model are described by equation [121]:

τm
du

dt
= −a(u(t)− urest)(u(t)− uthres) +RI(t). (2.9)

where urest and uthres are resting and threshold potential of the neuron respectively. Unlike LIF model,

this model has a dynamic threshold and resting potential (urest and uthres only when I(t) = 0), is

capable of generating realistic spikes with latencies and has bistable states of tonic spiking and resting

[169].

Izhikevich Model

Computationally simple models like LIF can be implemented efficiently in computer simulations but

cannot display all the behaviours of complex and CPU-intensive models like Hodgkin-Huxley. Recently,

Izhikevich proposed a simple model [168] with a reasonable computational complexity that can exhibit

all the complex dynamics of the Hodgkin-Huxley model like bursting, chattering, adaptation, and reso-

nance. The model consists of a 2D system of ordinary differential equations of the form:

du

dt
= mu2 + nu+ p− v + I(t)

dv

dt
= a(bu− v) (2.10)

where I(t) is the sum of the all post-synaptic currents and the external input current Iexti (t). In a pulsed-

coupled model used in example of [168], the total input current of neuron i can be written as:

Ii(t) =
∑
j∈F

wij + Iexti (t) (2.11)

where F is the set of pre-synaptic neurons that fire at time t. The parameters m, n and p can be obtained

by fitting the model with the behaviour of a cortical neuron so that we have membrane potential u(t) in

mV and time t in ms scale, which results in:

u′ = 0.04u2 + 5u+ 140− v + I(t)

v′ = a(bu− v) (2.12)

with after spike resetting condition:

if u ≥ 30mV, then

 u← c

v ← v + d
. (2.13)
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The parameters a, b, c, and d can be set to values recommended in [168] to obtain bio-plausible models

of different types of biological neurons.

This simple model can reproduce the rich behaviour of biological neurons, such as spiking, bursting,

post-inhibitory spikes and bursts, continuous spiking with frequency adaptation, spike threshold variabil-

ity, bi-stability of resting and spiking states, and sub-threshold oscillations and resonance. Izhikevich

claims that his model is canonical and equivalent to the Hodgkin-Huxley model meaning that it de-

viate from those bio-plausible models only by coordinate change [168]. However, it consists of two

equations with only one nonlinear term and therefore it is computationally inexpensive compared to

the bio-plausible and accurate Hodgkin-Huxley models. The only disadvantage comparing to Hodgkin-

Huxley model is that the parameters in Izhikevich model are not physically as meaningful as parameters

of the Hodgkin-Huxley model.

Table 2.1: Biological features of different spiking neuron models and number of floating point operations needed for

simulation of one millisecond of neuron activity from [169]. Empty squares indicate that it must be theoretically possible

to produce the behaviour with that model, although Izhikevich did not find a parameter setting to produce it. + and - signs

show that the behaviour is reproducible or not reproducible respectively by that model.
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Fig. 2. Comparison of the neuro-computational properties of spiking and bursting models; see Fig. 1. “# of FLOPS” is an approximate number of floating point
operations (addition, multiplication, etc.) needed to simulate the model during a 1 ms time span. Each empty square indicates the property that the model should
exhibit in principle (in theory) if the parameters are chosen appropriately, but the author failed to find the parameters within a reasonable period of time.

III. SPIKING MODELS

Below we review some widely used models of spiking and
bursting neurons that can be expressed in the form of ordinary
differential equations (ODE) (thus, we exclude the spike re-
sponse model [5]). In addition to the 20 neuro-computational
features reviewed above, we also consider whether the models
have biophysically meaningful and measurable parameters, and
whether they can exhibit autonomous chaotic activity. We start
with the simplest models first. The summary of our comparison
is in Fig. 2.

Throughout this section, denotes the membrane potential
and denotes its derivative with respect to time. All the param-
eters in the models are chosen so that has mV scale and the
time has ms scale. To compare computational cost, we assume
that each model, written as a dynamical system , is

implemented using a fixed-step first-order Euler method
with the integration time step chosen

to achieve a reasonable numerical accuracy.

A. I&F

One of the most widely used models in computational neuro-
science is the leaky integrate-and-fire (I&F) neuron

if then

where is the membrane potential, is the input current, and
, , , and are the parameters. When the membrane po-

tential reaches the threshold value , the neuron is said
to fire a spike, and is reset to .

The I&F neuron is Class 1 excitable; it can fire tonic spikes
with constant frequency, and it is an integrator. It is the simplest

Bio-plausibility and feasibility of spiking neural models

Izhikevich carried out a model comparison [169] of main different spiking neuron models taking into

account the computational cost and bio-plausibility of these models. He measured the computational cost

of the models in number of floating point operations (FLOPs) needed for simulation of one millisecond

of neuron activity. Bio-plausibility of the models were measured in number of features based on:
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have biophysically meaningful and measurable parameters, and
whether they can exhibit autonomous chaotic activity. We start
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eters in the models are chosen so that has mV scale and the
time has ms scale. To compare computational cost, we assume
that each model, written as a dynamical system , is

implemented using a fixed-step first-order Euler method
with the integration time step chosen

to achieve a reasonable numerical accuracy.

A. I&F

One of the most widely used models in computational neuro-
science is the leaky integrate-and-fire (I&F) neuron

if then

where is the membrane potential, is the input current, and
, , , and are the parameters. When the membrane po-

tential reaches the threshold value , the neuron is said
to fire a spike, and is reset to .

The I&F neuron is Class 1 excitable; it can fire tonic spikes
with constant frequency, and it is an integrator. It is the simplest

Figure 2.5: [169] Number of biological features of the spiking neuron models against number of floating point operations

needed for simulation of one millisecond of neuron activity with each model [169] based on Table 2.1.

1. Biological features such as biophysical meaningfulness of the model and parameters,

2. Performance match of the model compared to the behaviour of biological neurons, and

3. Generality of the models, meaning the number of different behaviours of different types of biolog-

ical neurons that can be represented by the model.

This comparison, summarised in Table 2.1[169] and Figure 2.5[169], shows that Izhikevich model is

computationally the cheapest model with about the same bio-plausibility of the Hodgkin-Huxley model.

By translating computational cost (time, T ) to speed (frequency of operations, f ), as one of the feasibility

measures, using:

f =
1

T
(2.14)

and plotting the data linearly, we arrive at Figure 2.6. Multi-compartment models of the neurons are

also added to the chart with near zero feasibility and speculatively higher numbers of features. This is

consistent with the general bio-plausibility-feasibility trade-off suggested in Chapter 1 (Figure 1.1).

Izhikevich’s study does not include SRM model. This is probably because SRM is very general,

meaning that with choosing different kernel functions it is possible to arrive at approximately equivalent

of a broad range of neuron models from LIF to Hodgkin-Huxley. Speed of the SRM is also dependent

on this kernel function selection. It can be seen that the bio-plausible selections of kernel function

for SRM [121] can not produce a computationally cheaper model than Izhikevich model unless some

approximations are involved.

2.4.4 Recurrent Neural Networks

A major part of the classical artificial neural networks are feed-forward with directed acyclic network

graphs [73, 37]. In contrast, recurrent neural networks can contain directed cycles in their architecture

leading to a much higher level of complexity and new features. Although many different problems have
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Figure 2.6: Bio-plausibility of the spiking neuron models (in number of features) against feasibility (speed)

been tackled successfully using feed-forward neural networks, the biological neural networks are not

limited to those architectures.

Recurrent Neural Networks (RNNs) have shown great potential in solving different engineering

problems such as classification, regression, prediction, control, and simulation of dynamic systems. They

can naturally process temporal inputs while feed-forward networks need delay embedding and more

parameters to be able to process temporal data [359]. RNNs are shown to be Turing equivalent [195]

and universal approximators [110]. They can also approximate finite state automata [282]. However,

the high computation cost and slow convergence and suboptimal solutions of RNN learning algorithms

limited their wide real-word application [176].

Reservoir Computing (RC)

Recently, with independent works of Buonomano [53], Dominey (Temporal Recurrent Neural Networks)

[84], Maass (Liquid State Machine - LSM [241]), Jaeger (Echo State Network - ESN [176]) and Steil

(Back-Propagation Decorrelation - BPDC [353]) a new technique, collectively known as Reservoir Com-

puting (RC) [332], emerged, which is claimed to be capable of processing analogue continuous-time

inputs and to mitigate the shortcomings of the RNN learning algorithms.

The RC approach is generally based on a recurrent network of (usually) non-linear nodes. This

recurrent network, which is called reservoir (also called liquid and dynamic filter) transforms the tempo-

ral dynamics of the recent input signals into a high-dimensional representation. This multi-dimensional

trajectory can then be used as latent state variables by a simple linear regression/classification or a feed-

forward layer (known as readout map or output layer) to extract the salient information from transient

states of the dynamic filter and generate stable outputs. This is very similar to Kernel method [336, 70]

used in Support Vectors Machines (SVM) [385, 70], which use a mapping function to map data points

into a high-dimensional feature space and then linearly separate them into classes [240]. However, unlike
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SVMs, RC has an intrinsic temporal nature.

Amazingly diverse choice of dynamic systems can be used as reservoirs: RNN [241], gene regu-

latory networks (GRN) [183], an animal brain [276], or even a bucket full of water [97]. The reservoir

is traditionally a randomly generated RNN with fixed weights. Only the output layer is trained. Linear

nature of the readout map dramatically decreases the computational cost and complexity of the train-

ing. Nevertheless, it has been shown that the topology, weights and the other parameters (e.g. bias,

gain, threshold) of the reservoir elements can change the dynamics of the reservoir and thus affects the

performance of the system [175, 232]. Therefore, a randomly generated reservoir is by definition not

optimal.

Researchers tried to propose different measures and methods for generating and/or adapting reser-

voirs for a given problem or problem class [332]. However, there is none or very limited theoretical

ground for specifying which reservoir is suited for a particular problem due to the non-linearity of the

system [175]. Moreover, with only one positive result, in case of intrinsic plasticity [354], the devel-

opment of unsupervised techniques for effective reservoir adaptation remains an open research question

[332]. Another open question is the effect of the reservoir topology on the performance and dynamics

of the system [175]. There is some evidence that hierarchical and structured topologies can significantly

increase the performance [332]. Recently some deterministic formulations for generation of competitive

reservoirs were suggested [307, 308].

Once the reservoir is optimally designed, tuned, or trained (in an unsupervised fashion), given a

problem class, then different readout maps can be simply trained (in a supervised mode) for performing

different tasks [241]. Computational power of the reservoir can be increased by just adding more neurons

to the existing network [241]. The system is also very robust to noise [241].

RC is a very biologically plausible approach to RNNs [234, 233]. In Liquid State Machine (LSM)

technique, generation recipe of the reservoir (liquid) follows biologically motivated topologies and met-

rics. The fact that the same reservoir can be used for inference of different outputs or that there are

some deterministic architectures or some generic but not well-understood adaptations that can be used

for many problems [307, 308, 234] show other promising similarities with the mammalian brain charac-

teristics. RC also shows how temporal information can be represented spatially in the brain, providing

a temporal context for perception of the current inputs [234]. As a matter of fact, LSMs have also been

used as models of cortical microcircuits in cognitive and neuroscience studies [234] to explain processes

in biological brains. However, there are still some other biologically not very accurate features in RC for

example in terms of the accuracy of the neuron models used in RC (usually LIF neurons).

Hierarchical Temporal Memory (HTM)

Inspired by the structure and characteristics of the mammalian brain, Hawkins introduced a new model

of the brain called Hierarchical Temporal Memory [150] in his book “On Intelligence”. Although he

misleadingly claimed to solve “the global brain problem” [360] and made other questionable claims

about artificial intelligence, the brain, and consciousness [292, 360, 96], he proposed a model that both

explains many functions of the brain, and opens the way for creating new useful intelligent systems.
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He builds upon the thesis [273] that many different functions of the neocortex such as vision, hear-

ing, language, motor planning, etc. are based on a single common algorithm and structure. He proposed

a general algorithm that explains how brain regions work together to store previous experiences and

use them to predict and model future ones and their causes [150, 151]. Later, Hawkins and George

presented a formal model of the theory [119] based on a belief propagation model. They used a hier-

archical Bayesian network of sequence recognisers (based on Hidden Markov Model - HMM) in this

model. They implemented and successfully tested it on a visual perception problem [119]. They also

released a platform and a tool set [118] that allows other researchers and developers build upon their

system. This attracted considerable attention and new products were released based on the platform.

But the relation of the formal model to neural microcircuits in the brain was not clear and lower-level

functioning of the regions (HMM) and the communication means between regions were far from those

of the brain. Recently, a new model called HTM Cortical Learning Algorithms (CLA) was published

[281] that fills these gaps by explaining the relation of the model to brain microcircuits already known

to neuroscientists, and using a more bio-plausible neuron model with sparse coding. Very recently, they

also introduced a cloud-based service [280] that allows researchers to evaluate the new model for online

prediction and anomaly detection on temporal data streams.

The HTM model is bio-inspired and very biologically plausible compared to many other models

with comparable capabilities [281]. Importance of the temporal persistence of the causes (objects) [151,

150], utilising sparse coding and RNNs for spatiotemporal pattern recognition, and other biological

assumptions [281] are all examples of bio-plausibility of HTM. However, although a new neuron model

is introduced in the CLA that is, in many aspects, much more bio-plausible than aforementioned spiking

neuron models, it is in many other aspects heavily abstracted and simplified [281]. Current known CLA

implementations are also still limited to a single layer [281]. There are no results from the CLA published

yet.

2.4.5 Spiking Neural Networks Applications

Spiking neural networks are definitely still in their infancy and few real-world applications exist. This

may be partly due to lack of analytical methods for designing such networks. A potential method is

RC. In the academic context, RC has been used in temporal pattern classification and pattern generation,

time series prediction, nonlinear systems control, timing, routing, and memorising. RC-based speech

recognition systems shown good results, which compete with the state of the art systems [234]. Amaz-

ingly, in one case, the best performance was gained when a sound-to-spike coding front-end similar

to the inner ear was used [389]. A multi-layer ESN-based system is being developed for handwriting

recognition[234]. There are other stories of successful applications of RC-based systems in robotics,

financial forecasting, epileptic seizure detection, Brain-Computer-Interfacing (BCI), Liquid State Ma-

chines were used in robust classification of other temporal or spatiotemporal patterns [332]. RC-based

Spiking neural networks were also used in computational neuroscience and cognitive science [234].

Spiking neural networks are reported to be successfully used in clustering and classification of static

data as well [45]. They showed a better performance compared to K-means and SOM (Self-Organizing
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Map) in a number of real-life cases [45]. These networks are also useful in function approximation like

applying them to iterative finding of roots [166]. Artificial spiking neural networks can be also used in

neuroscience and studies on the brain. A comparison of different associative memory models including

spiking neurons can be found in [199]. Spiking neuron models were used in visual sensory systems.

Inference of depth from motion [416], image segmentation [69], robot vision [81, 109, 102] and many

others [52] are examples of recent applications in this area.

2.4.6 Spiking Neural Network Simulators

Neural networks are often implemented and simulated using software running on a digital computer.

However, implementing neural networks directly in hardware allows them to be massively parallel, fast,

and asynchronous. As Moore’s law has stayed valid for the last few decades, it is expected to realise

very large scale neural networks directly in silicon in near future. Many many different design and

implementations of hardware-based neural networks exist [268]. A large part of these are classified as

classical, feed-forward, non-spiking, or other types of artificial neural networks (e.g. MLP, RBF, SOFM,

etc.) [268]. Here the focus is on spiking neural networks. Many digital, analogue, and hybrid VLSI

designs and models for spiking neural networks have been proposed by different researchers [239, 268].

Analogue systems are more power-efficient compared to digital systems but they are not flexible for

research [113] and their design is difficult due to effect of noise and need for reliable non-volatile memory

[396, 268]. Moreover, spiking neural networks lend themselves to digital communication [44, 113].

Therefore, digital and mixed-signal spiking neural network designs have been more successful. In the

following sections, we focus on the digital designs and particularly those that can be implemented in

FPGAs.

Depending on the goals and objectives of the system, different implementations tackle the problem

differently. Usually when neural networks are implemented in special hardware it is to gain speed or

scalability, either for neuroscience studies or engineering applications.

Many designs are aimed at large-scale simulations of the mammalian brain, or part of it, with rea-

sonable speed, power consumption, flexibility and cost [114]. To this end, designers have turned to using

software based systems based on very powerful super computers that are either custom-designed for neu-

ral simulation or are general-purpose supercomputers that are suitable for this application. Markram’s

Blue Brain project on IBM’s Blue Gene is one important example of such endeavours to simulate very

bio-accurate large-scale models of the mammalian brain [247]. Sporting 8192 CPUs, IBM’s Blue Gene

machine can provide up to 360 TFLOPS. This computation power is used to simulate accurate compart-

mental models of neurons. Blue Brain is currently aimed at scales of 100,000 very complex neurons or

100 million simpler neurons [247].

Izhikevich’s simulation of a network of 1011 neurons with 1015 synapses (comparable with human

brain) on a Beowulf cluster of 27 processors running at 3GHz is another example [170]. As simulation of

one second of brain activity with 1ms resolution took 50 days on that cluster-computer, the system didn’t

have any application in neuroscience or engineering but provided valuable insights into the challenges of

simulating such large-scale models. At that scale, it is not even possible to store all the synaptic weights
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in the storage and this simulation was only possible by regenerating the weights and connections in every

time step. He later used a similar cluster of 60 processors to simulate 1 million multi-compartmental

neurons with half a billion synapses. It takes one minute to simulate 1 second of network activity with

sub-millisecond resolution on that cluster [173].

Furber’s SpiNNaker project [114] at the University of Manchester is another instance of efforts to

design large-scale (billion neurons) [287] software-based spiking neural network simulators. SpiNNaker

is based on a Torus 2D mesh packet-switch network of multi-processor network-on-chip nodes each

containing up to 20 ARM cores. Using embedded processors is based on the energy efficiency (very low

power consumption per MIPS of computation power) of these chips compared to high-end processors

such as those used in IBM’s Blue Gene. A special-purpose network-on-chip and router is added to

each chip that are optimised for conveying spike-event packets. Recent evaluations [287] confirmed that

SpiNNaker is scalable to one million cores with capacity to simulate one billion neurons with trillion

synapses in real-time.

A series of projects at the Technical University of Berlin leading to SPINN Emulation Engine [152]

are also good representatives of many efforts to design special hardware for large-scale simulation of

spiking neural networks. This series of project are mostly based on designing special chips for neural

simulation that can be added to standard PCs on accelerator boards. The next to last project in this

series is SP2INN [257] aiming at simulating one million LIF neurons with several million synapses on a

custom-designed VLSI chip. Mehrtash et. al. [257] stated that although their design gained a speedup

of 35 compared to a software-based simulator on previous generation of best workstations, the market

force behind the development of general-purpose computers makes it very difficult to compete with

software-based simulators. The performance and capacity of the general-purpose computers are growing

more or less according to the Moore’s Law and special-purpose VLSI chips cannot compete with their

flexibility and performance. The authors conclude that FPGAs are the solution for a reasonably flexible

system-on-chip (SOC) spiking neural network simulator [257]. Therefore, SPINN Emulation Engine

project [152] focused on using FPGAs and gained up to 30 times speedup compared to software-based

simulation on a state of the art PC. Their design, based on three Virtex II FPGA chips on the same board

is capable of simulating up to half a million non-leaky integrate and fire (IFN) neurons and 800 million

adaptive synapses. Hellmich also explained the memory requirements of such simulation systems and

how academic and commercial FPGA platforms (boards) do not provide such capacity and bandwidth

thus special design of the system with three FPGAs.

Researchers used Graphical Processing Units (GPUs) for simulating spiking neurons as well.

Bhuiyan et. al. [33] evaluated simulating a 2-level network of up to 5.8 million Izhikevich and Hodgkin-

Huxley point neurons for image processing. They reported a maximum speedup of 9.5x over the se-

quential implementation on the state of the art general-purpose processors for Izhikevich while parallel

implementations on Xeon multicore processors reached to 58x for 1 million Izhikevich neurons and

dropped to 17x for 5.8 million neurons [33]. However, GPU implementation outperformed all other

parallel implementations for Hodgkin-Huxley model with a consistent speedup of 119x compared to the
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sequential implementation while Xeon gained only a 80x speedup. They concluded that the ratio of pro-

cessing to communication (FLOPS/Byte) of the neuron model is a good indicator for which architecture

to choose [34, 33]. For neuron models with low FLOPS per Bytes (such as Izhikevich model) multicore

processor architectures similar to Xeon perform better than GPUs and for neuron models with high Flops

per Bytes (e.g. Hodgkin-Huxley) GPUs outperform other multicore architectures [34, 33]. In another

paper [32] they implement three different spiking neuron models in a hardware-software solution based

on a Xeon host and an accelerator with an Altera StratixTMII EP2S180 FPGA. They simulated a 2-level

network of up to 2 million Izhikevich neurons showing the same trend regarding the FLOPS/Bytes ratio

in GPUs [32]. Han et. al. [143] Investigated the performance of a cluster of GPU’s in simulating similar

2-level network of up to 9 million izhikevich neurons with similar results. They also noted the biological

implausibility of the network architecture used in their experiments. Fidjeland et. al.[99] Investigated

the simulation of more bio-plausible networks (fully-clustered and uniformly connected) of up to 40,000

izhikevich neurons with 1000 synapse each on GPUs.

There are also other rather ambitious projects such as FACETS [100] and SyNAPSE [75] based

on mixed-signal custom chips and utilising memristors for much larger or hyper-realtime simulations at

expense of much higher costs. Accelerators based on Digital Signal Processors have also been used for

spiking neural network simulation [242, 268]. Many many other designs similar to above examples exist

that can be found in surveys and reviews in [91, 218, 268]. In general, implementation of spiking neural

networks in digital hardware can be classified from different aspects:

• Parallelism: a spectrum of methods ranging from time sharing of one PE (processing element)

between all neurons and synapses, to dedicating one PE for each neuron or even for each synapse

• communication method: direct mapping (from the neural network into hardware), network-based,

memory-based, circuit switching, packet switching, etc.

• Storage: centralised, distributed or massively distributed

• Simulation method: event-driven or time-step

• Computation method: stochastic or deterministic

• Arithmetic method: parallel or serial

• Representation: floating-point, fixed-point or integer

• Programmability: Software-based, parametric, reconfigurable, or hard-wired

• Architecture: general-purpose computers, supercomputers, custom architectures based on embed-

ded processors, GPU-based accelerators, custom chip (ASIC) accelerators, DSP-based accelera-

tors, FPGA-based accelerators

Based on these choices, the resulting design may feature different levels of scalability, speed, flex-

ibility, fault-tolerance, capital cost or energy efficiency (running cost). A key factor affecting many
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other choices is the architecture. Using general-purpose processors provides the highest flexibility, pro-

grammability and ease with the lowest cost. However, it is not a scalable, fast and fault-tolerant so-

lution. Supercomputers can provide capacity for relatively large-scale and rather flexible simulations

at the cost of capital and energy efficiency [113]. It is possible to increase speed and fault-tolerance

of the supercomputer-based solutions. Custom architectures based on embedded processors (such as

SpiNNaker) have the same capital cost, speed and fault-tolerance of supercomputers with higher energy

efficiency and a better scalability [113]. Systems based on GPUs can not scale well when network size

and connectivity is increased due to their restricted communication and memory structures optimised for

graphical or general purpose computing [301, 287]. GPU-based solutions are not fault-tolerant and not

energy efficient to be scaled up in clusters [301]. However, they provide good flexibility in terms of the

neuron model [301, 99] and reasonable speedups over general-purpose PCs [99, 34, 33].

Custom chips, depending on the technology used and internal architecture and their interfacing can

provide high-speed, large-scale and energy efficiency, but they lack flexibility and fault-tolerance. But

the main issue with bespoke chips is very high capital cost for design and fabrication of these chips.

Even per unit cost of commercial neural chips with specific neuron models are high as they are not very

popular as CPUs, GPUs and FPGAs.

DSPs usually provide more cost effective solutions than custom chips and may provide a higher

level of flexibility in terms of neuron models. However, in almost every other aspect they are inferior

to custom chips. Using FPGAs for simulating spiking neural networks shows a broad range of different

results and trends. This is essentially due to their flexible architecture that can be used in each design

in completely different way. Generally, FPGAs are considered to be more energy efficient than GPUs

but not compared to custom architectures based on embedded processors [301]. They are not as fast as

custom chips of the same generation and need much more silicon area to implement the same logic as

custom chips. They are also stated to have routing limitations due to their inherent circuit-switched fabric

[301]. However, creative designs by different researchers and many examples show that there might be a

niche application for them as a platform for bio-plausible spiking neural networks. The following section

is dedicated to a review of different examples and approaches to simulating spiking neural networks on

FPGAs.

2.4.7 FPGA based Spiking Neural Networks

According to Johnston et. al. [182], spiking neural networks seem to be the most efficient class of

neural networks in terms of hardware resources on FPGAs compared to RBF (Radial Basis Functions)

and MLP (Multi-Layer Perceptron) neural networks. A plethora of different designs and implementation

exist for realising different types of spiking neural networks on FPGAs. Table 2.2 gives an overview of

important examples. Almost all these designs are based on time-step simulation technique. Event-base

simulation is possible only with neuron models such as SRM. However, the computational complexity

of the bio-plausible kernel functions needed for such neuron models is prohibitive [182]. A simpler form

of the model known as SRM0 relieves the model with the assumption of the kernels being independent

of the time. Nevertheless, kernel functions have significant effect on speed and silicon area [182]. One
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possible solution is to use lookup tables [140]. However, the size of the lookup table grows faster than

super-exponentially with the accuracy, and separate lookup tables are needed for each kernel and for each

processing element (PE) [140]. Some designs, however, use lookup tables or exponential kernel func-

tions for synapse models [315, 314]. Integration and neuron state update time-steps (time resolution) for

Izhikevich and LIF models range from 0.0625 to 1 millisecond. Shorter time steps are used when there

is a bottleneck in the communication infrastructure and designers try to mitigate the network congestion

by splitting each millisecond of neuron activity to many time steps and spreading the neuron activity

over time slots. Otherwise a time-step of 0.5 to 1.0 millisecond is assumed to offer enough accuracy. For

more detailed models such as Hodgkin-Huxley much shorter time steps are needed, which contribute to

the inefficiency of these models.

Leaky Integrate and Fire (LIF) is the most common neuron model used in these designs. This can be

explained with the relatively low computational complexity of this model [169]. Some designs [312, 374]

use simplified linearised versions of the LIF model to save silicon and time. A few designs, aimed

at higher bio-plausibility and neuroscience applications use Hodgkin-Huxley or other detailed models

[314, 401, 130, 315]. A very popular bio-plausible but computationally cheap model that is introduced

in the FPGA implementations recently is Izhikevich model [303, 269, 363]. Although Izhikevich model

can offer a very higher degree of plausibility with a little more computation, it needs more parameters

and state variables to be stored in (or fed into) PEs (Processing Elements), which affects the hardware

complexity, speed, and scalability of the system. A few designs incorporate learning into the hardware.

This is usually an unsupervised Hebbian learning or similar (STDP - Spike Time Dependent Potentiation)

technique that can be performed locally at the synapse or with the minimum global data or feed back. As

the learning process is occurring on a longer time-scale and mostly when a neuron fires, it is common to

use less hardware resources or even software solutions for it.
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A number of models are limited to fixed multi-layer feed-forward and biologically implausible

network connectivity architectures. Others assume a fully-connected topology, using up resources for

all the possible connections while only a fraction of those will be used after training the network. Few

others have fixed but biologically plausible topologies inspired by the brain structures. Networks are of

different scales ranging from few neurons and synapses to a million neurons with 52 million synapses.

All the large-scale designs are of sub-realtime speeds and hyper-realtime designs are usually small-

scale. Thomas et. al. [363] introduced a new architecture that allows simulating a fully-connected

network of1024 Izhikevich neurons with 118 times realtime speed utilising a pipelined neuron update

module and a systolic tree with local synaptic memories and dedicated memories for neuron states and

parameters. While this is an impressive achievement, the speed of the design directly depends on the

number of neurons, which is in turn limited by the FPGA hardware resources. This design particularly

relies on limited resource of shift registers and FPGA memory blocks for synaptic weights, neuron states

and parameters. Assuming a fully connected topology requires large number of weight memories and

integration units that might be not used in practice. They already used the largest chip in the Virtex-5

family for this design [363]. Assuming there are enough hardware resources available on the FPGA a

realtime speed would be expected for about 64,000 neurons.

As Furber noted [113], each neural system needs to balance its resource usage for three functions of

processing, communication, and storage. Processing is what happens mainly in neurons and synapses.

Storage mainly involves synaptic weights, neuron parameters and states such as membrane potential and

ion densities. Communication is needed for neurons to send spikes to each other. Different approaches

ranging from SIMD (Single-Instruction Multiple-Data) architectures to heavily pipelined and systolic

tree architectures are used for parallelisation of the processing. It is clear that using higher number of

PEs (Processing Elements) offers a higher performance but at the same time aggravates the problem

of communication between PEs. A shared memory or bus or other network architectures are common

solutions [330]. When one PE is used for each neurons, it is also common to use directly mapped

communication, which connects each neuron output directly to the inputs of the other neurons using a

dedicated signal (axon). Both techniques have scalability problems that affect the speed or connectivity.

Reconfigurable routing resources are also needed for flexible directly mapped connections. For storage,

using dedicated memories for synaptic weights, parameters and neuron states mitigate the bandwidth

problem. Using local memories for each PE using distributed block RAMs available in most of the

FPGAs is a successful approach [363]. Nevertheless, the number and size of these block RAMs are

fixed, limited and not necessary scaling up in proportion with the design requirements. Most of the

designs use Xilinx Virtex II as one of the popular reconfigurable platforms and Xilinx Spartan 3 as a

cheap solution. Since 2008 researchers started using newer families of FPGAs such as Virtex-4 and

Virtex-5 [122, 363].

Another important aspect of the designs is how calculations are performed in synapses and neurons.

This can be serial or parallel, and stochastic or deterministic. There are also deterministic bit-stream

computation methods that diverge from the traditional binary arithmetic. In the following, some of these
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computation methods and their usage in spiking neural networks in FPGAs are briefly reviewed.

2.4.8 Computations using stochastic bit-streams

The seminal work of Gaines [116] opened the path for design and implementation of different stochastic

computing systems on digital hardware. In stochastic computing, a continuous signal or variable is

represented with a random bitstream [50, 4]. The probability of seeing 1s in the bitstream determines the

current value of the signal or variable. Although it takes some time to sample enough bits to estimate the

probability for a bitstream, complex computations can be carries out using a combination of very simple

operations [50, 4]. For example an AND gate can be used to multiply two values in the range of [0, 1].

The probability of receiving 1s in the output of the AND gate is equal to the product of the probability

of 1s in two inputs of the gate. Figure ?? shows this in a very simple example with random bitstreams of

length eight.

01101010

10111011 00101010

X

Y

Z

P(X)=4/8

P(Y)=6/8 P(Z)=3/8
P(Z) = P(X).P(Y)

Figure 2.7: A simple example of computing product of two stochastic signals represented by 8-bit long random bitstreams

using a single AND gate.

Unipolar and bipolar are two popular coding formats [50, 4]. In unipolar format, a signal value

of x ∈ [0, 1] is represented with the random bitstream X of probability P (X = 1) = x while in

bipolar format a signal value x ∈ [−1, 1] is represented with the bitstream X where P (X = 1) = x+1
2 .

In [50, 4], Brown and Card focused on utilising these two formats for neural computations in digital

circuits and showed some of the benefits of this computation technique. Numerous other stochastic

formats can also be invented along with their respective computational circuits, each one with their

own advantages and disadvantages. But in general, stochastic computing has many advantages over

deterministic methods [50, 116]:

1. Simple hardware

2. Fault tolerance and robustness to noise

3. One-wire communication channel for each signal

4. High-clock frequencies due to simple hardware

5. Possibility of creating a trade-off between accuracy and computation speed with minimum hard-

ware changes.
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Fig. 7. Comparison of the three architectures (the SPSA architecture with 1, 5 and
10 PEs) with respect to the number of inputs and the number of neurons.

8 Comparison

The three different architectures have very different area, memory and time
scaling properties. An approximation of the requirements for the three different
designs is given in Tables 2, 3 and 4. To compare the designs, Figure 8 shows
the number of 4-LUTs per PE, the memory (RAM and FF) usage and the
number of clock cycles per time step needed for each of the three architectures
with respect to the number of inputs and the number of neurons. The others
settings are I = 12, N = 200, B = 10, S = 1, T = 2. The number P of PEs for
the SPSA case is set to 1, 5 and 10. Notice the logarithmic scale of the y-axis.

When increasing the number of inputs, LUT usage stays constant for SPSA,
but the number of clock cycles needed per time step increases linearly and is
significantly higher than the other architectures. Memory usage is quite high,
but LUT usage is very low. Notice that increasing the number of PEs has a big
influence on the number of clock cycle, but almost non on area and memory.
Similar results are acchieved when increasing the number of neurons. When
increasing the number of neurons, in the case of SPSA, the computing time
increasing because PEs are time-shared, while the other architectures have
fixed computing time, since neurons are directly mapped to dedicated PEs. For
SPPA, the memory requirement is quite high, but LUT usage and computing
time are limited, while PPSA uses much hardware, not much memory is needed
(because LUTs are used as memories) and operation is fast. Notice however
that when increasing the number of inputs, for a small number of inputs,

21

Figure 2.8: From [330], comparison of hardware resources and speed of different architectures (the SPSA architecture

with 1, 5 and 10 PEs) with different number of inputs (I) and number of neurons (N).

There are also some disadvantages: the inherent variance in estimation of the signal value and need

for longer integration periods for more accurate results. However, these can be usually mitigated to some

extent by pipelining and using higher clock rates due to the very simple hardware.

Stochastic computing has been used in many non-spiking neural network models (for example

[6, 178, 201]), and a few are designed specifically for FPGA implementation [14, 382, 249, 391, 421].

Pulse-mode neurons with stochastic arithmetic seem to be a very efficient choice (in terms of area) for

implementation on FPGAs [14, 249, 50, 252, 82, 382, 383]. Similar stochastic computation techniques

can be employed for spiking neural networks. This method can provide area efficiency with noise immu-

nity and some bio-plausibility but with lower accuracy or speed compared to deterministic models due

to the intrinsic trade-off between speed and accuracy of stochastic systems [14, 201, 50]. The accuracy

of the stochastic signals is proportional to the square root of the length of the bit stream [14, 50, 201],

which both affects the processing time and size of the counters and registers needed for storage and

evaluation of the signal values. There are also deterministic bitstream solutions [49] that mitigate the

accuracy problem to some extent with accuracy proportional to the length of the bitstream. In contrast,

normal deterministic binary arithmetic need more hardware resources for processing but much shorter

representations for the same accuracy.

2.4.9 Binary Arithmetic

Binary arithmetic can be performed in parallel (all bits at the same time) or serial (one bit at a time).

Serial arithmetic needs less hardware resources but offers lower speeds depending on the representa-

tion length. [329]. Schrauwen et. al. [329, 331, 330] has reviewed and evaluated serial and parallel
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arithmetic, serial and parallel integration (processing), their combinations and different interconnection

architectures for implementing spiking neural networks in FPGAs with their examples and concluded

that serial processing serial arithmetic (SPSA) is the most compact but the slowest and parallel process-

ing serial arithmetic (PPSA) is the fastest with hardware resources growing logarithmically. Figure 2.8

shows the results from their investigation of different architectures with different number of neurons and

inputs. Based on that premise, Schrauwen et. al [329, 331, 330] introduced a high-speed spiking neuron

model for FPGA implementation based on the LIF model with serial arithmetic and parallel processing

of the synapses utilising pipelining in a binary dendrite tree with 56 neurons achieving an impressive

speed of 2930 times faster than realtime simulation and estimated even higher speeds and scales with

better FPGA chips. They successfully tested the system for speech recognition using reservoir comput-

ing (RC).

One of the most compact implementations is Upegui’s [381, 374] who synthesised 14, 30, and 62-

synapse spiking neurons respectively in 17, 23, and 46 slices of a Xilinx Spartan II FPGA to explore

different network architectures using evolution. However, this design is based on a simplified LIF model

and uses a central memory for each neuron and does not scale well for large scale NNs as the number

of inputs to each neurons is fixed and limited. There are other similar or slightly different designs

that are not mentioned here but a good complementary coverage of spiking neural networks FPGA

implementations can be found in [242, 62, 167]. Although a large part of existing FPGA implementation

are for non-spiking neural networks [422, 250, 225], some of the techniques can be useful for spiking

neural networks as well. There are also designs based on networks of FPGAs [415]. More recent design

and implementations that also include evolution of the spiking neural networks such as [62, 272, 6, 381,

374, 312] will be reviewed in detail with other evolutionary SNN models on FPGAs in section 2.5.6.

2.5 Evolutionary Computing
Evolutionary Computation (EC) is a sub-field of Artificial Intelligence (AI), which can be loosely defined

as the set of biologically-inspired techniques that are population based, parallel, of a random nature, and

involving iterative progress, development or growth. Evolutionary Algorithms and Swarm Intelligence

are two important subsets of evolutionary computation. Evolutionary Algorithms are best known with

one of its popular techniques, Genetic Algorithms (GA) [160]. Other main techniques are Genetic Pro-

gramming (GP) [205], Evolutionary Programming (EP), and Evolutionary Strategies (ES) . Evolutionary

algorithms are known to be good meta-heuristic optimisation and search techniques where there is little

or no knowledge about the search space [12]. Since they do not make any assumption about the fitness

landscape, they are sometimes claimed to have a good performance for all problems. However, no-free-

lunch theorem states that there is no such algorithm that can consistently perform well on all problems

[403]. Bio-plausibility of evolutionary algorithms and empirical evidences shows that they can perform

very well on those problems that are also faced in nature. This does not mean that they are easy to design

or always fast. Need for designing a scalable representation and a suitable fitness function, their slow

convergence to useful solutions, and too many parameters to tune are only a few issues that make it hard

to use them in complex problems.
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Despite of these drawbacks, evolutionary algorithms were effectively and widely used for search

and optimisation in science, engineering and business [291, 107, 36, 68]. Using evolution to design

physical structures has created a new paradigm called Evolvable Hardware.

2.5.1 Evolvable Hardware

Evolvable Hardware (EH or EHW) lies at the intersection of biology, computer science and engineering

[127]. Generally speaking, Evolvable Hardware is automatic design and optimisation of any physical

structure using evolutionary algorithms. These physical structures can be anything from optical lens sets

to antennas, analogue filters or toddling robots. The term “evolvable hardware” was firstly used only

for evolution of electronic circuits, but nowadays, people use it for any kind of “hardware” evolution. A

recent review of evolvable hardware, in its broad sense, can be found in [231]. Haddow and Tyrrell also

have a very comprehensive recent review of the field [137] noting the definition and boundaries of EH,

the potentials and current challenges.

Some researchers name the final product “evolved hardware” when it is no longer evolving during

its life time. On the other hand, a real evolvable hardware can be an embodied adaptable system that

continues its evolution during its lifespan in its actual environment. This could be an instinct shift of a

robot in response to the changes in its environment or a self-repairing satellite controller trying to evolve

a circuit robust to different radiations and noises in space.

Evolvable Hardware can be classified in many ways according to the evolutionary algorithm, appli-

cation area, adaptation method, evaluation process, and even the hardware platform used. Here we focus

on its applications in design and adaptation of digital circuits and particularly spiking neural networks.

Evolving Digital Circuits

The most commonly used evolutionary algorithms for evolvable hardware are Genetic Algorithms (GA)

[160, 127, 131]. However, Genetic Programming (GP) [206] and Cartesian Genetic Programming (CGP)

[266] are also very popular. The whole process of evolving digital circuits by GA can be summarised in

figure 2.9. Each circuit is represented by a binary string called chromosome (or a set of chromosomes in

some cases), which comprises the genome of the potential solutions. The process starts with a popula-

tion of random genomes (or sometimes an evolved seed population from previous runs). Each genome is

mapped to a circuit through a direct or indirect mapping [127] process. In direct mapping, the chromo-

some explicitly describes the circuit at a switch, gate, or functional level. In contrast, indirect mapping

uses the programs or derivation trees, which are encoded in the genome, to develop circuits [127]. The

resulting circuits are evaluated according to the desired functionality using a fitness function. Circuits

can be simulated in software or configured on a hardware platform for evaluation. The terms “extrinsic”

and “intrinsic” are coined for these methods respectively [127]. The evaluation process involves feeding

all the possible input vectors (or a subset of them when too many possibilities) and comparing the circuit

output with the desired output to calculate a fitness score. After evaluation, a fitness score is assigned

to each individual circuit. Fitter circuits are selected randomly as parents with a probability related to

their fitness values. Less fit chromosomes are deleted from the population and new ones are reproduced

instead using fitter chromosomes as parents. A set of recombination (crossover) and variation (mutation)
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Figure 2.9: Summary of evolvable hardware process



2.5. Evolutionary Computing 66

operators (depending on the algorithm type and the genome representation) are used to reproduce a new

genome from parent genomes. This process iterates and continues until a satisfactory circuit evolves

or the stopping condition is met. This would effectively synthesise an evolved hardware solution. A

similar process can be used for evolvable or adaptive hardware that is evaluated in the actual application

environment and evolves through the product life-time. However, fail-safe mechanisms or other provi-

sions are required to make sure that system will perform acceptably without damaging anything when

an individual with a low fitness is evaluated.

Evolvable Hardware Platforms

Researchers used different reconfigurable devices for intrinsic evolvable hardware [156], including cus-

tom evolvable analogue and digital chips, Field Programmable Analogue Arrays (FPAA), Programmable

Logic Arrays (PLA), Field Programmable Gate Arrays (FPGA), POEtic chip [271] and even Liquid

Crystal Displays (LCD) [145]. Still, FPGAs are the most popular and de facto standard devices for in-

trinsic evolution of digital hardware [138]. A discussion of evolvable hardware platforms can be found

in [138]. Also a recent review of different EH platforms can be found in [137]. Here we focus on FPGAs

as the platform of this study.

FPGAs have been extensively used in evolvable hardware researches and applications. However,

they have also some disadvantages. The constraints they impose on evolution for protecting the device

from incorrect connections and damages, and unavailability of the configuration bitstream formats of

some new commercial devices are two major problems in using FPGAs as evolvable hardware platforms.

To tackle these problems, three general approaches were previously applied to evolvable hardware

on FPGAs. The first approach is to use an evolution-friendly FPGA (that cannot be damaged by con-

tention due to incorrect configuration, e.g. XC6216) with an open configuration bitstream format allow-

ing evolution to control the functional and routing resources of the FPGA at a low-level of abstraction

[364]. This is an effective approach. However, those kind of devices are discontinued and new FPGA

families are not evolution-friendly in that sense.

The second method is to design a virtual evolution-friendly FPGA on any FPGA [139]. This method

is very flexible and allows designing the right type of reconfigurable cellular structure for each applica-

tion but is very inefficient in terms of hardware resources [372]. Upegui reports that this method needs

4.5x more silicon area compared to the first method [372].

The third approach is to design the same cellular structure of the virtual FPGA and pre-route the

connections between cells, but instead of dedicating some hardware resources to configuring the virtual

FPGA, lock location and pin configurations of the LUTs, Muxs, and flip-flops in the cellular structure

to pre-specified sites on the FPGA and then use partial reconfiguration for switching the routing and

changing the function of each cell [377]. Undocumented configuration bitstream formats of new com-

mercial FPGAs makes this a challenging task. However, it is always possible to modify the contents

of a register, a RAM block, or a Look-Up Table (LUT) with a little bit of reverse engineering [372]. It

is sometimes also possible to use specific APIs or design tools (e.g. Xilinx JBits or FPGA Editor) to

make these changes in the configuration bitstream before each evaluation. However, this later method
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is much slower than the former method of difference-based partial reconfiguration both due to longer

reconfiguration times (if full reconfiguration is inevitable) and bitstream generation time. Xilinx APIs

for embedded processors on FPGA do not allow changing the routings but they provide functions for

changing the LUT and flip-flop contents. In this way, it is possible to use some of the LUTs as routing

resources that can be partially reconfigured by the evolution.

Evolvable Hardware Promises

Evolvable hardware has been claimed (and sometimes proven) to minimise cost, create adaptive fault

tolerant systems, able to explore new design spaces and synthesise implicitly defined circuits [127].

Evolvable hardware can be used to reduce the design or manufacturing costs by optimising a circuit or

even automatic design of the circuits. Evolutionary algorithms have been used in routing [253] and layout

[125] design of circuits. Successful application of evolvable hardware for optimising clock skew in chip

manufacturing process leading to about 50% improvement in yield and evolutionary design of a fast

low-cost controller are reported by Higuchi et al. [155, 185]. Adaptive evolvable hardware applications

were reported in data compression [322], audio-visual filtering [335, 392], adaptive hashing [71], and

ATM network scheduling [217, 227] and many others [137]. Fault tolerance has been demonstrated in an

evolutionary robot controller [154]. Lohn et al. [230] also showed that evolution can recover the routing

and logic of the circuits at the same time.

Sometimes evolvable hardware is used to synthesise circuits from an implicit high-level behavioural

description or input-output examples. Pattern recognisers and classifier systems lie in this category.

Input-output example vectors are given or can be obtained from behavioural description of the circuit.

They are used to evaluate behaviour of the evolving circuits in form of a fitness function. Digital circuits

can be evolved at the gate level or functional level. Higuchi et al. explored both of these areas in image

recognition, classification of two intertwined spirals, the Iris data set, and 2D image rotation [418].

In traditional design, digital devices are used in the same way that they are designed for. But

by relaxing this constraint, evolution is able to explore other innovative ways to use them. Evolution

is able to exploit even parasitic properties of the components to satisfy its requirements. Thomson’s

famous experiment of intrinsic evolution of a tone discriminator on a reconfigurable digital device [364]

demonstrated how evolution uses secondary properties of the digital components. In another experiment,

he evolved a low-frequency (4 kHz) oscillator using simulated digital gates with random delays between

1 and 5 nanosecond. A recent review of EH success stories and potentials can be found in [137].

Evolvable Hardware Challenges

With all the success, advantages and potentials, EH is also facing serious challenges. One of the major

problems with evolvable hardware is its scalability. Much longer chromosomes are needed for describing

complex circuits, which implies longer evolution. Moreover, the fitness landscape for digital hardware

evolution is generally very epistatic and rugged [129]. That means lots of local minima and deceptive

clues for the evolution. Researchers are trying to devise more scalable representations to solve this prob-

lem. Koza [206] proposed GP (Genetic Programming) with Automatically Defined Functions (ADF)

that may bring modularity and reuse to evolvable hardware. Torresen [367] demonstrated that dividing
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the whole system into single-output subsystems can help evolution to solve more complex problems.

Miller et al. introduced CGP (Cartesian Genetic Programming) [266, 387] and then ECGP (Embedded

CGP) [398, 399, 265] and showed their superiority over GP for some problems. Alba et al. [5] pro-

posed a parallel hybridisation of simulated annealing and evolutionary algorithms. Vasicek et al. used

a SAT solver for formal verification of digital circuits solver and given a perfect initial solution were

able to evolve simpler circuits and effectively optimise the silicon area needed for the function [386].

This method assumes that a perfect solution already exists. However, the scalability problem is still an

obstacle in evolution of complex digital systems [365]. Gordon showed that developmental processes

could be a solution to scalability problem in evolving digital hardware [129]. Developmental systems

are reviewed in section 2.5.3. There are also other challenges such as fitness evaluation that involves an

intractably large number of input vectors, measuring the feasibility factors of the solutions, and putting

the solutions in realistic environments for evaluation and measurement [137]. A relatively recent review

of these can be found in [137] and [127].

2.5.2 Evolving Neural Networks

It is also possible to use evolutionary algorithms to design, optimise and adapt artificial neural networks

(sometimes known as Neuro-Evolution or NE [117]).

There are a few main advantages compared to traditional approaches of designing and training neu-

ral networks [101]. Describing a general performance function is usually easier and more flexible than

defining an error or energy function (used in learning algorithms) particularly when dealing with recur-

rent neural networks. It is also possible to coevolve different properties of the neural networks at the same

time, or use evolution and learning algorithms together, or even evolve new learning algorithms. These

approaches have been pursued in three different ways (or a combination of them): evolving network

architectures, evolving weights (evolutionary learning), and evolving the learning algorithms [417]. Ex-

periment on different classification problems showed that evolving only the synaptic weights is a better

algorithm than back propagation [103]. A comprehensive review of different methods of neuro-evolution

can be found in [417, 103, 101]. In the following section we focus on the most important methods of

neuro-evolution of RNNs.

Evolving Recurrent Neural Networks

The real power of neural networks (and particularly spiking neural networks) can be fully demonstrated

when they are used in a recurrent network customised to a specific problem. However, no systematic

and effective approach for designing recurrent neural networks for a given problem is proposed yet

[417]. Therefore, some researchers pursued an evolutionary approach to design of the recurrent neural

networks [417, 117]. These methods can be classified in different ways. One of the important aspects in

classifying these methods is the representation or the genotype-phenotype mapping. It has a significant

impact on efficacy of the genetic operators in finding solutions. Floreano et. al. [101] classified the

current representation methods into: direct, implicit, and developmental. In direct representations there

is a direct mapping between the genes and the properties of the neural network. For example values

stored in the genes may directly represent the weights of the network connections. Finding the right
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scaling for representing the weights and parameters is the first problem with a few solutions in the

literature (such as dynamic encoding or centre of mass encoding) [101]. A more major problem is the

issue of individuals with “competing conventions” [326]. This means that the same basic topology and

functionality can be described with different order of weights (and consequently different genotypes)

leading to unsuccessful crossovers or competing subpopulations. Premature convergence is another

classical evolutionary algorithm problem that quickly reduces the diversity of the population and slows

down the progress [101].

Sometimes, instead of synaptic weights, only the parameters controlling the neural network (such

as number of neurons, probability of the connections, weight distribution, and activation functions) are

evolved. This parametric method for evolution of neural networks is called indirect encoding [417].

Stanley and Miikkulainen devised an effective way of evolving topology and weights of increasingly

complex recurrent neural networks called NEAT (Neuro-Evolution of Augmenting Topologies) [350]. It

starts from a population of very simple topologies (no hidden neurons) and evolves by adding new nodes

and connections using mutation, keeping track of the chronological order of the innovations as a solution

to the “competing conventions” problem to allow useful crossovers between chromosomes of different

lengths. It effectively uses these chronological gene markers to apply complexification and speciation

principles of natural evolution. NEAT and its extensions (rtNEAT [350], HyperNEAT [349], and others

[117]) was successfully used in a number of complex control [350, 352, 346], and pattern generation

applications [347]. NEAT and its extensions are one set of the state of the art techniques in neuro-

evolution. While they have many bio-inspired features and are effective in practice, they are not very

bio-plausible. The chronological marks on the genes and the direct gene to neuron/connection mapping

are two examples of such biologically implausible features. HyperNEAT [349] that uses an indirect

mapping from genes to connections is a more bio-plausible method and will be discussed in more detail

in section 2.5.5.

Durr et. al. [86] introduced another implicit encoding called Analog Genetic Encoding (AGE).

AGE can be used for evolving any network and has been used for neuro-evolution. AGE is based on a

more bio-plausible approach to neuro-evolution. It uses a variable length chromosome of a user-selected

alphabet. Specific short strings represent tokens that mark start, end and regulatory regions of the genes

along the chromosome. For, neuro-evolution, each valid gene starts with a device token then input ter-

minal regulatory region, then a terminal token, output terminal regulatory region and ends with another

terminal token. Valid genes are extracted from the chromosome the interaction between regulatory re-

gions of the terminals of the neurons specifies how they will connect. Almost all the bio-plausible genetic

operators such as deletion, insertion, substitution, duplication, transposition, and homologous crossover

is easily applicable on AGE chromosomes. It also allows for noncoding regions in the chromosome.

Durr et. al. [86] also showed that AGE can outperform NEAT on specific problems. However, it is

clear that AGE needs more computation for decoding the chromosome, larger populations and restarting

compared to NEAT. Although AGE has a much more plausible approach towards genetic operators and

representation it is still far from being a bio-plausible neuro-evolution technique as it directly uses the
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gene regulatory network described by the genotype as the neural network.

Other mixed methods of evolution and learning have been also studies. For example, evolutionary

algorithms were used among other methods for optimising the performance of the reservoirs [384, 232],

which led to some positive results. Chatzidimitriou et. al. [63] used NEAT to evolve echo state net-

works that are trained and evaluated for a problem. Evolino [327] is another example of evolving

recurrent neural networks. There are also a plethora of other studies that mix two concepts of evo-

lution and neural networks. Examples, surveys and reviews of this type of studies can be found in

[417, 351, 79, 101, 103, 63, 117, 348]. Evolving artificial neural networks with Cartesian Genetic Pro-

gramming (CGP) has recently ben shown to be more effective than many other neuro-evolutionary meth-

ods [193, 1, 244, 369, 194]. However, much work is still needed to evolve topologies, structures, and

regularisation/adaptation/learning algorithms at the same time. To make this happen, the evolutionary

algorithm must be free to change the size, topology, structure, node properties, and learning algorithm of

the RNN or any part of the RNN. An evolutionary system needs emergent properties such as scalability

and modularity to be able to work effectively on these different hierarchical levels at the same time. De-

velopmental processes seem to be the nature’s solution to these problems. What makes developmental

systems special in the context of neuro-evolution, is their ability to grow and regenerate the network in

situ that can bring adaptability, scalability, fault-tolerance and self-repair to these networks. The follow-

ing sections provide a brief overview of the developmental systems with focus on their application in

evolution of neural networks.

2.5.3 Developmental Systems

Development is the natural process of cell-division, differentiation, apoptosis, growth and morphogenesis

[404, 211] that turns a single zygote cell into a mature organism and maintains it in a healthy structural

and functional condition. In a sense, development can be seen as the machinery that determines the

behaviour of an organism either directly or indirectly through generating some functional structures

(such as nervous system). Development is a parallel, decentralised, and self-organised process [103].

Rust et al. count variation, adaptation, regulation, modularity, and robustness as emergent features of

biological development [321].

As a more bio-plausible approach to evolutionary computation, artificial development (or compu-

tational development) is an abstracted model of biological development believed to be able to introduce

emergent properties such as scalability, adaptability, robustness, self-organisation, modularity, growth,

regularisation, regeneration, fault-tolerance, and self-repair to the products of evolutionary algorithms

[103, 261, 211]. Such systems that use evolutionary algorithms and artificial development are some-

times called Evolutionary Developmental Systems or Evo-Devo systems, which come from the literature

in biology [298].

Several mathematical and computational models of development have been introduced by re-

searchers. Among them, Turing’s Reaction-Diffusion systems [368], Meinhardt’s Activator-Inhibitor

models [258, 259], Kauffman’s Random Boolean Networks [189], and Lindenmayer systems (L-

systems) [221] have been studied extensively and applied to different domains [211].
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Rewriting Systems

Lindenmayer systems (L-Systems) [221], its variations (such as bracketed, stochastic, parametric, and

context-sensitive L-Systems), and similar rewriting systems are used for developing 1,2 and 3 dimen-

sional arrays [222], which can be then interpreted into 1,2, and 3D shapes and structures, plants, graphs,

circuits, hierarchical structures, and modular networks [296, 103, 260, 40].

Context-sensitive parametric bracketed L-Systems can be used to imitate cell signalling, regulation

and protein diffusion [103]. One limitation of the rewriting systems is that modelling cell migration needs

an external and implausible process (deleting one symbol and inserting it at another location) [103]. Cell

migration can be modelled much easier in detailed models. Rewriting systems were originally devised

for simulating the biological developmental processes in self-similar organism such as platens and they

are not easy to design.

Cellular Systems

The cell is the fundamental building block of life. Each cell is separated from its environment and

other cells by a membrane (and an extra cell wall in some cells) that defines its boundary and controls

the matter and energy exchange with the environment. Each cell also has a genome that provides the

instructions for functions and development of the cell and in turn maybe a whole multicellular organism.

The densities of different chemical molecules inside the cell determine its state and the molecules that

pass through the cell membrane can be used for signalling and nutrition [404]. Artificial cellular systems

have a set of variables presenting the state of each cell [103]. A number of equations, instructions or

other rules define the state transition function, describing how the cell state evolves through time. A set

of rules also define how the cell communicates with its environment and other cells [103].

Cellular Automata (CA) is the simplest form of artificial cellular systems. It was first introduced

by von Neumann in [393] and then studied extensively by Wolfram [402] and others. It is essentially a

1,2, or 3 (or more) dimensional array of cells with a discrete cell space of arbitrary neighbouring (grid,

honeycomb, etc.), a finite state set, a discrete time variable, and a state transition function that defines the

next states of the cell given the current state of the cell and states of a limited number of its neighbours.

There are also variations of CA such as asynchronous, probabilistic, and non-homogenous CAs. In a

non-homogenous CA, the state transition function can be time or space dependent. CAs have been used

for modelling development among many different processes in nature and technology [103].

It is also possible to use finer resolutions or continuous time and state variables, signalling, and

diffusion, or different levels of cellular systems that work together to model biological cellular systems

more accurately [103, 211]. Cellular structures can be also used effectively in routing signals both in

digital [364, 377] and analog [92, 93] systems. As diffusion and signalling are significant processes

in biological development, their bio-plausible simulation is important in this study. Therefore, some

diffusion models are reviewed here.

Diffusion Models

Bio-inspired multi-cellular developmental systems usually need to model the diffusion of proteins and

other chemicals. These models can be analytical or numerical. In an analytical model, the concentration
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of a protein can be calculated as a function of the position of all the protein diffusers (in vicinity of

the point in question) and their strength, the diffusion coefficient of the protein in the substrate, and

the decay rate of the protein. For example Kumar et. al. model the contribution of each diffuser to

the concentration at a certain point (C) with Euclidian distance d from the source (diffuser) using an

equation of the form [210]:

C = Cs · e
−d2

2D2 (2.15)

where D is the diffusion coefficient and Cs is the concentration at the source, resulting in a Gaussian

radial base function.

However, Rust et al. model diffusion using an equation of the general form [321]:

C =
Cs
dω

(2.16)

where ω ∈ {1, 2, 3, 4} is the decay factor (typically 1). Other models exist that also take time into

consideration [89].

In numerical models the differential equations governing the process of diffusion is approximated

using the Euler method by discretisation of time and/or space. For example Miller used the update rule

of general form [261]:

Ct+1 =
Ct
ω

+
1

|N |ω
∑
i∈N

Cit (2.17)

whereCt is the concentration in a cell at time step t andCit , i ∈ N are concentrations in the neighbouring

cells.

Deterministic or stochastic computation in form of parallel or serial arithmetic implementations can

be used to approximate such an update rule [15]. Sometimes very simplistic degenerated forms of this

update rule are used to minimise computing resources. For example Roggen used this update rule [311]:

Ct+1 = max
i∈N

(Cit − 1, 0) (2.18)

in a hardware-based implementation to avoid division operations and multiple additions.

These models are different in terms of bio-plausibility, computational cost and providing the

concentration gradient information with a clear trade-off between computational complexity and bio-

plausibility.

Cellular Developmental Systems

Cellular developmental systems are similar to context sensitive rewriting systems in many ways. Their

state transition functions of neighbour states are similar to rewriting rules. Cell states and cell space in

CA resembles the symbols alphabet and cells in rewriting systems. However, in CAs and most of the

cellular systems the cell space and number of cells are predefined and fixed, while rewriting systems are

capable of creating new cells and deleting old ones. Although this can be an advantage of the rewriting

systems, it also makes it quite challenging to implement them in a parallel piece of hardware with limited

resources. CAs (and to some extent other cellular systems) ,on the other hand, are very easy to implement

in parallel hardware and particularly in FPGAs.
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Biological development can be modelled at different levels of abstraction. One extreme is to look

at very high-level dynamics of organ formation or cell duplication. Rewriting systems such as Lin-

denmayer systems (L-systems) [221] are very good examples of such high-level approaches. It is also

possible to delve into the details of the biological development process looking for the mechanisms and

structures and imitate them to achieve a higher level of bio-plausibility. Multicellular systems of gene

regulatory networks (GRNs) with protein folding, diffusion, simulated chemistry, and gene expression

and regulation, are examples of the later extreme. There is a spectrum of different models between these

two extremes, which have been developed and applied to different applications with a diverse degree

of success and performance match [103, 211]. Here we focus on artificial evolutionary developmental

(evo-devo) models with an emphasis on bio-plausible models and those that are useful in developing

circuits and particularly neural networks.

2.5.4 Evo-Devo Systems

Not only evolutionary computing can be utilised to synthesise developmental processes in a more effec-

tive way than synthesising them “by hand”, but also, as many believe (for example [17]), developmental

systems can also bring evolvability, and scalability, among other features, to evolutionary computing.

Moreover, it is much more a bio-plausible solution to evolutionary computing than direct encoding of

the phenotype.

Although there is no clear-cut borderline for what is considered to be an evo-devo and what is just

an evolutionary algorithm, all the researchers unanimously consider a direct mapping from genotype

to phenotype a sign of a non-developmental evolutionary system. Direct encoding aside, Bentley and

Kumar [23] differentiated the developmental processes of evo-devo systems into three different classes of

external, explicit, and implicit encoding. The first group consist of the indirect mapping that are designed,

fixed and not evolved. The developmental process in the other two groups are evolved. Evo-devo systems

with explicit encoding are those that evolve a data structure of instructions, which explicitly specify the

developmental process. Evo-devo systems with implicit encoding, on the other hand, are those that use a

set of rules (instructions) with no or a minimum predefined structure, which can be dynamically activated

in parallel based on the context and environmental factors.

In a somewhat similar way, Floreano et. al. [103] classified evo-devo systems in the following four

categories:

1. Parametric evo-devo systems with a fixed but nontrivial developmental or generative process that

maps a set of evolved parameters from genotype to the phenotype: In this class of evo-devo sys-

tems, the developmental process is always fixed and not evolved. This will leave the very difficult

problem of synthesising an evolvable and useful developmental process to the designer of the

evo-devo system.

2. Evo-devo systems that iteratively execute developmental modifications in a fixed order for a fixed

number of times while the modifications that are executed repeatedly are evolved. Parallel rewrit-

ing systems are good examples of this category with fixed rewriting cycles that are always exe-
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cuted in the same order while the axiom and rewriting rules are defined by the genotype and can

be evolved.

3. Evolutionary developmental programs that evolve programs using a set of fixed instructions or

functions. Here, the order and interrelation of different instructions can be evolved while the

basic instructions are fixed. Cellular Encoding [133, 132], HyperNEAT [349], and using GP and

CGP for evolving developmental programs are good examples of this category that use a fixed

set of basic functions and terminals but evolve graphs that defines how these basic function work

together to develop the phenotype. Applications of Cellular Encoding, GP and CGP in evo-devo

neural networks is discussed in more detail in section 2.5.5.

4. Evolutionary developmental processes: These are bio-plausible methods that allow evolving both

the basic mechanisms and the general process of the developmental system and cannot be classified

in any of the above categories. These are generally more detailed and less abstracted models with

higher computational complexities. They generally have the potential for better scalability and

evolvability but they also usually require evolving the developmental process from scratch that

means much longer runtimes for evolutionary algorithm. However, using already evolved seed

populations instead of random initial populations to provide the basic and generic mechanisms

of development may mitigate this problem. They also allow for interaction of the environment

with the developmental process leading to phenotype plasticity [277] during the lifetime of the

individual that can bring other adaptive features such as fault-tolerance, regeneration, and self-

repair to the evo-devo systems.

After Bentley and Kumar introduced the term “Embryogeny” [23], Stanley et. al. used the term

“Artificial Embryogeny” in [351] referring to evo-devo systems and acknowledged the importance of

both evolvability and feasibility of the developmental systems in the evaluation and selection of evo-

devo models. They introduced a taxonomy of evo-devo systems based on the following five dimensions

that are also very useful in evaluating the bio-plausibility of the evo-devo systems:

1. Cell fate: How many different methods can be used in the system for determination of the role

of a cell in the matured phenotype. Systems with few determination methods are residing at one

extreme of this dimension and systems with many methods (as in natural evo-devo systems) are at

the other end.

2. Targeting: The way that each cell finds other cells that need to be connected (this is particularly

important in neurodevelopment as neurons need to connect to each other in a controlled fashion).

This can be done by targeting cells that are at a position relative to the source cell or by using

specific chemical markers of the target cells. At one extreme of this dimension are systems that

only use relative targeting while systems at the other extreme can only use specific targeting.

Natural evo-devo and bio-plausible systems reside in the middle as they can use a mixture of both

methods.
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3. Heterochrony: How the genotype encoding allows evolutionary changes in the timing and order of

the events in the development process. At one extreme of this dimension are systems that are not

flexible and there is no way to change the steps or order of the developmental events. At the other

end are natural evo-devo systems that can change the order or entirely skip some development

stages by small changes in the genome.

4. Canalisation: That is evolution of robust developmental mechanisms that are not sensitive to mu-

tations and can buffer the effect of mutations. At one extreme of this dimension reside systems

with precise developmental processes that are sensitive to the mutations. On the other extreme are

natural evo-devo systems that are able to utilise stochasticity, resource allocation [351], overpro-

duction/apoptosis, self-regulation, and other means to buffer the effect of the mutations.

5. Complexification: This is the process of evolution starting from simpler phenotypes and incre-

mentally add more features and details to the phenotype by using longer genomes. Variable length

genomes, neutral gene-duplication mutations that can lead to two genes with different roles in the

later generations, synapsis [351], and speciation are crucial for complexification. At one end of

this dimension are the systems with fixed-length genomes with no complexification. At the other

extremes reside systems with variable length genomes that are able to utilise useful crossovers,

synapsis, and speciation.

They also mentioned a few different abstractions in the current models that made artificial evo-devo

systems computationally more efficient than bio-accurate models:

• Cartesian coordinates for space (as in HyperNEAT and CGP)

• Using the real time in the developmental process as a regulating mechanism

• Historical marking of the genes to facilitate artificial synapsis (as in NEAT)

• Using a prepared canvas of cells for the development process to start with (as in most of the cell

chemistry systems)

They also differentiated these dimensions and abstractions as design decisions from emergent prop-

erties and performance measures such as possibility of evolving complex structures, modularity, gene

reuse, symmetry, and efficiency. Stanley et. al. [351] also proposed a few benchmarks for evo-devo

systems such as evolving symmetry, a specific shape, a specific connectivity pattern, and a simple con-

troller.

The classification of the current evo-devo systems by Stanley et. al. in [351] based on the above

taxonomy does not include many new models and the ones that are included are not deeply analysed,

and their full potentials are not appreciated. Moreover, those five dimensions are not covering all aspects

of bio-plausibility of evo-devo systems (e.g. online development). Nevertheless, it clearly shows a

few trends in the bio-plausibility of the current models. Their classification shows that although both

grammar-based (rewriting systems) and cell chemistry systems are potentially able to close the gap
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between the artificial and natural evo-devo systems in most of these five dimensions, the cell grammar-

based systems were not very bio-plausible and rich in cell fate and canalisation dimensions; speciation

and synapsis are usually neglected in the complexification dimension; grammar-based systems tend to

use specific targeting while cell chemistry are more inclined towards relative targeting.

Two major issues in developmental evolutionary systems are evolvability and scalability. Many

artificial evolutionary systems suffer from stagnation that limits their evolvability. They get trapped

in local minima and can’t find any progressive path to fitter solutions through subsequent mutations.

Neutral networks [343] and gradual complexification of the evolving systems [245, 350], and speciation

[243] seem to be possible solutions to this problem. Scalability is another emergent property of the

developmental processes in nature. Using an example of overhanging blocks, Devert [78] showed that

sometimes an explicit iterative development process is necessary for a scalable evo-devo system. Gordon

[128] proposed an evo-devo system based on a simple cell chemistry (Outer Totalistic protein rules) for

evolution of digital circuits and showed that a developmental process can in fact enhance the scalability

of evolutionary digital circuit design.

Another important aspect of the evo-devo systems is the distinction between developed and devel-

oping systems. Similar to the difference between evolved and evolving systems, a developed system will

eventually mature and stop developing and the genetic code and the developmental process will have no

influence on the functioning of the product. On the other hand, in a developing system the developmental

process continues to run during the lifetime of the individual that can play a major rule in the adaptivity

and maintenance of the system. Roggen et. al. [311] called these systems online developmental systems

and suggested that many potentials of evo-devo systems lie in this area. They, however, admitted that

using offline development can save computational resources [311].

Backed by such insights, many researchers proposed richer and more bio-plausible models of evo-

devo systems. Apart from those evo-devo neural network systems that will be reviewed in more detail

in the next section, some of the important and relatively bio-plausible evo-devo systems with general

applications are briefly reviewed here.

Liu, Tyrrell, and Miller [223, 224, 261] proposed an evo-devo model, based on cell chemistry using

CGP for evolution of the cell dynamics, and applied it first to the french flag benchmark problem [261]

and used it later for intrinsic evolution of digital circuits [223, 224]. Their model successfully exhibited

fault tolerance to transient damages. In [223] they conjectured that using cell chemistry for long-distance

signalling is necessary for achieving robustness in the solutions. Roggen et. al. [311] proposed an

online distributed developmental system suitable for multicellular systems in hardware based on a simple

cell chemistry and applied it to robust evolution of different types of patterns (uniform, checkerboard,

Norwegian Flag, complex CA-generated) to show its scalability and robustness.

Bentley introduced Fractal Gene Regulatory Networks (FGRNs or Fractal Proteins) [25, 24], which

uses a fractal-controlled genotype to GRN mapping. It is based on a variable-length genome of genes

with two regions. The first region, cis-regulatory site, determines the conditions of the gene expression.

The second region, coding region, encodes the protein that can be synthesised by this gene. In Fractal
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Proteins system, each protein shape is defined using three real numbers, describing a square subset of

the Mandelbrot set. Different protein shapes interact with each other in an artificial chemistry to result

in a merged protein shape that will then interact with the cis-regulatory region of each gene (also coded

as three real numbers and a couple of thresholds values) to give rise to a gene expression probability.

When a gene is expressed, the concentration of the protein encoded in the coding region is increased

by a function of the concentration of all proteins interacting with the cis-regulatory region of the gene.

The probabilistic nature of the gene expression, complex shapes of the fractal subsets, and non-linear

interactions of the protein shapes all seem to contribute to interesting properties of this bio-inspired

system. Bentley compared human-designed programs, GP evolutionary programs, and FGRN develop-

mental evolutionary programs facing damage and showed that the FGRN developmental program can

exhibit graceful degradation [27]. Fractal Gene Regulatory Networks have been successfully applied to

function regression and evolving controllers for robots [26, 419], single and joint pole balancing [208],

and evolving algorithms for approximating π [207]. Fractal Gene Regulatory Networks [25] showed

a high level of bio-plausibility and evolvability [24]. Using very rich domains of fractals for imitating

the protein-protein and gene-protein interactions, dynamic indirect mapping of the genotype to the GRN

that then controls the dynamics of the cell is much more bio-plausible than other methods using neural

networks or GP for control of the cell dynamics.

Apart from cell chemistry and grammar-based developmental systems, there are also generative sys-

tems that abstract the explicit process of development and growth through time into a time-independent

function. Methods such as CPPN (Compositional Pattern Producing Networks) [347] do not need to sim-

ulate all the developmental events through time to generate a pattern in space thus can be classified as an

abstraction of the development using a generative process. CPPN-NEAT can be used to evolve a network

of mathematical functions with co-ordinates as inputs and structures attributes in that coordinates as out-

puts. CPPN has a few advantages over developmental systems: computational efficiency, definition of

structures in infinite resolution, perfect damage recovery, and possibility of using user-defined biases.

Some adaptive features of online development, such as robustness and regeneration, can be produced

by iterating the CPPN so that it reacts to the changes in the environment. However, it lacks a mecha-

nism for using local environmental information other than what is already generated by CPPN itself, as

demonstrated by Devert in [78]. Some also argue that the sequential nature of an explicit developmental

process can provide evolution with useful fitness information during development [203].

A plethora or different evo-devo models for different applications have been proposed by differ-

ent researchers. Famous other examples of grammar-based and rewriting evo-devo systems are Jacob’s

system for evolution of fractal shapes [174], Kitano’s matrix rewriting systems used for evolution of neu-

ral networks [197], Koza’s tree-based rewriting system for evolution of 2D shapes [204], and Hornby’s

system for evolving 3D shapes [162]. Among cellular and cell-chemistry evo-devo systems based on

diffusion of morphogens, Astor and Adami’s [10] and Hampton and Adami’s [142] models for evolv-

ing neural networks, Bentley and Kumar’s Implicit Encoding for evolving 3D shapes [23], Bentley’s

Fractal Proteins [25] for evolving GRNs (Gene Regulatory Networks), Bongard and Pfeifer’s Artificial
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Ontogeny[48] for evolution of embodied agents, Eggenberger’s differential gene expression system for

evolving 3D organisms [88], Kitano’s model of neurogenesis [198], and Miller, Harding and Banzhaf’s

Developmental Cartesian Genetic Programming [263, 146] and Self-Modifying CGP [146] used in evo-

lution of flags and in many other problems [146] are particularly notable. In the next section focus is on

the evo-devo systems used for evolving neural networks.

2.5.5 Evo-Devo Neural Networks

For tackling the challenging task of evolving complex and scalable neural networks and artificial brains

many researchers turned to evo-devo systems. Therefore a major part of the evo-devo systems are either

designed for evolving neural networks or have been applied to this problem. The neural network evo-

devo systems can be categorised into four different types of neurodevelopment: Abstract, Parametric,

Explicit, and Implicit.

Abstract Neurodevelopment

The first and most abstracted model of evo-devo NN Systems use an implicit development process that

abstracts out the iterative, time-dependent, distributed and local processes of development replacing it

with an evolvable function of space (and sometimes time and local variables) describing the connectivity,

parameters, and other properties of the neurons and the network, based on their distribution in space.

HyperNEAT [349] and its extensions (Adaptive HyperNEAT [304], ES-HyperNEAT [305], HyperNEAT-

LEO [388]) are representatives and the state of the art techniques in this group.

HyperNEAT uses NEAT with its historic marking of genes for synapsis, speciation and gradual

complexification to evolve CPPNs (Compositional Pattern Producing Networks) [347] with 4 inputs as

x,y coordinates of the pre and post-synaptic neurons. Each output of the CPPN can then give the weight

of a synapse between two neurons in each layer of the network. Adaptive HyperNEAT [304] allows to

evolve NN learning rules by using CPPNs as an evolvable function of previous synaptic weight, neuron

locations, and activities. This shows how HyperNEAT can be extended to use local data to abstract local

developmental processes using a function. However, as the authors noted, there is still a tradeoff between

the generality of the model and the computation cost [304].

Instead of leaving it to the user to specify the locations of the neurons in the substrate (as in Hyper-

NEAT), Evolvable-Substrate HyperNEAT (ES-HyperNEAT [305]) distribute the neurons based on the

variance of the synaptic weight CPPN function. In HyperNEAT the expression of links (existence of

synapses) between neurons is specified by a threshold on the weight, while in HyperNEAT with Link

Expression Output (HyperNEAT-LEO [388]) a separate CPPN, which can be seeded with a biased to-

wards modularity with local connections, controls the expressions of the links. All of these extensions of

HyperNEAT can improve the performance, evolvability and scalability of the system for evolving NNs.

A set of experiments showed that ES-HyperNEAT and ES-HyperNEAT-LEO can facilitate the evolution

of modular and multimodal (for more than one task) NNs , outperforms the original HyperNEAT, and

allows complexification of the NNs as well as CPPNs through evolution [306].

Although one of the main points of abstracting development into a CPPN was to avoid the computa-

tional complexity of the explicit iterative developmental processes, the practical, scalable, evolvable and
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somewhat more bio-plausible versions of this technique such as ES-HyperNEAT-LEO add extra compu-

tation to the development process that reduces the computation cost gap between these techniques and

explicit cell-chemistry methods. This group of evo-devo NNs rely on complex mathematical functions

and assume that any connectivity is feasible. They are particularly targeted for software-based imple-

mentations of the neural or developmental processes and their hardware-based implementations may

prove impractical.

Parametric or External Neurodevelopment

The second group are systems based on parametric development [103] or what Bentley and Kumar call

External Embryogeny [23]. In these systems the process of neurodevelopment is not evolved and only

the parameters that are fed into a hand crafted generative process are evolved. Manual synthesis of

evolvable and scalable phenotype-genotype mappings for this group of evo-devo NNs are very difficult

and most of the researchers avoid it when it comes to complex neural network systems. The parametric

model for generation of NNs by Harp et. al. [148] is an example of such systems. A few more examples

can be found in [417].

Explicit Neurodevelopment

The third group of evo-devo systems use a program that is encoded in a data structure and is run explicitly

to generate and modify the NN. Bentley and Kumar classify these systems as Explicit Embryogenies

[23]. Floreano et. al. divide this group into two subgroups [103]: The first subgroup include those

systems that use a grammar-based rewriting system with a fixed order and number of operations while

the basic operations (rewriting rules) can be evolved. The final product of the parallel rewriting cycles

represent the NN connectivity and parameters. Kitano’s Matrix Rewriting system for evolution of NNs

[197] is a good example of such systems. The second subgroup includes those systems that evolve the

program (that might also use rewriting rules, self-modification, recursion, or other techniques to achieve

modularity), which in turn generates or modifies the NN using a fixed set of operations. Cellular Neural

Encoding by Gruau [132] is a good example of such systems.

Implicit Neurodevelopment

Another group of evo-devo NN systems are based on cell-chemistry, morphogens, and evolution of

GRNs or other similar dynamical systems that govern the development of the NNs. These systems are

what Bentley and Kumar call Implicit Embryogenies [23].

Evo-devo NN systems by Cangelosi, Nolfi, and Parisi [56], Kitano [198], Dellaert and Beer [76],

Eggenberger [87], Bongard and Pfeifer [48], and Jakobi [177] can all be considered examples of this

type. Astor, Hampton and Adami also proposed a new developmental model for evolution of robust

neural networks and reviewed some other developmental neural networks of this kind [10, 142]. All

these models are relatively more similar to biology compared to the former types of evo-devo NNs in

one way or the other. However, they use different levels of abstraction and complexity, show different

performances, evolvability, scalability, and robustness, with different computation costs and they can

not be easily compared due to very diverse applications and benchmarks researchers used to evaluate
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these models. As a general trend it is clear that more detail (complexity) and lower levels of abstraction

always increase the computation cost but not always lead to desired emergent properties or improved

performance. Seeking modularity, allowing complexification (of genotype, phenotype, and fitness func-

tion), exploiting neutral mutations in the genotype-phenotype mapping, distributed local processes and

interactions, and utilising useful environmental and network activity information are examples of good

tips for an evo-devo NN designer.

Online Neurodevelopment

Online development has many advantages over using development as a generative process only to create

a mature solution and then stoping it. Fault-tolerance, regeneration and self-repair, adaptability, effective

use of fitness values during the development, and utilising the activity of the neurons and synapses to

guide neurodevelopment are a few examples. Federici [95] used a recurrent neural network to control the

cell dynamics for development of neural networks and showed that development can bring regeneration

and fault tolerance to spiking neural network robot controllers.

Khan, Miller, and Halliday [191, 192] proposed using online development of CGP programs to

evolve both electrical and developmental behaviour of the bio-plausible NNs and showed very interesting

bio-plausible emergent properties in their results. This work is particularly unique in the sense that it

takes into account different bio-plausible properties and behaviours of the biological neurons (such as

nonlinear synaptic interactions and neuron health) instead of limiting the development to modification

of synaptic weights with linear summative interactions.

Theoretically, many of the methods mentioned earlier can be also adapted to support online devel-

opment. However, the computational cost of continuous running of the development process through the

life time of the product is usually prohibitive and needs special attention.

Bio-plausibility in Evo-devo NNs

In [192], Khan, Miller, and Halliday argued that there are much more bio-plausible features than synaptic

weights and connectivity that need to be included in evo-devo NNs. They also showed that by bringing

many bio-plausible details using their method it is possible to control an agent playing arcade game with

only a single neuron [190]. Also, Rust et al. claimed that to exploit the potential of artificial neural

systems to the fullest extent, more bio-plausible details of the neural development should be modelled in

the artificial developmental systems [321].

There are many other systems that are either the basis of the aforementioned newer models or

similar. Reviews of many other evo-devo NN systems can be found in [417, 351, 55, 311, 310, 101,

103]. Among them are those that are designed or suited for hardware implementations, reviewed in the

following section.

2.5.6 Hardware-based evo-devo NNs

Researchers have sought to create hardware-based evo-devo neural network systems capable of evolving,

developing and learning in situ, adapting to the given problems and environments. These are called POE

systems as they are aimed to show these capabilities in all three aspects of Phylogeny, Ontogeny and,
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Epigenesis of an organism [342]. POE systems can use online development that brings fault-tolerance

and self-repair features to the neural networks [370] and similar systems. Online development in these

systems allows developmental process to use neural activity and other environmental factors as useful

information for adaptivity. It can also provide evolutionary process with useful fitness information during

development and learning. Evo-devo spiking neural networks that could be implemented on the POEtic

chip [94, 366, 270, 271] would be good examples of such systems. PEOtic Chip is a custom-designed

reconfigurable integrated circuit as a hardware platform for POE systems. It is based on a layered

architecture known as POEtic tissue [370] that dedicates three separate layers to Phylogenic, Ontogenic

and, Epigenesis processes.

One of the challenges in the field of hardware-based evo-devo systems is the difficulties of imple-

menting cell devision in silicon [361]. Although reconfigurable chips and FPGAs provide some flexi-

bility to achieve similar processes, cell devision remained a challenge. Most of the solutions implicitly

allow new cells to take over hardware resources without explicitly dividing anything as such alteration

of hardware substrate is physically not possible [361]. Many approaches abstract out the cell division

process into the cell differentiation process or reduce it to the simpler process of self-replication [361].

Tempesti et. al. reviewed a number of usual approaches to hardware-based cell division and differentia-

tion in [361].

Routing of the signals is another challenge in hardware-base evo-devo NNs. POEtic tissue address

this by dedicating two set of routing resources on separate layers for local and global circuit switching

and communication between cells [94, 366, 270, 271]. Thoma and Sanchez reviewed a number of

hardware-based routing algorithms for circuit-switched communication between cells in [362]. Other

systems tend to use packet-switched NOCs (Network-on-Chips) as they allow much higher connectivity

density but may suffer from packet delays and jitter noise depending on the network activity [147, 272,

58, 62, 60, 59].

Evolvable hardware has been previously used for evolving spiking neural microcircuits in FPGAs.

For example, Upegui et al. evolved a fully connected recurrent spiking neural network of 30 simplified

LIF neurons with 30 synapses each on a Xilinx Spartan FPGA [374]. However, the number of neurons

and synapses, general architecture of the network, and the neuron parameters were fixed during the

evolution and no developmental process was used. There are also other hardware-based adaptive neural

systems that may be modified for evo-devo neural networks [60, 62]. However these are not specifically

designed or suited for intrinsic developmental processes.

Inspired by the seminal work of Thomson [364] with a cellular structure on Xilinx XC6264, several

multi-cellular developmental systems for FPGAs have been designed by Haddow and Tufte, Liu, Miller

and Tyrrell, Gordon, and many others, cited above and in [311]. One of the first reported works on

hardware-based evo-devo neural networks is CAM-Brain project by DeGaris et.al. [120, 74], based on

Cellular Automata and implemented in Xilinx XC6264 FPGAs. They report experiments on a system of

about 1000 neurons.

Moreno et. al. [270, 271] reported implementation of a spiking neural network on POEtic tissue
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consisting of a 4x4 array of POEtic chips [370]. Their model is based on an optimised serial implemen-

tation of LIF neuron model with bio-plausible synapse and STDP (Spike-Time-Dependent-Plasticity)

learning [366] on the reconfigurable substrate of POEtic tissue that allows neighbouring cells to recon-

figure each other for fault-tolerance and self-repair. Unfortunately, only one such neuron can be fit in

a single POEtic chip due to size limitations of the actual POEtic chips. Therefore, time-multiplexing

was used to simulate a network of 10,000 neurons. This, however requires loading the parameters and

neuron variables into the chips every 150 cycles for 625 times for one network update. This was still

fast enough for realtime processing of a 384x288 pixel video stream at 50 frames/sec. However, at this

stage, the developmental and evolutionary potentials of the POEtic tissue was not exploited fully. Their

implementation uses a parallel hardware implementation of breath-first search algorithm for dynamic

routing of axons and dendrites that is initiated by the unconnected neuron input and outputs. Allen et.

al. [6] also report implementing a very small network consisting of 3 spiking neurons capable of STDP

learning and evolution on an FPGA and a POEtic chip.

Later, Roggen et. al. worked on the evo-devo features of the PEOtic tissue and presented a com-

prehensive review of the hardware-based evo-devo systems including neural networks in [311]. They

introduced a new classification of developmental systems, and stressed the importance of hardware-

based (intrinsic), online, cellular and distributed developmental systems arguing that a lot of desired

features of developmental systems such as adaptivity, fault-tolerance, scalability, speed, and robustness

are achievable with such evo-devo systems. They also proposed a hardware based evo-devo spiking neu-

ral network system, based on diffusion of morphogens with very simplistic cell chemistry and neuron

model, and applied it to character recognition and robot navigation tasks successfully. The largest net-

work they implemented comprises a 8x8 grid of 64 neurons and a maximum of 12 synapses (inputs) per

neurons. They demonstrated improvements in fault-tolerance, and scalability of the system compared to

using a directly encoded genome. Although their design was generic and could be implemented in any

reconfigurable platform, their system was initially designed for POEtic chip [370], and prototyped on a

FPGA for experiments [310, 311]. However, the range and pattern of neurons connectivity were limited

to six fixed local connectivity patterns and a simplistic leaky integrate and fire soma model was used in

their implementation [311].

Recently, Upegui et al. introduced a dynamic routing algorithm to produce nature inspired activity

dependent synaptogenesis in the cellular bespoke reconfigurable chip, Ubichip [375, 380]. Ubichip is a

reconfigurable platform, as part of a greater project call Perplexus, aiming at ubiquitous and embedded

computing for complex systems [324, 379, 375, 378, 380]. They showed that the network activity infor-

mation can be used effectively for neurogenesis and the resulting network architectures resembled those

of biological neural networks. Although their hardware-based routing algorithm is a very fast implemen-

tation of its kind, their current design may face some scaling limitations (due to using long combinatorial

signals sensitive to delays) [375, 380]. Moreover the number of possible input synapses for each neuron

is fixed and defined a priori [375, 380].

Another notable study is EMBRACE-FPGA project [272, 62, 284], aiming at prototyping the EM-
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BRACE mixed-signal reconfigurable custom SNN chip. The FPGA prototype of the EMBRACE chip

is able to evolve synaptic weights and neuron thresholds of a pre-specified network architecture. The

analog LIF neurons are modelled by soft core processors on the FPGA and a NOC (Network-on-Chip) is

responsible for interneuron spike communications. The EMBRACE system successfully evolved spiking

XOR, an inverted pendulum controller, and a classifier for Wisconsin breast cancer dataset. Although

many feasibility measures such as scalability, fault-tolerance, robustness, performance and hardware

cost are considered, bio-plausibility is not a priority in EMBRACE-FPGA project and the system does

not use a developmental process or any bio-plausible features other than spiking neurons and a genetic

algorithm for achieving scalability and fault-tolerance.

Yet none of these models are quite suitable for a developmental neural microcircuit capable of

regeneration and growth on FPGA. Evidence suggests that structural plasticity [65] and wiring delays

[66] play major roles in the brain. The placement and wiring of the neurons are also optimised for

the high interconnectivity in the brain [64]. In contrast, most of the existing evolvable hardware neural

network models (e.g. [311, 374, 380, 271]) are not capable of flexible neurite growth in silicon. They

either are typically restricted in terms of number of inputs per neuron or impose constraints on the

patterns of connectivity and/or placement on the actual chip mostly due to implementation issues. Some

of them do not allow heterogeneous networks with flexible parametric neurons and learning rules as

important bio-plausible features or use very simplified developmental processes. They either keep the

silicon area low and gain a high speed by using excessively simplified neuron models or use bio-plausible

models and quickly run out of silicon area forcing them to use time-multiplexing. Although most of them

are originally designed for custom chips (Ubichip [375, 380], and POEtic chip [370] for example) they

ended up being prototyped on FPGAs due to availability issues such as high NRE costs of ASICs and

even after fabrication of the actual chips they are limited to small-scale chips mainly due to financial

reasons.

2.6 Summary
Bio-plausible approaches to spiking neural network such as Liquid State Machines (LSM) and Hierar-

chical Temporal Memory (HTM) are gaining popularity and success. However, both of them need high

computational power of direct hardware implementation for scalable solutions. There is still a lack of

systematic method for designing the network architectures for given problems. However, evolutionary

approaches have shown promising results.

A review of the neuron models shows that very bio-plausible computational models are available

but they are very complex and computationally expensive. Recently, Izhikevich has proposed a flex-

ible, parametric, computationally simple, behaviourally bio-plausible model for simulation of spiking

neurons. However, almost all of the Liquid State Machines and all of the hardware-based neural sys-

tems use very simplistic and implausible models such as LIF or even degenerated implementation of it

that are incapable of showing a vast part of biological neurons behaviours. There are few good hardware

implementations of relatively bio-plausible synapse models and STDP learning with higher silicon areas.

In the field of evolutionary computing, although some bio-plausible neurodevelopmental systems
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have been used for evolution of neural networks, they are usually very simple and not modelling details of

the gene-protein and protein-protein interactions. On the other hand, the detailed and complex systems

are very slow and computationally expensive. Despite some general trends, it is not yet quite clear

incorporating which one of these complexities in the neuron models and developmental processes can

lead to benefits both in terms of performance and efficiency and in terms of emergent properties such as

evolvability, scalability, fault-tolerance, and robustness. The complexity of bio-plausible models has also

prevented researchers from implementing such bio-plausible models in hardware. The most bio-plausible

evolutionary neurodevelopmental model in hardware is based on very simple diffusion of morphogens

on a very homogeneous neural substrate.

New findings in biology provide us with more accurate and better models of biological systems that

can be used to enrich our bio-inspired designs. Although general trends point to promising results from

pursuing a bio-plausible approach to evo-devo neural networks in hardware, endeavours were restricted

to a few attempts on custom chips with limited success, mainly due to the restricted availability of such

fabricated custom chips and their small sizes. Even though FPGAs are increasingly popular, cheaper,

larger and powerful, it is yet to be investigated how these new potentials can contribute to feasibility of

more bio-plausible evo-devo spiking neural networks. This has been the motivation for the present work

to explore possibility of exploiting the latest biological models and new FPGA technologies to achieve

higher levels of bio-plausibility in such systems.



Chapter 3

Hardware Platform

One of the first challenges in achieving bio-plausibility in an FPGA is the choice of the hardware plat-

form. It is also an important factor in this study as it can impact both the applicability and generality

of the challenges, trade-offs, and constraints discovered by the study. Hardware platform selection has

been always one of the challenges in implementation of evo-devo systems and evolvable hardware in

general as the limitation of the hardware directly impact all aspects of the whole system. In case of

this specific study, the FPGA platform must be selected in a way that facilitates the feasibility study of

such bio-plausible models on the latest widely available technology. At the same time, practical factors

such as availability of the platform for this study and design time frames are also of importance. In the

following sections the platform selection criteria and the trade-offs involved are discussed, and based on

aims and limitations of this study, an FPGA and a hardware platform is selected.

The choice of hardware platform is a crucial decision. It has a substantial influence on the quality of

the system and the size and complexity of the potential applications. With the maturity of digital VLSI

technology and its continuous progress, digital technology seems to be a good candidate for realisation

of neural networks. Compared to analogue technology, digital circuits are easier to fabricate and provide

simpler solutions for storing synaptic weights [201]. Evo-devo neural networks on digital hardware

has been implemented on two types of platforms: Bespoke chips (e.g. POEtic chip [370, 311]) and

commercial FPGAs (e.g. [311]). The former, by definition, has a higher performance and better features

but was limited to a few privileged institutes and typically small chips (compared to commercial FPGA

sizes) due to high costs of VLSI design and fabrication. FPGAs are in contrast ubiquitous, cheaper

than such custom chips and, as predicted by Moore’s law, will be followed by future generations with

new technologies and features. Practical evaluation of the current FPGA technology for implementing

bio-plausible evo-devo neural microcircuits can provide recommendations for both FPGA manufacturers

and designers of Bespoke chips. As this study is by definition focused on the FPGAs, in the following

section, we discuss the factors, trade-offs, constraints and challenges in the selection of an FPGA based

hardware platform.
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3.1 Selection Criteria
To select the right platform a set of selection criteria should be defined. These criteria can be defined

based on the factors already known to impact the bio-plausibility and feasibility of the system, trade-

offs between these factors, and the corresponding constraints that are usually present in research studies

or engineering design projects. A set of such factors are analysed here based on the experience and

literature:

1. Cost: The total cost of the hardware platform is always an important and limiting factor. A large

portion of the hardware cost is the unit cost of the FPGA device. There is a trade-off between

FPGA cost, and its size, speed and its other useful features. Almost all of these desirable properties

add to the cost. The cost of the hardware platform that is mainly determined by the per unit cost of

the FPGA is constrained by the project budget (here, a maximum of £1000 for hardware platform).

2. Popularity and Prevalence: The only factor that has negative correlation with the cost of the FPGA

is its popularity and prevalence as it can increase the demand and drop the per unit cost of the

device. However, all those factors and features that can add to the cost can also increase the

popularity and prevalence of a device. It is also affected by other factors outside of the scope of

this study such as marketing strategies of the manufacture and popularity of the device in consumer

electronics, etc. As a constraint for this study it is necessary that the platform or similar devices

remain available to the research community at a reasonable cost in future. Discontinuity of the

Xilinx XC6264 device is an example of such unfortunate faith for a family of devices so useful to

evolvable hardware community. This factor directly contributes to the availability measure of the

feasibility defined in section2.2.

3. FPGA Performance (Speed): Running speed of the FPGA (dictated by propagation delays and

maximum clock frequencies) directly affects the simulation time and performance of the whole

system as a feasibility measure. FPGA Performance has an impact on the computational power

and thus FPGA capacity for more bio-plausible models. Performance has a fundamental trade-

off with the power consumption of digital VLSI chips as well. Availability of the same chip in

different speed grades is also notable, which can give designers more options to play with the

trade-off between the performance and the hardware cost.

4. Size and scalability: Size of the FPGA limits the amount of hardware resources that can be ded-

icated to the bio-inspired system. It has an effect on the total computational power of the FPGA

and its capacity for higher levels of bio-plausibility. The scalability of the hardware platform re-

quires the availability of larger devices from the same family and/or possibility of interconnecting

devices. Interconnecting devices might be also limited by the number of available device I/O pins.

The size of the FPGA or using many interconnected FPGAs affect the scale of the application

(here, number of neurons and synapses) as one of the feasibility measures defined in section 2.2.

The hardware platform should provide enough FPGA resources for the experiments and applica-

tion. Therefore it can pose constraints on the size and scalability of the application. Assuming
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a high level of parallelism, size and scalability of the hardware platform can improve the simu-

lation time. On the other hand, bigger devices take more time to reconfigure (even using partial

reconfiguration) and therefore size can increase the reconfiguration time. Reconfiguration time

and simulation time contribute to the total experiment time, as another feasibility measure (perfor-

mance) defined in section 2.2.

5. Power consumption: Energy consumption of the hardware platform is a function of the size of the

FPGA and number of interconnected FPGAs. This, in turn, affects the scalability of the whole

system as one of the feasibility measures defined in section 2.2. However, this factor is usually

constrained only for very large-scale systems.

6. (Dynamic) Partial Reconfiguration: These features allow us to speed up the process and perform

the development and growth on the hardware by reconfiguring only part of the system while the

rest is untouched or even running (in case of dynamic partial reconfiguration). Without partial

reconfiguration, we are bound to reconfiguring the whole FPGA for every new solution (or for

each development step), which dramatically increases the experiment time.

7. Reconfiguration speed: Since for evaluating the fitness of every single solution during the evolu-

tion, the FPGA will be reconfigured (even if partially), this will directly affect the reconfiguration

time and contribute to the experiment time.

8. Data communication bandwidth: An FPGA platform is usually connected to a PC or host computer

that reconfigures the device for the first time and might be needed for managing the input/output

vectors through the evaluation of the solutions. Therefore, data transfer speed between the host

computer and the FPGA platform can also have an impact on both reconfiguration and simulation

times. High-bandwidth communication interfaces naturally add to the hardware cost.

9. Interfacing: Ease of connection to a PC and/or other I/O devices both for reconfiguration and

evaluation of the neural network. For evaluation of the system on different problems it would be

useful to feed different data sources through a PC or directly through I/O devices (e.g. webcams,

sensors, etc.). These interfacing devices can be part of the FPGA (as hard IP cores on the FPGA

chip) or on the hardware platform. In both cases a wide range of interfacing options increases the

flexibility of the system but adds to the hardware cost.

10. Indestructibility or validity checking: Meaning that it is impossible to damage the chip using an

incorrect configuration or it is possible to check the validity of the configuration bitstream before

programming the chip. It effectively simplifies the evolvable hardware processes and relaxes some

of the constraints.

11. Embedded Processing: Availability of processor core(s) on the FPGA itself enables the FPGA to

potentially run some of the evolutionary or developmental processes on-chip and perform complex

I/O tasks. This increases the flexibility of the system and contributes to the ease of use. Some

FPGAs include a hard processor core or allow to implement soft processor cores on the FPGA
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fabric. Using soft processor cores instead of hard processor cores allows us to scale the processor

and customise its features depending on our needs. However, soft processor cores are usually 5 to

10 times slower than their hard IP-core versions.

12. Observability: Possibility of monitoring and debugging the behaviour of the FPGA is an important

factor both for verification and evaluation, and in experiments on fault-tolerance and robustness.

13. Reliability: Reliability of the whole system, as one of the feasibility measures, is affected by

the reliability of the FPGA device among other design and environmental factors. Some FPGA

families are also available in radiation-hardened (rad-hard) versions that are resistant to damages

and errors caused by high-energy electromagnetic radiations and particles. These chips are usually

used in aerospace applications or systems in harsh environments. Different physical and design

measures are taken to introduce this feature into FPGA chips, which significantly affect the cost,

power, size, and performance of the device. Although these techniques significantly increase the

reliability of the FPGA at the physical level and therefore adds to the reliability of the whole

system, the rad-hard versions of the FPGA devices are usually available much later than the rest

of the device family, which affects the availability of the system as a feasibility measure.

14. Ease of use: A fast learning curve for using the platform and software tools, availability of docu-

mentation and support, or previous familiarity can significantly reduce the design and testing time

and complexity.
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Figure 3.1: Trade-offs and interactions between cost, popularity, and technical specifications of an FPGA, and how they

are related to feasibility and bio-plausibility of the whole system.
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Figure 3.2: Detailed trade-offs and interactions between different technical features and factors involved in the selection of

the FPGA platform and how they affect the feasibility and bio-plausibility of the whole system.

Figure 3.1 shows the general trade-offs and interactions between technical specifications of the

FPGA, its cost, and its popularity and prevalence. Figure 3.2 depicts the details of the above analysis

showing technical specifications (features and factors in purple and blue) and feasibility measures (in

red) and how they might be related to feasibility and bio-plausibility of the whole system.

3.2 FPGA Selection
Selection of the FPGA device and platform for this study is heavily constrained both by project time and

budget and availability and popularity factors. The hardware budget in this study was limited to £1000.

The time for exploration, investigation, design, development, verification and testing and experiments

should also fit in the timeframe of this research. The selected device needs to be a good representative of

the latest available technology that provides highest scalability and performance and also a popular and

prevalent choice that promises lower costs in future. The performance of the system must be acceptable

for research experiments if not fast enough for real-life applications. Size of the application should be

enough for simple experiments and must be preferably scalable. Final system must be reliable enough
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Table 3.1: Major FPGA Manufacturers, their market share, focus, main FPGA device families and their reconfiguration

features (at the time of this study, 2007).

Manufacturer Market share Focus Device Familes Reconfiguration

Xilinx > 50% SRAM based, general

logic

Virtex and Spartan Dynamic Partial

Altera > 30% SRAM based, general

logic

Stratix, Cyclone Only full

Lattice ≈ 7% SRAM based, Hi-speed LatticeXP TransFR

Actel ≈ 7% Flash, Anti-fuse, mixed

signal, low-power

ProASIC, Axcelera-

tor, Fusion

Only full

Atmel < 5% Low density logic and

DSP

AT40KAL Dynamic Partial

to give conclusive results for research. FPGA size, performance, and flexibility are objectives that can

allow higher levels of bio-plausibility in the system.

Table 3.1 shows that the FPGA market is mainly dominated by two major companies: Xilinx and

Altera. They share a majority of the market and compete closely by introducing the latest technologies.

The general architectures are similar to some extent and fundamental techniques are copied quickly by

the other party. Therefore, it must not be very difficult to port a design from one system to the other

system.

A key feature, affecting the overall performance of the system, is dynamic partial reconfiguration.

Altera FPGAs did not support partial reconfiguration at the time. This feature was introduced recently

(2010) in Altera’s latest family of 32nm FPGAs (such as Stratix V) [8]. Without partial reconfiguration

the reconfiguration time and thus evaluation time of each solution during evolutionary process will be

proportional to the size of the FPGA. Although virtual FPGA method can be used to introduce partial

reconfiguration, as discussed in section 2.5.1, it requires 4.5x more hardware resources to implement

the same logic [372]. Neither virtual FPGA technique nor complete reconfiguration result in a scalable

solution, and in practice using partial reconfiguration is inevitable to attain a compact and fast design.

Other manufacturers of FPGAs with partial reconfiguration capability are Lattice and Atmel [255]. The

dynamic partial reconfiguration technique offered by LatticeXP FPGAs from Lattice involves repro-

gramming the on-chip non-volatile memory while FPGA is working and then halting the FPGA that

effectively freezes IO pins during the quick reconfiguration of the configuration SRAM [215]. Although

this type of dynamic reconfiguration allows updating the hardware in situ, it poses an extra buffering

overhead on the system and requires stopping the whole FPGA for reconfiguration that means the circuit

that is controlling the reconfiguration process needs to be off the chip. AT40KAL devices by Atmel

also support dynamic partial reconfiguration but they have much lower densities compared to Xilinx and

Altera FPGAs. Both Virtex and Spartan families of FPGAs by Xilinx support dynamic partial recon-
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figuration. At the time of this study Xilinx was offering the largest FPGA capable of dynamic partial

reconfiguration (Virtex-5) and had significantly larger market share than Atmel and Lattice. Spartan 3

was the latest group of devices from Spartan family that constitute the cheaper and lower density devices

from Xilinx.

Virtex-5 was the latest family of FPGA devices from Xilinx. It featured 65 nano-meter fabrica-

tion technology, ExpressFabricTM, 6-input LUTs, up to 330K logic cells, RocketIOTMserial transceivers,

built-in PCI ExpressTMendpoint and Ethernet MAC (Media Access Control) blocks. Xilinx provides two

different soft processor cores (MicroBlazeTMand PicoBlazeTM) with C programming language support

and a Linux-based operating system (in case of MicroBlaze). Most of these features are also available in

Altera FPGAs (with slightly different forms and names). Table 3.2 shows a comparison of SRAM-based

FPGA devices from different manufacturers. At the time of this study, due to the lack of partial reconfig-

uration feature in Altera FPGAs, significantly lower densities of Atmel, Altera and Lattice FPGA’s, and

Xilinx Spartan Series, Xilinx Virtex-5 FPGA was simply the best choice for this study. Virtex-5 family

of Xilinx FPGA devices not only represent the latest technology of the largest and most popular manu-

facturer of FPGAs but also provides the highest range of capacity, performance, connectivity scalability,

and other features with Dynamic Partial Reconfiguration (DPR) support.

3.3 Prototyping Board Selection
To swiftly pass the hardware platform preparation phase of the project and engage in developing the sys-

tem itself, a pre-assembled FPGA board should be used. Based on their new devices, FPGA manufac-

turers produce pre-assembled prototyping boards stacked with a diverse and flexible set of I/O interfaces

and other features to meet the prototyping and evaluation needs of designers in different domains. Third

party companies also produce FPGA boards for different specific applications such as ASIC prototyping,

research, and development.

Among the very wide range of Virtex-5 FPGA boards, Xilinx ML505 Development Platform [405]

had significantly higher specifications among very few Virtex-5 FPGA boards that meet the project

budget. Figure 3.3 and 3.4 show the ML505 FPGA board and its block diagram. We can briefly measure

this hardware platform in terms of the factors stated in section 3.1 as follows:

1. Cost and availability: The complete ML505 platform is available to researchers for less than £800.

The software tools are also available to the research community and can also be downloaded and

used for an evaluation period.

2. Popularity and prevalence: The ML505 board is built around a Virtex-5 FPGA, which is the best

representative of a family of the latest, fastest, and largest FPGAs available at the time of this study.

The subsidised academic price of the ML505 can contribute to the popularity of this specific FPGA

board and Virtex-5 family in research community. Virtex-5 FPGAs are already popular in ASIC

prototyping and high-speed communication devices and servers due to their high performance and

capacity.

3. Performance (Speed): The FPGA on the ML505 platform is of -1 speed grade (lowest speed in
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Table 3.2: Comparison of the latest FPGA devices from different vendors (at the time of this study). Size is represented in

approximate number of Logic Elements (LEs) and I/O pins. Performance is represented by total propagation delay from

LUT inputs to FF outputs (tITO) in nano secs. Full, Dynamic Partial and Lattices’ Proprietary reconfiguration methods

are represented by Full, DPR and TransFR [407, 410, 413, 9, 7, 11, 214].

Vendor Device Size (#LEs,

#IO Pins)

Prop. Delay

(tITO in ns)

Embedded

Processing

Reconfig. Other Features

Altera Cyclone 3K to 20K,

104 to 301

6.56 to 8.51 Soft IPCores

(Nios II)

Full Block RAMs,

Distributed

RAM,

Transceivers

Altera Stratix II 16K to 180K,

366 to 1170

1.84 to 2.48 Soft IPCores

(Nios II)

Full DSP,

Transceivers,

Block

RAM/FIFOs,

Distributed

RAM, Multipli-

ers,...

Atmel AT40K(AL) ≈500 to 3K,

128 to 384

≈10 - DPR Block RAMs,

Distributed

RAM, Multipli-

ers

Lattice LatticeXP 3K to 20K,

62 to 340

0.81 to 1.17 - TransFR Block RAMs,

Distributed RAM

Xilinx Spartan-3 1.7K to 75K,

124 to 633

1.90 to 2.29 Soft IPCores

(MicroBlaze,

PicoBlaze)

DPR Block RAMs

Distributed

RAM, Multipli-

ers

Xilinx Virtex-5 30K to 330K,

172 to 1200

0.67 to 0.90 Soft IPCores

(MicroBlaze,

PicoBlaze)

and Hard

IPCores

(PowerPC)

DPR Ethernet MAC,

PCI Express

Endpoint,

DSPs, Block

RAM/FIFOs,

Distributed

RAM,

Transceivers,...
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Detailed Description
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Detailed Description
The ML505 Evaluation Platform is shown in Figure 1-2 (front) and Figure 1-3, page 14 
(back). The numbered sections on the pages following the figures contain details on each 
feature. The ML506 Evaluation Platform is the same except for the FPGA.

Figure 1-2: Detailed Description of Virtex-5 ML505 Components (Front)
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Figure 3.3: Xilinx ML505 Virtex-5 Development Platform.

Virtex-5 family) due to cost efficiency. The working speed of an FPGA depends on the component

and routing line propagation delays. Virtex-5 delays are significantly better than the previous

families of Xilinx FPGAs (e.g. Virtex-4) and other available FPGAs of this size in the market.

The same chip is also commercially available in better speed grades (-2 and -3).

4. Size and scalability: The ML505 hardware platform is built around a Virtex-5 XC5VLX50TFFG1136

device with 46080 logic cells (7200 slices), 480 kbits of distributed RAM, and 60 Block

RAM/FIFO (36kbits each). While this platform provides enough resources to build and evolve

a small neural network (based on literature), the system is also scalable in the sense that larger

devices (e.g. LX330T with up to 331776 logic cells) are commercially available. With high

number of I/O pins and high-speed serial/parallel data transfer blocks on Virtex-5 devices it is also

possible to connect few FPGAs to build larger systems.

5. Power Consumption: As the number of FPGA devices in this project is limited to one, the power

consumption is not a concern. Heat dissipation of the FPGA chip on the ML505 can be carried

out by an optional add-on heat-sink that is sold separately as it is not always necessary. On-chip

Virtex-5 heat sensors can be also monitored using JTAG port on ML505 to make sure that heat

dissipation would not be an issue during testing and experiments.

6. (Dynamic) Partial Reconfiguration: The Virtex-5 FPGA on ML505 supports both partial and dy-

namic reconfiguration. Two Internal Configuration Access Ports (ICAP) in the FPGA enables the

device to reconfigure itself dynamically at the maximum nominal speed of 50MHz (32 bits). The

new PlanAheadTMdesign tool is promised to simplify the design process and adds to its stability.

These were two major concerns in dynamic and partial reconfiguration of previous devices.
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Chapter 1: ML505/ML506 Evaluation Platform
R

Block Diagram
Figure 1-1 shows a block diagram of the ML50x Evaluation Platform (board).

Related Xilinx Documents
Prior to using the ML50x Evaluation Platform, users should be familiar with Xilinx 
resources. See Appendix B, “References” for direct links to Xilinx documentation. See the 
following locations for additional documentation on Xilinx tools and solutions:

• EDK: www.xilinx.com/edk

• ISE: www.xilinx.com/ise 

• Answer Browser: www.xilinx.com/support

• Intellectual Property: www.xilinx.com/ipcenter

Figure 1-1: Virtex-5 ML50x Evaluation Platform Block Diagram
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7. Reconfiguration speed: The Virtex-5 device on ML505 supports a transfer speed up to 50Mhz with

bus widths of 1,8,16, and 32 bits. The actual maximum configuration speed depends on the PC in-

terface used for the configuration. Using JTAG interface, the Xilinx Platform Cable USB interface

supports up to 24MHz 1-bit serial transfer rate. It is also possible to use the Internal Configuration

Access Port (ICAP) of the FPGA in conjunction with another interface (PCI ExpressTM, USB2.0,

etc.) as a dynamic partial reconfiguration system for obtaining the maximum configuration speed.

8. Data communication bandwidth: The ML505 platform supports many high-speed serial, par-

allel and analogue interfaces including PCI ExpressTM1x edge connector, USB2.0, Ethernet

10/100/1000, video I/O, audio I/O, and SATA (Serial Advanced Technology Attachment). More-

over, the on-board memory devices (256 MB DDR2 SODIMM, 1MB ZBT SRAM, 32MB Linear

Flash, System ACETMCompactFlash, and a Xilinx Platform Flash) can be used for buffering or

local storage of data or configuration bit streams, which can significantly reduce the data transfer

overhead in some scenarios.

9. Interfacing: The ML505 platform is sporting a wide range of interfacing features (high-speed dig-

ital/analogue serial/parallel I/O, Memories, audio I/O, video I/O, Mouse, Keyboard, LCD display,

etc.) that help to deploy the system in different application domains.

10. Indestructibility or validity checking: Unfortunately, new generations of FPGAs (including Virtex-

5) can be damaged by incorrect configuration and Xilinx neither provided a validity check utility

nor released the complete configuration bit-stream format of the device. The latest indestructible

FPGA from Xilinx (XC6264), which has much lower size and performance specifications, is dis-

continued. Also other FPGAs with open bit-stream formats are from a few generations before

Virtex-5 and provide much lower specifications.

11. Embedded Processing: Xilinx has provided two RISC soft processors cores (MicroBlaze and Pi-

coBalze) in different configurations and sizes for implementation on FPGAs that can be used

for performing I/O tasks or running the evolutionary or developmental processes on chip. They

take only a small amount of FPGA resources but provide the system with lots of flexibility and

programmability. Xilinx also provides C libraries for partial reconfiguration of Virtex-5 by Mi-

croBlaze using their HWICAP IP-core.

12. Observability: It is possible to use Xilinx ChipScope ProTMutility to monitor and debug the inter-

nal behaviour of the FPGA using a PC connected to the platform by adding a special IP-core to

the design and connecting it to the signals that need monitoring. However, to be able to monitor

a signal in the FPGA fabric it needs to be defined at the synthesis time and a ChipScope Pro ILA

(Integrated Logic Analyser) core to be included in the design.

13. Reliability: Although Virtex-5 original family of FPGA devices were soon followed by more

reliable radiation-hardened (rad-hard) versions, in this study, the reliability of the original versions

are quite sufficient as the FPGA will not be exposed to any harsh environments.
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14. Ease of use: Xilinx provided a complete suite of GUI design tools for Virtex-5 FPGAs to simplify

the design process. However, the effective use of these tools still needs a lot of experience and

hard work. The previous familiarity of the author with the Xilinx devices and tools can save a lot

of time in design and implementation. Although PR (Partial Reconfiguration) support in Xilinx

tools was still new and immature at the time of this decision, Xilinx was more committed to

developing PR tools than any other manufacturer. ML505 platform can be connected to a PC using

a USB-to-JTAG adapter for initial reconfiguration of the FPGA, programming the MicroBlaze and

monitoring the FPGA at run-time.

3.4 Summary of Selection Factors
Based on feasibility measures defined in section 2.2 and factors that may contribute to bio-plausibility

of the system, different factors involved in the selection of the FPGA and hardware platform were iden-

tified and their interactions and trade-offs, based on previous experience and available literature, were

discussed. It was identified that for the challenges and trade-offs investigated and discovered in the next

chapters to be applicable and general enough, it is important to select a good representative of the latest

technology in FPGA, which is also popular and available. Main factors that impact the bio-plausibility

of the system appeared to be the size (capacity), scalability, performance (speed), and flexibility of the

FPGA. Main factors that may affect the feasibility of the system apart from the cost of the FPGA, were

simulation and reconfiguration times (impacted by size, performance, reconfiguration speed, communi-

cation bandwidth and dynamic partial reconfiguration of the FPGA). An important factor was identified

to be the popularity and prevalence of an FPGA device that can drop the unit cost regardless of all its

expensive features and specifications. Flexibility and ease of use (that are impacted by interfacing and

embedded processing features, and indestructibility of the FPGA), and observability were other factors

that appear to affect the feasibility measures. Reliability and power consumption seemed to be of less

concern at this scale and in the scope of this study.

Different options of FPGA devices from different manufacturers were briefly reviewed. The signif-

icant market domination of two manufacturers (namely Xilinx and Altera) and unavailability of dynamic

partial reconfiguration feature in Altera FPGAs (at the time of this study) and higher performances and

larger capacities of Xilinx FPGAs made the actual selection for this study simple. A Virtex-5 FPGA was

selected for this study as a good representative of a popular family of FPGAs with the latest technol-

ogy, largest size and highest performance available. Although the partial reconfiguration workflow from

Xilinx was still immature at the time of this study and a beta version of the tools were needed, Xilinx

was the most committed manufacturer to dynamic partial reconfiguration methods. Table 3.3 presents a

summary of the reasons for selection of a Virtex-5 FPGA for this study.

The limited budget of this project and subsidised academic price of ML505 prototyping board also

simplified the selection of the prototyping board as there were no other FPGA board with such a high

specification in this price range. The ML505 FPGA development board is built around an entry level

Virtex-5 FPGA with many different interfacing options, which increase the flexibility of the hardware

platform in different application domains. The ML505 development platform was purchased and Xilinx
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Table 3.3: Summary of the comparison of hardware platforms for this study and their trade-offs showing Virtex-5 as the

best choice.
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Xilinx Virtex-5 • • • • • •◦ • •• • • ••

Xilinx Spartan-3 • • ◦ • • ◦◦ • •• • • ◦◦

Atmel AT40K • • ◦ ◦ ◦ ◦◦ ◦ •• • • ◦◦

Altera Stratix II • • • • • ◦◦ • ◦◦ • • •◦

Altera Cyclone ◦ ◦ ◦ • ◦ ◦◦ • ◦◦ • ◦ ◦◦

Lattice LatticeXP • ◦ ◦ • • •• ◦ •◦ ◦ ◦ ◦◦

design tools, the required software licenses, and beta version access to PR tools were obtained.

3.5 Summary
Figure 3.5 represents a summary of the investigations carried out in this chapter in a graph. In this chap-

ter, the factors involved in the selection of the hardware platform were analysed based on the general

definitions in section 2.2, experience, and literature. A group of important factors and their major in-

teractions and trade-offs were identified. Based on the result of the analysis, state of the market, and

constraints of this project, an FPGA device and a prototyping board for this very study were selected.

The features of the selected hardware platform were briefly reviewed in section 3.3. In section 3.4 the

hardware platform selection factors and trade-offs were summarised. Specifying the hardware platform

and the FPGA device, provides a concrete basis for investigation of challenges in the design and im-

plementation of evo-devo neural microcircuits on FPGAs in the following chapters. The next chapter

is dedicated to investigation of the challenges in design and implementation of a bio-plausible neuron

model feasible on this specific FPGA.
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Figure 3.5: A graph of the investigations carried out in chapter 3 regarding the hardware platform.



Chapter 4

Neuron Model

Among different processes involved in an evo-devo neural microcircuit, neural processes can be regarded

as the most critical, compared to evolutionary and developmental processes. This is mainly because neu-

ral activity and learning processes are executed in a much shorter time scale compared to evolutionary

and developmental processes. Changes in the system due to evolutionary process occur only in every

generation at reproduction time of each individual. However, for the evolutionary process to work it

needs to develop and evaluate every individual microcircuit. Developmental changes take place at a

higher speed than evolutionary ones, as many developmental steps might be needed to develop an indi-

vidual (before or during the simulation of neural processes) to obtain the individual fitness value or any

other measurement of its fitness. Similarly, neural changes such as action potentials and other synap-

tic dynamics are taking place at a higher rate than developmental changes. Even those developmental

changes such as activity driven synapse formation, elimination, and neurite growth are regulated by

neural activity of the network over a significant number of input vectors from a rather large dataset.

Therefore, a bio-plausible evo-devo model of such neural system needs to dedicate a large portion of its

available computational resources to such frequent changes in the neural states. This explains why the

neuron model is so critical in the feasibility of the system as it has a significant impact on two important

feasibility measures of application size and performance. From bio-plausibility standpoint, apart from

bio-plausibility of the neuron model itself, the reliance of developmental and evolutionary processes on

the neuron model, its dynamics, and its flexibility, makes it very critical in the bio-plausibility of the

whole system.

This chapter discusses the challenges in design, implementation, and testing of a feasible neuron

model that is not only bio-plausible by itself, but also allows bio-plausible developmental and evolu-

tionary processes to be built upon it. First, the general factors, requirements, and design objectives of

such bio-plausible and feasible neuron model are discussed, different approaches to the neuron model

design are briefly explored, and design factors, constraints, and general trade-offs are identified. For

further investigation of the challenges, design choices, constraints, and trade-offs in practice, and also

as a basis for further investigation in following chapters, a feasible and relatively bio-plausible neuron

model is designed, implemented, and tested on the constraints of this project. The process of the design,

implementation, verification, and testing of the new neuron model is explained and practical challenges
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of the process are summarised.

4.1 General Design Factors
Investigation of challenges in achieving bio-plausibility and feasibility are the main objectives of this

study. These two factors must be translated into tangible factors in the design of the neuron model.

Therefore, in this section each one of these two main factors are elaborated to identify these tangible

factors and constraints. Then it will be possible to discuss the trade-offs between these factors and

constraints and related design challenges.

4.1.1 Bio-plausibility Related Design Factors

Bio-plausibility of a neuron model have many different aspects: From soma model and its dynamics to

dendrite and synapse models, axonal delays, development of neurites and synaptogenesis. It is important

to examine each one of these aspects in the light of the current knowledge in biology and neuroscience.

To limit the complexity of the model and the study, it is inevitable to ignore some biological complexities

and details. Those biological complexities and bio-plausible features that are not likely to be useful in

the context of evo-devo neural microcircuits can be abstracted or ignored. This can be done based on the

biological evidence or experimental results in neuroscience and bio-inspired computing.

Bio-plausibility of the neuron model can be divided into bio-plausibility of the network architecture,

and the neural coding, bio-plausible features of soma model, neurite model, and synapse model. Some

biological background and different aspects of bio-plausibility in each of these areas are discussed in the

following.

Factors Affecting the Network Architecture

Statistical analysis of the neural networks in mammals and nervous system of C. elegans shows that

they have characteristics of so called small-world networks [39, 51, 19], meaning that while they are

sparsely connected, the average number of hops between any two random nodes is very small (of order

of O(log n), where n is number of nodes). Preliminary studies on some cortical networks suggest

that they also show behaviours of scale-free networks associated with their multi-cluster organisation

[39, 51, 19].

Cortical network connectivity is very dynamic. Connections between neurons form and disappear

all the time. Fault-tolerance and robustness of the cortical circuits are associated both with the network

characteristics and dynamic nature of their connectivity. Evidence suggests that structural plasticity [65]

and wiring delays [66] play major roles in the brain. The placement and wiring of the neurons appear

to be optimised for the high interconnectivity in the brain [64] and optimising the trade-off between the

physical cost of interconnections and its complexity [39, 19]. It is argued that the dynamic wiring of the

cortical circuits might be also involved in the long-term memory and learning [65]. Apoptosis (controlled

process of cell death) also plays a major role in the development of nervous systems and its remarkable

network characteristics [404]. Although many simulations only use one excitatory and one inhibitory

neuron type for simulation, biological cortical circuits are heterogeneous networks of different types

of neurons with different behaviours and characteristics [168, 173]. Evolutionary and developmental
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processes seem to be responsible for the emergence and maintenance of such a network architecture by

controlling and regulating cell duplication, migration, differentiation, growth, and apoptosis [404].

From a bio-inspired computing standpoint, there is no systematic method for specifying the size

and architecture of recurrent neural networks in general or for a given problem or class of problems

[175]. Few studies provided some evidence that hierarchical, modular, and structured topologies can

significantly increase the performance of the network in the context of reservoir computing [332, 307,

308]. This shows the necessity of an evolutionary process to control the architecture of the network

in a bio-plausible design. While the exact network connectivity in the cortex appears to be controlled

by stochastic processes and structural plasticity, the modular, structured and hierarchical nature of the

cortical circuits points to the necessity of a developmental process [39, 19, 228, 351].

It is clear that in a useful bio-plausible model, the network architecture needs to be malleable,

evolvable, and adaptable, and at the same time controlled by a developmental evolutionary process that is

constrained by physical limitations of the hardware platform. Evolutionary and developmental processes

need to be able to control the duplication, migration, differentiation and death of the neuron cells. These

processes also need to be able to add or remove connections (synapses) between neurons.

Factors Affecting the Neural Coding

Neural coding of the brain is still a subject of study and debate. Many scientists and modellers believe

that the spike rates are sufficient and there is no need for precise timing for information processing. While

it is true that sigmoidal neurons, which only model spike rates, can be effectively used in recurrent neural

networks, it can be shown that different neural coding schemes based on the precise timing of the spikes

can appear as rate codes [239]. However, evidence suggests that in many parts of the brain neurons use

precise timing of the spike to convey information and fast and reliable transmission of spikes is important

in the cortical circuits [237, 239, 42, 43, 91]. In [91] authors argue that using spikes and their timing

is not only bio-plausible, but also more efficient. Moreover, bio-plausible models of Hebbian learning

such as STDP (Spike-Time Dependent Plasticity) [216, 344, 43] and even at least one interpretation of

supervised learning [172] are sensitive to the precise timing of the spikes.

Although there is no need to decide about the exact coding scheme(s) of the brain, it is clear that

naive rate codes with a long counting window cannot support many fast and real-time applications [239].

At the same time, neurons in some parts of the brain seem to be insensitive to the exact timing of the

spikes [43].

Different rate codes based on spike density, average number of spikes over a time window, and

average over a population, and also time-specific codes, based on time-to-first-spike, phase, correlation,

and synchrony are suggested for modelling the cortical circuits [239]. It appears that all of these coding

schemes can be plausible in specific situations and brain may use any or a mixture of them when applica-

ble. However, many bio-inspired systems are limited to one or a limited set of these coding methods on

the basis of their specific application or for sake of simplicity and feasibility. These models are usually

justified based on the assumption of bounded network activity (e.g. event-based simulation of spiking

neural networks [331, 229]).



4.1. General Design Factors 102

A useful bio-plausible model in our context needs to be flexible enough to use whatever coding

scheme that is suitable for the application. It might prove useful for the system to be able to use dif-

ferent coding methods in different parts of the network. For example, in a hierarchical network, higher

levels might work on a slower time scale using a spike density code, while the lower levels that deal

with stimulus and response might use the precise timing of the spikes. It is therefore important that

evolutionary and developmental processes be free to explore the solutions for the appropriate coding or

mixture of coding methods depending on the given problem while constrained by the physical limits of

the hardware platform such as spike resolution, wiring delays, processing speed. etc. Such flexibility

requires that we do not pose any additional a priori limitations on the spike coding at the design time of

the neuron model.

Factors Affecting the Soma model

When it comes to bio-plausibility of a neuron model, many studies focus on the soma, its dynamics

and its variants. As discussed in chapter 2, the most bio-plausible models of the neuron are multi-

compartmental models that track the dynamics of the membrane potential, ion channels, and ion densi-

ties with respect to time and space. Obviously, that level of detail would be impractical for an evo-devo

neuron model on FPGA. It is evident that abstracting all those behaviours even as delay lines can give

a Liquid State Machine universal computing power [240]. This is probably the justification behind very

simplistic and degenerate LIF (Leaky Integrate-and-Fire) models used in [374, 105, 311]. Even tradi-

tional LIF neuron models are incapable of showing many important behaviours of regular spiking neu-

rons and many other types of neurons in the cortex [169]. To be able to create a bio-plausible heteroge-

neous network of spiking neurons, a parametric model such as Hodgkin-Huxley [158], Izhikevich [168],

or SRM is needed. As mentioned before, a parametric flexibility that can be exploited by evolutionary

and developmental processes can lead to a more bio-plausible solutions than homogeneous networks of

a fixed neuron type. A continuous parametric space leading to continuous changes in the phenotype can

significantly contribute to the evolvability and adaptability of the system as well [165, 343, 387].

Bio-plausible neuron models also take into account the slow high-threshold dynamics of Na and

K conductances using a 2-dimensional system of equations that can give neuron model capabilities and

behaviours such as bursting, phasic spiking, rebound responses, threshold variability, bi-stability of at-

tractors, and autonomous chaotic dynamics [169].

Factors Affecting the Neurite Model

Neurites are the projections of dendrites and axons out of the soma. These processes that are extended

in space between different soma cells contribute to many different properties of the neural systems.

Axons and dendrites have a relatively very low signal transmission speed compared to electronic signals

[73, 239]. This introduces signal delays depending on the length and thickness of these neurites [73, 239].

Also there are nonlinear dynamics involved in the integration process of distal dendrite branches on many

types of neurons [149]. These nonlinearities depend on many different factors including the dendrite

morphologies and spatiotemporal patterns in the input spikes. They provide higher computational power

to the neurons and affect synaptic plasticity and neurons ability to detect synchrony in the input signals
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[91, 149]. Multi-compartmental neuron models tend to model all these dynamics in time and space while

many other simpler models abstract them into axonal delays or simplified nonlinearities in the dendrites

[149].

The dynamic connectivity and malleability of the cortical circuits is based on the developmental

processes in the neurites. Axons and dendrites are able to grow, recoil, or die, guided by developmental

processes, neuronal identity, network activities, and environmental cues, to form new connections with

other neurites or eliminate redundant connections [404]. These developmental processes behind the

growth and retraction of the neurites and their connections must be flexible enough to be smoothly tuned

by the evolutionary process. A large portion of the learning process is based on formation and elimination

of these connections rather than only changes in the synaptic weights [65, 340, 200, 264]. Although the

exact algorithm and mechanism of this type of learning is not clear, through phenomena such as ocular

dominance, it is evident that the principle of “fire together, wire together” is essential in formation and

maintenance of the cortical circuits [404, 187]. This points to local Hebbian learning processes that use

local available information from both post and pre-synaptic neurons for synaptic formation, elimination

and weight changes [91].

Factors Affecting the Synapse Model

Synapses are very important part of cortical circuits. Not only they are formed and removed by the

development processes and their strength is adjusted by Spike-Timing-Dependent Plasticity (STDP) and

long-term potentiation/depression (LTP/LTD), but also they have shorter-term temporal dynamics such

as short-term synaptic enhancements and Short-Term Depression (STD) at different time scales [248].

It is also shown that even different synapses on the same axonal tree can show unique dynamical be-

haviours [248]. Although the exact algorithms for all these dynamic changes are not discovered yet,

many algorithms and mechanism are proposed to model these dynamics and their interactions with each

other and with developmental processes of the neurites [248]. Many of these models are based on local

information that can be accessed by the synapse from pre and post-synaptic neuron cells. However, ex-

tracellular chemicals such as Dopamine signals are also involved in the synaptic plasticity and learning

process[172]. Chemical factors controlling these dynamics are regulated by the network activity, reward

signals, and developmental and evolutionary processes. Therefore, it is clear that all the factors involved

in adaptation and learning in the synapses are flexible and must be smoothly controlled by evolution.

Baldwin effect and interactions between learning, development, and evolutions can also facilitate the

evolvability of neural microcircuits [351, 76, 157].

4.1.2 Feasibility Related Design Factors

Different aspects of feasibility of the neuron model can be also discussed based on some of the feasibility

measures defined in section 2.2 and constraints on these measures. Here, each of these measures and

their relation to the neuron model design factors are discussed.

1. Hardware cost: the cost of the hardware and mainly FPGA chip is proportional to the logic and

routing resources and the performance of the FPGA device and its interfacing. These are related
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to the speed efficiency and compactness of the neuron model in terms of the amount of logic and

routing resources it needs to implement a neural microcircuit and the speed of execution. In other

words, neural model compactness and efficiency can reduce the hardware cost.

2. Design and testing time and complexity: The time needed for the design, verification and testing

of the model in hardware is related to its complexity.

3. Performance: The time that is needed for experiments is tightly coupled to the simulation, learning,

development and evolution speed of the neuron model. Each solution must be evaluated in the

shortest possible time to maximise the evolution speed. Moreover, parallelism allows dedication

of more hardware resources to increase the performance.

4. Reliability: Reliability of the whole system depends on the reliability of the neuron model. While

an unstable and unpredictable model can lead to unreliability of the whole system, a robust and

fault-tolerant model can provide the basis for a reliable, robust and fault-tolerant system. Re-

liability and accuracy of the neuron model must be comparable with the biological neurons as

well. Redundancy, distributed processing, and parallelism are also related to the fault-tolerance

and robustness of the system.

5. Application size and scalability: It is important that the neuron model can be scaled up to higher

number of neurons and connections. Moreover, compactness of the model leads to larger applica-

tions on the same chip. Again parallelism allows us to scale up the system without sacrificing the

performance.

6. The complexity of the design and testing of the neuron model must be managed by a modular

design and observability of the signals in the model for debugging and testing purposes.

4.2 General Design Options
The tangible bio-plausibility and feasibility related factors involved in the design, implementation, and

testing of the neuron model are summarised in Table 4.1. Based on these general factors it is possible now

to investigate different general design options and approaches. Each neural engineering system needs to

deal with three aspect of computation namely, processing, data storage and communication. As reviewed

in section 2.4.7, different design choices for these aspects will lead to totally different designs with

different properties. For examples some designs [111, 112] use Address Event Representation (AER),

Network-On-Chip (NOC) and inter-chip packet-switched networks for intra-cellular communication of

spikes (axons). Many others use central or distributed, dedicated or shared random access memories

for storage of the spikes, soma and synapse state variables and parameters. Processing elements can be

also centralised or distributed, dedicated to each neuron and synapse or shared between all or a group of

neurons and synapses. Inter-cellular communication and processing (in dendrites and soma) can be also

performed using stochastic or deterministic computing, parallel or serial processing, parallel or serial

arithmetic and any combination of them.
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Table 4.1: A summary of the tangible bio-plausibility and feasibility related factors involved in the design of the neuron

model.

Bio-plausibility Related Factors Feasibility Related Factors

Flexibility and evolvability of the neurite model that

allows growth, retraction, synaptogenesis, and synapse

elimination

Performance (simulation speed) and

using parallelism

Continuous parametric flexibility and evolvability of the

soma model

Compactness (hardware resources)

Continuous parametric flexibility and evolvability of the

synapse model and learning rules

Efficiency (speed to hardware re-

sources ratio)

Heterogeneity of the network in terms of synapse and

soma types

Scalability and application size

Locality of the developmental and learning processes Reliability and accuracy (comparable

with biological neuron)

Possibility of global learning processes Fault-tolerance

Time-accuracy of the spike signals Robustness

Flexibility of the neural coding Manageable complexity, modular de-

sign and signal observability

Temporal dynamics of the synapse and neurites (delays,

short-term plasticity, nonlinearities)

Fine-grain parallelism, distributed processing, redun-

dancy, and modularity
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Here we explore the feasibility of taking a bio-plausible approach regarding these design options,

meaning that, inspired by the biological structure of the brains, we examine if a structurally more accurate

design of the system is feasible and useful towards bio-plausibility of the model. In biological neural

microcircuits almost all of the processes, data storage and communications are distributed, parallel,

local, stochastic and asynchronous. Long-range communication paths usually consist of many local

processing, storage, and communication elements that concertedly work together. In biological brains

different aspects of communication, data storage, and processing are blended at a very fine atomic scale

and cannot be isolated as we are used to in engineering. Towards that goal, we can analyse the basic

structure of neurons and cortical circuits to identify these local storage, communication and processing

units and investigate the feasibility of a design on that basis.

Starting with the soma cell as a unit separated by its membrane from the surrounding tissue and

other cells, the data storage is performed by the differential density of the ions, neurotransmitters, pro-

teins, and other molecules across this membrane. Moreover, the local density of these chemicals along

the dendritic tree creates many local storage units. All these storage units of data interact with each

other and with the membrane that is covered with different types of voltage-sensitive ion channels and

receptors working as processing elements. The dendritic tree can be regarded as a 2-way communication

channel of local processing elements that are relatively isolated from the environment and can grow in

different directions and form synaptic connections with axons of the other neurons. Similarly, axons

can be modelled as one-way communication channels consisting of many simple processing elements

that mainly transfer spikes to all the axonal branches with delays proportional to the distances. Each

synapse has access to the local protein, neurotransmitter and ion densities, and membrane potential, and

the learning process is affected by these factors. The growth or retraction of these dendrite and axon

branches and formation and elimination of the synapses between them are also controlled by local de-

velopmental processes affected by the proteins diffused by processes inside the neurons or at a further

distance.

This analysis models the dendrites as bidirectional data channels full of dendritic processing el-

ements and synapses, and axons as unidirectional spike transmission lines comprised of elements that

only introduce delays. Soma units are also a body of many locally interacting processing elements that

interact with the dendrite and axon bases. Such a model suggests an abstracted general architecture of

figure 4.1 as an aggregation of processing elements, synapses, and delay elements. Although highly

abstracted, such a model still features many properties of the biological neurons such as distributed

processing, redundancy, fault-tolerance, locality, fine-grain parallelism, and modularity.

Another feature of the biological neurons is the stochastic nature of their processing elements.

For instance, ion channels stochastically switch between open and close states at a high speed and the

collective effect of many such channels switching in response to voltage or neurotransmitters appears as

a continuous change in the membrane voltage [73]. It then makes sense to use many simple stochastic

digital processing elements that can collectively imitate the behaviour of a biological neuron. As there

are different types of ion channels on the neuron membrane with different properties and sensitivities,
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Figure 4.1: Abstracted general architecture of a neuron as an aggregation of processing elements (PE), synapses (Syn), and

delay elements (Delay).

it would be also possible to have different types of processing elements that are sensitive to different

signals. However, in many cases the added value of such bio-plausible design may not justify the cost of

that many processing elements. For example, in the axon, each segment consisting of many modules that

mainly work as a delaying transfer line for almost identical action potentials. Each of these segments can

be efficiently modelled with a single digital delay element that transfers digital pulses instead of many

stochastic processing elements collectively propagating an analog ripple.

Based on a similar bio-plausible approach, a single wire can be used for extracellular spike trans-

mission of every axon instead of using central shared memories or buses of traditionally-engineered

designs. Such a one-to-one mapping between implementation and network architecture, which dedicates

a separate routing resource to each axon, with sufficient time resolution, can support any neural coding

that evolution needs for tackling a given problem. This is in contrast with the event-driven simulators and

corresponding Address Event Representations (AER) used in buses, memories, and packet-switched net-

works that may face too many event collisions caused by synchrony in the signals or simply high network

activities. Such event-driven methods need to assume a bound on the network activity or compromise

the reliability and accuracy of the signal transmission. It is important to notice that such inaccuracies can

destruct the synchrony and information content of temporal-coded signals exactly when they are needed
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the most. Therefore in the first step such event-driven methods are avoided in order to keep the neural

coding free of any biologically implausible limits that can impact the neural network performance and

its evolvability.

Based on the above analysis, the first investigated design approach is to use simple stochastic digital

processing elements to generate the behaviour similar to those of soma, dendrite, and synapses and use

digital delay elements and dedicated routing resources for axons all organised in the general architecture

of figure 4.1. This approach implies that we use a separate set of processing elements for each synapse,

each dendrite segment, and the soma. The total hardware resources used by these processing elements

and the communication lines between them is a major constraint in the design that needs special attention.

Routing resources in FPGA are usually the bottleneck of such connectionist designs. Therefore, it would

make sense to explore designs that require minimum amount of these routing resources. Although, using

the same bio-plausible principle of locality in the design of the neuron model can help to reduce the

number of long-range routing resources, the number of local connections also play a major role. As

discussed in the next section, using stochastic bitstreams can reduce the number of these connections to

a bare minimum.

4.3 Stochastic Models
As reviewed in section 2.4.8, stochastic computing can be used effectively in neural computing. A

plethora of studies and methods suggest slightly different representations and arithmetic elements

[116, 50] including single and double-wire, bipolar, and unipolar, and unbounded representations. The

feasibility factor of compactness of the neuron model can justify using single-wire representations.

Moreover, as the range of membrane potential values in biological neurons is bounded, using one of

the bounded representations makes sense. Therefore, we can focus our investigation on the bipolar and

unipolar representations (see section 2.4.8). Although any system of equations based on one of these rep-

resentations can be transformed into the other one through change of variables, the hardware resources

needed for arithmetic operations in these representations are quite different. For example, a multiplica-

tion that can be performed in the unipolar representation using a single AND gate, needs at least three

gates to be done for bipolar representation. Therefore, depending on the type of operations, a designer

might like to switch between these representations or even use a mixture of them. In the first design

exploration step, we focus on a distributed stochastic neuron model design that uses bitstreams for inter-

cellular communication. Then, we investigate the effect of reducing the number of processing elements

on the feasibility and bio-plausibility factors.

4.3.1 Distributed Stochastic Models

In a distributed neuron model, the processing is distributed over all the processing elements in the neuron.

Designing each processing element needs to follow the behaviour of the biological counterparts at a

micro level. For example, processing elements in the dendrite need to act like ion channels on the cell

membrane. This is obviously not a feasible approach at the current time as the current technology cannot

provide the number of processing elements needed for such one-to-one mapping of the structural units.
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We are bound to scale down the number of processing elements.

When the number of processing elements is reduced, it is not clear what behaviour to expect from

each element. We have to reverse engineer the behaviour of each element from the known behaviour of

the biological neuron in a way that when they work together they show the same collective behaviour.

Bio-plausible parametric models of the neurons such as Hodgkin-Huxley [158] and Izhikevich [168] are

presented as a system of differential equations. The challenge is to design processing elements to capture

these differential equations.

Although originated from another context, studies in the distributed protocols [135, 274, 136] pro-

vide us with an effective tool for translating these equations into stochastic Finite State Machines (FSM)

that communicate with each other and generate the desired collective behaviour.

Following the guidelines from [135, 274, 136], and based on the general architecture of the neuron

model in figure 4.1 we can explore the design challenges of a neuron model. Bio-plausible neuron

models use at least a two-dimensional system of equations that govern the behaviour of the rapid and

slow dynamics in the neuron. The rapid dynamics are governed by a quadratic differential equation while

the slow dynamics are captured by a first degree differential equation (see equations 2.10). At this stage

we can focus on a simpler one-dimensional differential equation ( based on a quadratic neuron model -

equation 2.9) to investigate the design challenges. Considering a quadratic differential equation of the

general form:

u̇ = a(u− vr)(u− vt) (4.1)

where u denotes the membrane potential, a is a constant capturing the membrane decay constant, vr and

vt are constant resting and threshold voltages of the neuron respectively. In [135, 274, 136] Gupta and

Nagda presented a procedural method that starts with a set of differential equations and arrives at a set

of condition-action rules for a distributed system of interconnected nodes that behave according to those

differential equations. Following the guidelines in [135, 274, 136] yields processing elements with a

binary state variable (S = {0, 1}) and following actions:

1. An element in state 1 performs the following with probability PA = p · a (p is a scaling factor): it

randomly samples another processing element from the system and if it is also in state 1 it senda a

token to a randomly selected processing element.

2. An element in state 1 will go to state 0 with probability PB = p · a(vr + vt − vrvt).

3. An element in state 0 goes to state 1 with probability PC = p · a · vr · vt.

4. An element in state 0 that receives a token goes to state 1.

5. An element in state 1 that receives a token stays in state 1 and resends the token to another ran-

domly selected process.

The above distributed protocol assumes a network that allows communication of each element with

any other randomly selected processing element. To emulate such communication network in the gen-
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eral architecture of figure 4.1 we can randomly shuffle and move around the state and token bits using

communication lines between processing elements. Moreover, we can add a device (here, called a scram-

bler) that is able to change the order of the stochastic bits. As all the processing element have identical

structure and functionality, only moving the state bits around is sufficient for random communication

of elements and tokens and there is no need for moving the tokens around. Figure 4.2 shows a general

design using a state ring for moving the state bits around. In this design each processing element can

send/receive state bits to/from upper and lower neighbouring elements. Each unit also has a token flip-

flop that stores the token generated by the processing element. Each of such processing elements can

be constructed using a few flip-flops and Lookup Tables (LUTs) on the FPGA. The scrambler sits in

the middle of the state ring, receives random numbers from a Random Number Generator (RNG) and

shuffles the state bits. This scrambler can be also constructed efficiently with a shift register present in

the FPGA. About half of the Virtex-5 LUTs can be used as random addressable 32 bit shift registers.

The logic circuit inside each processing elements captures the logic of the above actions on the values of

the token and two state flip-flops. This logic circuit needs stochastic bitstreams with probabilities of PA,

PB , PC and another stochastic bitstream Ph with probability equal to half. This last stochastic bitstream

is needed when logic circuit has two different equally probable options. For example, when both state

bits that are received from neighbouring element are 0, and token bit is 1, action 4 can be performed

on any of the state bits. In this case Ph is used to decide which one to change. Note that each PE unit

actually contains two processing elements (two state bits) that share the logic and token bit. The logic

equations for the logic unit can be derived from the above actions as:

Su = TSuSd + PC T̄ S̄d + T S̄dS̄u(P̄hPC + PhPB) + PB(T S̄dSu + SdS̄u + T̄ Sd) (4.2)

Sd = TSuSd + PC T̄ S̄u + T S̄dS̄u( PhPB + PhPC) + PB(TSdS̄u + S̄dSu + T̄ Su) (4.3)

T = SuSd(T + PA) (4.4)

where Su and Sd on the right hand side of the equations are inputs from up and down neighbouring

processing element.

Although this model does not exactly work as the distributed protocol, it is a good estimation. The

only differences are that the random samplings may not be always as random as distributed protocol,

and in very rare cases (much less than 2% of the time if fitted with Izhikevich parameters) a token will

be lost when all of the Su, Sd, T , and PA in a PE are 1. While this simple model lacks the mechanism

for detection of an action potential, spike generation, and resetting the membrane potential, and does not

include the slow dynamics of the biological neurons, it is useful for investigation of the challenges in

using this model in a design.

Since accurate in-vivo measurement of the intrinsic neuronal noise is not possible [355], for com-

parison with biological neuron, we resort to using estimates from [246]. The total peak-to-peak voltage

amplitude (σV ) of the intrinsic neuronal noise of a pyramidal soma at resting potential (including thermal

noise, K+ and Na+ ion channel noises, and synaptic noise) is estimated to be about 1mV [246]. Based

on this estimation, and a signal range of -100 to 30mV, the Signal-to-Noise Ratio (SNR) of the biological



4.3. Stochastic Models 111

PE

Scrambler

RNG

T

Su

Sd

Lo
gi
c

Ph

PC
PB
PA

To/from state ring

PE

PE

PE

PE

To/from state ring

Figure 4.2: Left: general design of a distributed stochastic model consisting of a random number generator (RNG), a

scrambler, and a number of processing elements (PE). Right: internal structure of a processing element (PE). Su, Sd, and

T are the State up, State down, and token flip flops respectively.

pyramid neuron can be calculated:

SNRdB(Pyr) = 20 log10 (
Asignal
Anoise

) (4.5)

= 20 log10 (
130mV

1mV
) (4.6)

≈ 42dB. (4.7)

To investigate the effect of the number of PEs and length of the scrambler on the SNR of the system,

the above stochastic distributed model of the quadratic neuron was simulated at the resting potential for

5000 time steps. Preliminary simulations with a scrambler length of 32 bits showed that over 2000

PEs (a total of 4032 state bits and 2000 token bits) are needed to achieve a SNR equal to the above

estimate of 42dB. Moreover, to detect and generate an action potential, the bitstream must be examined

with a large binary counter for a long time. This will also add to hardware resources and latency of

the model. Obviously, such a high number of PEs is outside of the feasibility margins for compactness,

performance, and efficiency of the neuron model on an FPGA device. However, pursuing this method

might prove useful for small scale systems with very few neurons due to the bio-plausible stochastic

nature of the model. Next, non-distributed stochastic models are examined.
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4.3.2 Centralised Stochastic Models

In a centralised stochastic neuron model based on the general architecture of figure 4.1, synapses and

dendrite structure are only responsible for input current integration and all the non-linear dynamics of

the neuron is centralised in the soma unit. In such a model, each synapse unit can add some pulses to a

bitstream according to its synaptic weight. The soma unit then generates the updated membrane potential

signal in response to the arriving stochastic pulses and sends a copy conveying the updated potential to all

the synapse units. Therefore, soma unit should contain all the parametric non-linear stochastic operators

that can be evolved to change the behaviour of the neuron.
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Figure 4.3: Left: General design of a centralised stochastic model. Right: Internal structure of the soma and synapse units.

RND represents a source of random bitstreams with specific probabilities.

To investigate the challenges of centralised stochastic models, here again, a one-dimensional

quadratic neuron is designed using stochastic computing techniques. Figure 4.3 shows the general de-

sign of a centralised stochastic model with a dendritic ring that conveys the stochastic bitstreams (with

probability au2
t + (1 + b)ut + c) to synapse units. Every time that a synapse unit (bottom right of figure

4.3) receives a presynaptic input spike it adds the synaptic weight (a short bitstream with probability of

w stored in a shift register or generated by a digital to stochastic converter) to this upward stochastic

bitstream and passes it to the next synapse unit. The soma unit (top right in figure 4.3) receives the total

membrane potential including postsynaptic currents (ut+∆ = au2
t + (1 + b)ut + c + I) and calculates

the new upward bitstream. The soma unit is designed based on a stochastic-to-digital converter [50], a

universal stochastic function generator, a spike generation module and a source of random bitstreams
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with constant probabilities (RND in figure 4.3).
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Figure 4.4: Simulation results of a 16x4-bit stochastic function generator with parameters tuned to approximate the func-

tion f(x) = 3.6x2 − 1.2x + 0.156 (shown in green). The red curve shows the probability of the function generator out-

put bitstream against the input value (x). Intersection points of the blue line (f(x) = x) and the update function determine

the resting (x = 0.1) and threshold (x = 0.5) potentials respectively.

The stochastic to digital converter is mainly an up/down n-bit saturating binary counter that counts

the ones up and the zeros down in the bitstream and estimates the probability of 1s in the bitstream as

a n-bit binary number. This is the binary representation of the current membrane potential. After an

action potential that is detected by spike generation module the counter will be reset to a pre-specified

value (reset potential) and a spike pulse will be sent to the output. The universal stochastic function

generator is essentially a lookup table of 2n values of 2m-bit binary number. It uses the same principle

of digital to stochastic converters presented in [50] and used in [391, 14]. However, in the function

generator each n-bit value of the membrane potential will address a register in the lookup table that

contain the corresponding value of the function. The other address lines of the lookup table are connected

to m random bitstreams with relative probabilities proportional to the weights of the binary digits in the

register so that the total probability of these m bitstreams add up to one. It is therefore possible to tune

the parameters in the lookup table to generate any arbitrary function of the input. Figure 4.4 shows

the simulation results of an example stochastic function generator with a 16x4-bit lookup table with

parameters tuned to approximate a quadratic function that can be used in a quadratic neuron model.

The red curve shows the probability of the function generator output bitstream versus the input binary

value. The green curve is the reference quadratic function. Intersection points of the blue line with
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these curves about x = 0.1 and x = 0.5 determine the resting and threshold potentials respectively.

The probability of the bitstream is calculated by counting 10,000 bits. The simulation demonstrates that

very close approximations of such functions can be achieved by tuning a set of parameters. Parameters

loosely work as control points that pull the function curve up and down at different values of x.

Although this is a very simple and general model it allows many different extensions and improve-

ments. Each synapse unit has access to both the presynaptic spike and the current partial and total

membrane potential (as upward and downward stochastic bitstreams) to be used for adding synaptic

plasticity mechanism for learning, short-term plasticity, etc. It is also possible to add a second variable

and equation for the slow dynamics of the soma.

This simple model can be implemented using Virtex-5 LUTs, shift registers, and flip-flops. The n-

bit converter can be implemented using n flip-flops, a shift register (1 6LUT), and n/2 6LUTs virtex-5

primitives. The function generator can be implemented with 2m+n−6 6LUTs configured together as a

2m+n-bit RAM. The random bitstreams with constant probabilities can be generated globally and used

in all modules. The total hardware needed for the soma unit can be estimated to need 2m+n−6 + n/2

6LUTs and n+ 1 flip-flops.

To calculate the noise in the system we start with the quantisation error of the binary representation

in the stochastic to digital converter. The SNR (Signal-to-Noise Ratio) of a n-bit binary representation

is equal to:

SNRdB = 20 log10 (2n) ≈ 6.02 · n dB (4.8)

Therefore, for achieving the 42dB SNR of the biological pyramidal neuron, such a centralised

stochastic neuron model needs at least n = 7 bits. Even with a minimum of m = 2, necessary to achieve

the needed accuracy for the function generator, a soma unit at least needs 12.5 6LUT primitives and eight

flip-flops. That is roughly equal to four Virtex-5 slices. It would be also possible to compactly implement

a synapse units and a very simple flexible learning mechanism in a minimum of half a Virtex-5 SLICEM.

Another source of noise in such a system is the inherent statistical variation in counting stochastic

bitstreams [50]. The coefficient of variation of a Bernoulli bitstream with probability p is:

CV = σ/µ =

√
1− p
np

(4.9)

where n is the number of counted bits [50]. Then, SNR can be calculated as:

SNRdB = 20 log10(1/CV ) = 20 log10(µ/σ) = 10 log10(
np

1− p
) dB (4.10)

This value depends on the probability of the bitstream as well. Counting n = 128 bits that is equal to the

capacity of the 7-bit counter of the stochastic to digital converter gives a maximum of about 21dB for

p = 0.5 and 11.5dB for p = 0.1. This is a tighter bottleneck on the accuracy of the system than the noise

due to the digital quantisation. This means to achieve 42dB SNR of the biological neuron, even only at

p = 0.5, the soma needs to count over 16000 (214) bits. This was also confirmed through simulations
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that showed for an acceptable noise level in signal estimation, well over 8000 stochastic bits must be

counted.

This affects both the speed and hardware efficiency of the model since counting 214 bits needs at

least 214 clock cycles and a 14-bit counter. To mitigate the impact of increasing accuracy on the hardware

efficiency, it is possible to increase only the number of bits in the counter and use the higher order bits

for the same small function generator. However, even accepting a higher noise level cannot significantly

improve the speed as noise level is of the order of O(1/
√
n) where n is length of the counted bitstream.

Stochastic models have the advantage of hardware efficiency at the cost of lower speed, thus possi-

bility of realising a large-scale network on FPGA. They are slower than their deterministic counterparts.

However, very simple and low latency circuits allow them to achieve higher clock frequencies that may

slightly mitigate this problem. Stochastic models are more immune to noise and when they achieve

the required accuracy, they are more robust than their deterministic counterparts. Their reliance on sin-

gle wire signals can minimise the FPGA routing resources needed for intracellular communications.

Stochastic neuron models are also biologically more plausible than deterministic models as they can

better model the internal noise and uncertainty of the biological neurons. Preliminary experiments and

simulations showed that it is also possible to evolve different stochastic functions using LUTs in the

FPGA giving a rather continuous range for parametric flexibility needed for evolvability of the neu-

ron types and synaptic plasticity. Distributed models appear to have a better convergence speed than

centralised stochastic models as they exploit many more PEs. With the right design, the inherent redun-

dancy, modularity, and parallelism in distributed stochastic models can also lead to fault-tolerance. They

can also model the distribution of the ion channels in space better than centralised models. This may

prove useful in evolving local nonlinearities in the dendrite trees. The difference between centralised

and distributed stochastic models shows a trade-off between hardware compactness and performance.

Although stochastic models can lead to very bio-plausible, simple, compact, robust, flexible, and

evolvable neuron models, the fundamental trade-off between their reliability and efficiency may not

lead to very efficient bio-plausible designs on FPGAs compared to deterministic models. Therefore,

deterministic models are also investigated in the following section.

4.4 Deterministic Models
In order to reduce the noise, it is possible to use deterministic bitstreams for intercellular communica-

tion on a single wire. A range of different approaches from deterministic bitstream methods to using

traditional serial binary bitstreams are available.

4.4.1 Using Uniformly-weighted Bitstreams

A number of methods that use uniformly weighted but deterministic bitstreams are proposed in [49, 286].

These methods are similar to stochastic computing methods in the sense that all the bits in the bitstream

have the same weight and some operations such as multiplication can be simply performed using very

simple logic circuits. However, by generating the bitstreams deterministically they reduce the noise to

the level of the quantisation error. The noise level is reported to be of O(1/n) of the bitstream length
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[49], while stochastic noise is of order O(1/
√
n). This can lead to much better performance as only

a bitstream of length 128 bits could be sufficient to achieve a SNR of 42dB. However, the summation

and other operations using such deterministic schemes need complex logic circuits, which adds to the

hardware resources and design complexity. These models are mainly proposed for the rate model neural

networks. In rate model neural networks, unlike spiking neuron models, multiplication of the synaptic

weights by input signals is a major part of the computation load. In spiking neuron models, however,

the major computation load is summation in the dendrite and synapses, and calculation of a nonlinear

function in the soma. As the number of synapses is much higher than number of neurons, it makes sense

to simplify the circuitry for the synapse and dendrites with the price of more complex hardware in the

soma.

4.4.2 Using Binary Bitstreams

A traditional approach is to use a binary representation for the bitstream. Starting the bitstream from

LSB (Least Significant Bit) allows relatively simple circuits for serial arithmetic operations such as

summation, accumulation, and other operations. A serial adder can be implemented efficiently with a

single Virtex-5 6LUT and a flip-flop. A shift register, which is abundant in the FPGA can be used to

store synaptic weights efficiently. Although flexible nonlinear operations are not as simple and efficient

as stochastic computing, it is still simpler than parallel arithmetic circuits and its complexity is less

dependent on the representation length (n). The only part of the hardware that depend on the length of

the representation are shift registers that store the variables (such as membrane potential, and synaptic

weights) and constants (such as soma parameters). The length of the shift registers are of order O(n).

A bitstream of length n can represents 2n different values. Based on the SNR calculation of a

binary representation (equation 4.8), the quantisation noise of a binary bitstream of length n bits is

equal to 6.02 · n dB. That means to achieve a SNR of 42dB, a binary bitstream of length 7 bits is

sufficient. This leads to a higher performance than any other bitstream-based model. The speed in

bitstream-based models is of order O(1/n), where n is the length of the bitstream, and models with

binary representation need the shortest length to achieve the same quantisation error. Moreover, the

inherent noise in measurement of the stochastic representation does not exist in deterministic models.

4.4.3 Distributed Binary Systems

It is conceivable to distribute the nonlinear computation of the soma dynamics over different PEs in the

dendritic tree. Due to the large number of synapses compared to number of neurons in cortical circuits,

and the large difference between complexity of the computations in the soma and dendrites, it does

not make sense to distribute the soma processes over PEs in the dendritic tree. However, it may prove

efficient in practice to keep the non-linear interaction between synapses (and other possible PEs) on the

dendritic tree distributed rather than centralising them in the soma PEs.

4.5 Summary of the Design Options
Here we summarise different approaches to neuron model design, their challenges, important factors, and

trade-offs between these major factors and constraints. We assumed a minimum required level of bio-
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plausibility and feasibility to narrow down the exploration to models based on the general architecture

of figure 4.1, then investigated the properties of stochastic and deterministic, distributed and centralised

neuron model designs.

Efficiency

Computation using bitstreams can lead to rather efficient spiking neuron models both in terms of per-

formance and compactness (intracellular communication and other hardware resources) compared to

traditional models based on parallel communication and arithmetic. Distribution of processing, storage,

and communication functions over FPGA area is not only bio-plausible, but also prevents bottlenecks of

central modules such as shared memories for network activity, or variables and constants, shared buses

for intracellular communications, and shared PEs of a group of neurons or synapses. Such distribution

is also compatible with FPGA design practices and can effectively leverage the potentials of the FPGA.

Bio-plausibility

Direct mapping of network connectivity to neuron intercellular communication channels (spike trans-

mission on axons) not only leads to a more bio-plausible model of distributed communication, but also

allows a free choice of neural codings suitable for a given problem to emerge through evolution. Bus and

memory-based models are bound to make biologically implausible assumptions about the neural coding

to provide the bandwidth needed for such massively-connected networks or sacrifice time-accuracy of

the spikes. Distribution of the storage and processes over the synapses and dendritic PEs can effectively

capture the distribution, locality, redundancy, parallelism, fault-tolerance and modularity of the natural

neurons.

Using bitstreams allows flexible single-wire communication between PEs with minimum routing

resources. Both stochastic and deterministic models can be designed in a rather flexible way to model

the dynamic connectivity of biological neural microcircuits, and flexibility of the soma and synapses.

Designs based on bitstreams can also capture the heterogeneity, distribution, locality, parallelism, and

modularity of natural processes in the brain. Stochastic and particularly distributed stochastic designs

can lead to very bio-plausible models of the neuron that capture the stochastic nature of the biological

processes. Distributed stochastic models also show a high level of redundancy and fault-tolerance.

Performance-Reliability Trade-off

There is an inherent trade-off between accuracy and performance of the stochastic models. While each

membrane update cycle needs at least n clock cycles (for measurement of n bits of the stochastic bit-

stream), the noise level is of order of O(1/
√
n). To achieve the required bio-plausible accuracy (a

minimum SNR of 42dB) the stochastic models need about n = 214 clock cycles for each update cycle.

Noise level of models based on uniformly-weighted deterministic bitstreams is of order O(1/n) while

deterministic models based on serial binary arithmetic have a noise level of order O(1/2n).

Compactness-Reliability Trade-off

There is also a trade-off between the required accuracy and the hardware resources in these models.

Both distributed and centralised stochastic models have a trade-off between accuracy and the length of
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the measured stochastic bitstream. The hardware resources needed for such measurement is of order

O(log2 n) where n is the length of the bitstream needed to achieve the required accuracy with a quanti-

sation noise of orderO(1/n) and stochastic noise of ofO(1/
√
n). Distributed stochastic models have an

extra trade-off between the number of PEs and their accuracy that significantly impacts the compactness

of the neuron model. Simulation results showed that to achieve a SNR of 42dB over 2000 PEs with more

than 6000 state bits are needed.

The hardware resources needed for linear and non-linear operations in deterministic models do not

depend on the representation length and are of order O(1). However, deterministic centralised models

need hardware resources of order O(n) for storing the variables and constants while the quantisation

noise of the uniformly-weighted and binary bitstreams are of orders O(1/n) and O(1/2n) respectively.

Although hardware resources needed for deterministic distributed model are not precisely assessed, it

can be expected to be significantly more than deterministic centralised models.

Performance-Compactness Trade-off and Scalability

The above trade-offs can be also viewed as a general trade-off between performance and compactness of

these neuron models. Centralised stochastic models are very compact but much slower than deterministic

ones, due to the inherent measurement noise of the stochastic bitstreams. Deterministic binary models are

much faster than stochastic models but need more hardware resources for processing. Both deterministic

and stochastic models need the same amount of routing resources for intracellular communications.

While a stochastic model can be used to implement a bio-plausible small-scale system of a few neurons

on a FPGA, their performances are far from the hyper-realtime performance needed for an evo-devo

system in FPGA. On the other hand, a deterministic serial arithmetic neuron model can deliver the

required performance with a fair amount of hardware resources. Parallel arithmetic binary models can

be n times faster than serial models (where n is the number of bits used for representation of variables

and constants) but require hardware resources of orderO(n), while serial arithmetic models only require

that much resources for storage. Therefore, it must be feasible to use a deterministic serial binary model

to implement a network of about 100 neurons in a small Virtex-5 FPGA.

Fault-tolerance and Robustness

Stochastic models can be very immune to noise. With a good design, distributed stochastic models can

be also extremely fault-tolerant due to the redundancy in their structure. Deterministic models based on

uniformly-weighted bitstreams are less sensitive to noise than models based on serial binary arithmetic.

Simplicity

Stochastic systems have a rather simple design but are harder to test and debug due to their unpredictable

nature. Serial binary models are based on the traditional design principles, rather simple to design, test

and debug. Deterministic models based on uniformly-weighted bitstreams are not simple to design but

probably simpler to test and debug than stochastic models. Centralised models are always easier to

design and test than distributed models.
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Table 4.2: An evaluation summary of different design approaches and their trade-offs for the neuron model in the context of

this case study assuming a fixed minimum required accuracy. The general trade-off between bio-plausibility and efficiency

and dependancy of the fault-tolerance and robustness to bio-plausibility is clear in this general view of the trade-offs.
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4.6 Case Study: Digital Neuron Model

In this section, based on the aforementioned analysis and insights, practical challenges in design and

implementation of a simple but rather general bio-plausible neuron model that is feasible in Virtex-5

FPGA are investigated. This model will be used as a platform for practical evaluation of the constraints,

trade-offs and challenges of the promising approaches, and also as a base for further investigations in

the future chapters. Although the model is kept simple enough to be feasible in the time constraints of

the present project, it is shown how this example design can be modified or extended to be more bio-

plausible, efficient, flexible, scalable, and reliable. Here the design of the neuron model, called Digital

Neuron Model, is explained along with more explanation of the detailed design options and justification

of design decisions.

Table 4.2 shows an evaluation summary of different design approaches for a neuron model given a

fixed accuracy in the context of this case study. Since the performance and efficiency are very important

for an evo-devo neuron model, a deterministic model with binary bitstreams with central processing for

the soma and distributed processing for dendrite is adopted. To reduce the number of connections and

hardware area while maximising the speed and parallelism, a serial arithmetic bit-level parallel design is

selected. Following the general bio-plausible architecture of section 4.2, each digital neuron consists of a

set of synapse units and a soma unit connected in a ring architecture (called dendritic tree) shown in figure

4.5(a). While this brings some distribution and parallelism (between synapse processes), modularity,

and redundancy to the model, it reduces the number of PEs in the system to the number of neurons and

synapses. However, it is quite possible to extend the model to accommodate extra processing elements

along the dendritic tree to introduce other features and nonlinearities. This architecture creates a 2-way

communication channel and allows the development of different dendrite structures as demonstrated in

the example of figure 4.5(b). The signal pairs that connect the units form a loop that conveys data packets

(a start bit and 16 data bits). The soma unit sends an upstream packet containing the current membrane

potential on its upstream output (USO). Synapse units pass upstream packets unchanged but process

downstream packets. The spike input of each synapse is connected to the axon of the pre-synaptic neuron.

If a synapse unit receives a pre-synaptic action potential, it adds (subtracts) its synaptic weight to the

first arriving downstream packet. Therefore, the soma unit receives the sum of membrane potential and

post-synaptic currents in its downstream input (DSI). After processing this packet, the soma unit sends

another packet with the updated membrane potential. Serial arithmetic is used in all the units to create

pipelined parallel processing inside each neuron, meaning that neighbouring units process different bits

of the same packet at the same time adding to the efficiency of the system. Using this architecture

has a number of collective benefits. First, a 2-way communication channel makes it possible to have

a local synaptic plasticity mechanism in each synapse leading to a higher level of parallelism. Most

of the bio-plausible unsupervised learning mechanisms like STDP [344] and its variants involve a local

learning process in each synapse. Secondly, it minimises the number of local and global connections,

which leads to a significant relaxation of constraints imposed upon the network architecture, as limited

routing resources is the major constraint in optimal utilisation of FPGA functional resources. Each unit
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Figure 4.5: a) General architecture of the digital neuron (Syn=synapse) b) Example of the dendrite structure and its

adaptability (c) Synapse unit architecture.

needs only a global clock signal to work. Another global reward or punishment signal can be added for

a supervised learning mechanism. Although other architectures may bring about less pipeline latency,

they need more local and global connections. For instance, a binary tree structure similar to [331] needs

about double the number of local connections including the upstream links (excluding the global control

signals). Third, it allows developing any dendrite structure similar to biological dendrites. The user is

free to trim (add) dendrite sub-trees at any point simply by cutting (connecting) a (pair of) connection(s)

and bypassing (inserting) the root unit of the sub-tree as shown by the dashed lines in figure 4.5(b).

This can be implemented in FPGA using multiplexers or other routing resources as explained in section

5.4 . This flexibility is vital for a developmental model that needs on-line growth and modification.

Fourth, it maintains the regularity of the model by reducing the diversity of the module types (synapse

and soma units) and connection types (dendrites, axons) to a biologically plausible bare minimum. This

simplifies the place and route or dynamic reconfiguration process if a regular infrastructure of cells and

connections (similar to [377]) is used. Finally, it is possible to add other variables to the data packet (e.g.

the membrane recovery variable in the Izhikevich model [171]) if required.

4.6.1 The Synapse Unit

The synapse unit, shown in figure 4.5(c), comprises a 1-bit adder, a shift register holding the synaptic

weight, two pipeline flip-flops, and a control unit. The upstream input (USI) is simply directed to the

upstream output (USO) through a pipeline flip-flop. The control unit disables the adder and weight

register when no spike has arrived by redirecting the downstream input (DSI) to the downstream output

(DSO) through another pipeline flip-flop. When the control unit detects a spike, it waits for the next

packet and resets the carry flip-flop of the adder when it receives the start bit. Then it enables the shift

register and the adder until the whole packet is processed. Using a shift register with a feedback loop

allows compact storage and retrieval of the synaptic weight. Moreover, a learning block can be simply

inserted into the feedback loop of the weight register in order to realise an unsupervised local learning

mechanism like STDP [344]. This learning block can access the current membrane potential and the

axonal input as well. It is also possible to modify the synapse to create a digital postsynaptic current

input by loading the input voltage into the weight shift register serially or in parallel.
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4.6.2 The Soma Unit (PLAQIF model)

Here, a new Piecewise-Linear Approximation of the Quadratic Integrate and Fire (PLAQIF) is designed

as the soma model. This new model is published and presented in peer reviewed international confer-

ences [338, 339], reviewed and cited in [303, 181, 32, 300, 18, 167, 295, 164, 163, 179] and inspired

others to design similar models [2].

For this case study, a sufficiently bio-plausible but simple and compact model is needed. Very bio-

plausible models such as Izhikevich are beyond the time and hardware budget of this project. However,

as will be shown later, the PLAQIF model can be simply turned into an approximation of the Izhikevich

model with more hardware resources and design time. Most of the hardware models are based on the LIF

[171] or simplified LIF neuron models [311, 374]. However, a Quadratic Integrate and Fire neuron model

(QIF) is biologically more plausible compared to the popular LIF model as it has dynamic threshold and

resting potentials, can generate bio-plausible spikes with latencies and has two bistable states of tonic

spiking and silence [171]. Using a PLAQIF model has a number of benefits. While it is relatively

inexpensive (in terms of hardware resources) to convert a serial arithmetic implementation of a LIF

neuron model into a PLAQIF model (as shown later), PLAQIF model can generate a bio-plausible action

potential. This is particularly important as we may use the membrane voltage in the learning process.

Moreover, the behaviour of the model can be specified with a number of parameters (i.e. time constants

and reset potential). These parameters can be placed in shift-registers and look-up-tables (LUT) to

be modified at run-time (e.g. by partial dynamic reconfiguration) or can be hard-wired for hardware

minimisation. Finally, it is easy to extend this model to a piecewise-linear approximation of Izhikevich

model (with a wide range of bio-plausible behaviours e.g. bursting, chattering, and resonating [171]) by

adding a second variable and a linear equation., if hardware budget permits. The hardware circuit for this

second equation can be accommodated in the soma unit or even in a special type of synapse or dendritic

unit.

The dynamics of the QIF model can be described by a differential equation and reset condition of

the form [171]:

u̇ = a(u− ur)(u− ut) + I , if u ≥ upeak then u← ureset (4.11)

where u is membrane voltage, a specifies the time-constant, I is the postsynaptic input current, and ur

and ut are nominal resting and threshold voltages (when I = 0) respectively. Note that in contrast with

LIF models, the actual resting and threshold voltages are dynamic and they change with input current I

[171]. Applying first-order Euler method results in an equation of general form:

uk+1 = uk + a(uk − ur)(uk − ut) + Ik , if uk+1 ≥ upeak, then uk+1 ← ureset (4.12)

where k is the step number. The design of the PLAQIF model starts with a serial arithmetic implemen-

tation of a LIF model with equation uk+1 = uk + I − auK (for a < 1), and some modifications. The

last term can be computed using two taps:

uk+1 = uk + Ik +

⌊
uk
P1

⌋
︸ ︷︷ ︸

Tap 1

+

⌊
uk
P2

⌋
︸ ︷︷ ︸

Tap 2

(4.13)
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Figure 4.6: (a) The PLAQIF model approximates the QIF model (the dotted curve) with a piecewise linear function by

modulating the V-shape function V (x). The control points (arrows) can be moved by tuning the parameters. (b) Soma unit

where Pi = (−1)si · 2pi with pi and si being the parameters of ith tap. Each tap is computed by

adding (or subtracting depending on si) the shifted version (arithmetic shift right by pi bits) of the

binary representation of uk. By replacing the sign bit (S) and the most significant bit (MSB) of uk with

the complement of MSB we can produce the piecewise linear function V (uk) = |uk| − 214 (assuming

a 16-bit representation). This function is shown in figure 4.6(a) as the V-shape function. By tapping

(modulating) V (uk) with different parameters (pi,0 . . . pi,3 and si,0 . . . pi,3) for different combinations

of S and MSB (positive or negative, small or large values of uk) we get:

uk+1 = uk + Ik +

⌊
V (uk)

P1(uk)

⌋
+

⌊
V (uk)

P2(uk)

⌋
(4.14)

where Pi(x) = (−1)si,j · 2pi,j , j =
⌈ x

214

⌉
+ 1 (4.15)

which is a piecewise-linear approximation of a quadratic function shown in figure 4.6(a) as PLAQIF. It

is possible to approximate equation 4.12 with equation 4.14 by changing the parameters pi,j and si,j as

shown in figure 4.6(a).

The soma unit, shown in figure 4.6(b), comprises a 1-bit adder, a 32-bit buffer shift register (holding

the partial sums from the last cycle), a 16-bit shift register (holding reset voltage ureset), a lookup-table

(LUT, a 8x5 bits RAM, which holds the parameters pi,j and si,j), a control unit (CU, which detects the

arriving packet and generates all the control signals e.g. Tap, ShiftEn, etc.), and a few multiplexers.

The soma unit initiates a data packet thorough USO and waits for a packet on DSI input. At this point, the

buffer holds the value uk in its left half and S and MSB flip-flops hold the sign and most significant bit of

uk. The LUT selects the correct shifted version (according to S and MSB) of uk through the multiplexer

and has its first bit ready on the input of the adder. The first tap starts with receiving a packet. An

arriving packet, which contains the value uk + Ik, goes to the other input of the adder. The LUT also

selects the add or subtract operation in each tap (si). As the operation goes on, the MSB extension block

switches the multiplexer to MSB at the right time to generate the value
⌊
V (uk)
P1(uk)

⌋
on the input of the adder.

Therefore, the new value of uk + Ik +
⌊
V (uk)
P1(uk)

⌋
shifts into the buffer through a multiplexer. The second

tap starts immediately and the value in the left half of the buffer goes to the adder input. The other input
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of the adder is again
⌊
V (uk)
P2(uk)

⌋
now generated by selecting the correct shifted version of the uk from the

right half of the buffer. The adder generates the updated value of u (uk+1 in equation 4.14) at its output,

which is shifted into the buffer and is also used to generate a new packet in the upstream output of the

soma unit. This value is also used to update the S and MSB flip-flops according to the new value of uk+1.

This process continues until the peak detection block detects a transition of Swithout any change in MSB,

which indicates an overflow, and immediately corrects the sign bit in the departing packet, generates a

pulse in the axon, and initiates the absolute refractory period. The absolute refractory period, which lasts

for a complete cycle, is like any other cycle except that in the second tap the output of the adder is ignored

and contents of the reset voltage shift register is used instead as the new membrane potential uk+1. The

membrane update period (T = 2N + 18 clock cycles), and thus neuron time constants, depend on the

number of synapses (N ). This can be compensated by evolving parameters or corrected in future designs

using a padding shift register, if needed.
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Figure 4.7: Detailed block diagram of the soma unit design.

4.6.3 Implementation and Testing

Figure 4.7 and 4.8 show the detailed design of the soma and synapse units using the 16 and 32-bit shift

registers (SHR) available in the Virtex-5 SLICEMs. For minimising the hardware resources, current

membrane potential and reset voltage are both stored in a single 32-bit SHR and multiplexers were
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Figure 4.8: Detailed block diagram of the synapse unit design.

used to maintain the values in the shift register through both taps. For shifted version of the membrane

potential and syncing the last bit of the shifted version, two other SHRs (Tap and TapCtrl) are used.

Another SHR is used in the control unit for generation of the delay in the state machine. Control unit

generates all the control signals: Tap, determines the first and second tap of the processing; First is

asserted when the first data bit is being processed; Most is asserted when the most significant bit (before

sign bit) is being processed; Last is asserted when the sign bit is being processed; ShiftEn enables

the shift functionality of the shift registers (SHRs).

The behaviour and flexibility of the neuron model was verified by VHDL simulation of a single

neuron. The membrane potential packets that are sent out of the soma unit can be decoded as a signed

binary number and its dynamics monitored against the input spikes. Random spikes were fed into 16

synapses with different weights using different bio-plausible parameter settings and its membrane po-

tential was monitored and compared to the expected dynamics of equation (4.14). This was performed

both in VHDL simulation and on FPGA chip and the results were confirmed to be the same.

A random small-world network of 161 16-bit neurons with 20 inputs, 20 outputs, and 10 fixed-

weight synapses per neuron was simulated and synthesised for a XC5VLX50T chip using VHDL and

Xilinx ISE, resulting 85% utilisation and a maximum clock frequency of 160MHz (4210 times real-time

real-neuron simulation speed with a 1 ms resolution). It is possible to improve some of these figures by

low-level design optimisation and a cellular floor planning similar to [377] (as described in section 5.4).

4.6.4 Experiments

To verify the functionality and the parametric flexibility of the new PLAQIF neuron model and to com-

pare its behaviour and capabilities with those of biological neurons and hardware neuron models, four
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experiments were carried out. To explore a wide range of behaviours, arbitrary different parameter set-

tings were selected.

In the first experiment, we checked if the neuron model is capable of showing both bistable and

monostable behaviours of biological neurons. For bistable behaviour the ureset was set to 17000 and for

monostable behaviour ureset = −16384. The other parameters were set as follows:

P1(x) =

 27 0 ≤ x

−27 x < 0

P2(x) =

 25 0 ≤ x

−25 x < 0

In the second experiment, to check the effect of changing ureset on the F-I curve (spiking frequency

against input current) of the neuron, the F-I curve was recorded using different values of the parameter

ureset, keeping all other parameters fixed as follows:

P1(x) = P2(x) =



24 214 ≤ x

23 0 ≤ x < 214

−24 −214 ≤ x < 0

−23 x < −214

In the third experiment, the F-I curve was recorded changing the middle control point (in figure

4.6(a)) keeping all other parameters fixed (ureset = −16384 and for two other control points: P1(x) =

27 and P2(x) = 23 when |x| ≥ 214).

In the fourth experiment, only ureset was fixed at -16384 and the F-I curves for a few different

symmetric settings of pi,j and si,j (where Pi(x) = −Pi(−x), i = 1, 2) were recorded. For comparison,

a QIF model of the form:

u̇ = 0.1u2 + 1.25× 104I − 0.27175 (4.16)

if u ≥ 30 then u← −1

was also simulated with the same resolution.

All experiments were carried out using VHDL simulation of a single neuron with 16 synapses with

their weights set to 20, 21, · · · , 214, 215. Each frequency measurement was made by first setting all the

synaptic inputs to zero for 2 membrane update cycles and then fixing the binary representation of the

input current on the synaptic inputs, waiting for the first spike in the axon and counting the number of

update cycles until the second spike (N ). The frequency was then calculated assuming that each update

cycle is equal to 1 ms of neuron simulation time (f = 1000
N ).

4.6.5 Results

Figure 4.9 shows traces of the input current, membrane voltage and the axon output of the digital neuron

in two different settings of the first experiment. The PLAQIF model is clearly capable of working in both

bistable and monostable modes and generating spikes with latencies. This is in contrast with the popular

LIF model that works only in the monostable mode and cannot generate spikes with latencies.
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Figure 4.10 shows the results of the second experiment that demonstrates the effect of changing the

parameter ureset on the F-I curve of the neuron. The F-I curve clearly shows that the digital neuron is

class 1 excitable [171] for ureset < 0. The PLAQIF model F-I curve appears as a class 2 excitability

[171] for 0 ≤ ureset ≤ 16384. This is also an advantage over LIF model. Moreover, changing ureset af-

fects the general slope and curvature of the neuron F-I curve. For positive values of ureset, the minimum

spiking frequency and current change as ureset changes.

Figure 4.11 shows the results of the third experiment. A class 1 excitability is clearer in this figure.

It also shows how the slope and curvature of the F-I curve can be fine-tuned by changing the middle

control point (in figure 4.6(a)) parameters. The bold lines show the F-I curve when the middle control

point is higher than zero (W shaped function instead of V-shaped or quadratic function for u̇(u)). These

exotic nonlinearities in u̇(u) that do not match contemporary biological neurons can be exploited during

evolution.

Results of the last experiment, shown in figure 4.12, demonstrates diversity of neuron characteristics

using different parameter settings without changing ureset. The F-I curve of the QIF model of equation

4.16 is shown in bold, which is close to the F-I curve of the PLAQIF model with the parameter settings:

P1(x) =

 27 0 ≤ x

−27 x < 0

P2(x) =

 23 0 ≤ x

−23 x < 0

It is an acceptable approximation, however the PLAQIF curve does not exactly match the QIF curve due

to the piecewise-linear approximation.

The step-wise shape of the curves (particularly in higher frequencies) is due to the 1-millisecond

simulation resolution and calculating the frequency based on the number of 1-millisecond update cycles

between two successive spikes.

4.7 Practical Considerations
The practical challenges, options, and issues in the design and implementation of the neuron model are

further discussed and summarised here. Possible modification and extensions that were not implemented

in the time frame of this project are also discussed and elaborated in this section.

Bio-plausibility

In terms of bio-plausibility of the neuron model used as the basis for this design, QIF is one equation

short of the Izhikevich model that is one of the very bio-plausible models for simulation of cortical

neurons. It is possible to simply add more circuit to the soma unit to implement this functionality as the

second variable is governed by a linear differential equation.

The dendritic tree structure is very flexible as it allows adding and growing branches or removing

them by simply adding synapse units and pipeline flip-flops to the tree. This model does not propose

any specific spike transmission scheme and therefore leaves the flexibility and time accuracy of the spike

transmission structure to the later stages of the design (in the next chapter).
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Figure 4.9: Traces of the input current, membrane potential, and the axon output of the digital neuron in the first experi-

ment: A) Bistable behaviour (ureset = 17000). B) Monostable behaviour (ureset = −16384).
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Figure 4.12: F-I curve of the digital neuron using different parameter settings for pi,j and si,j keeping ureset = −16384

along with the F-I curve of the QIF model of equation 4.16 superimposed in bold.

The synapse unit is designed to be very simple in order to minimise the hardware resources as

the number of synapses in the cortical microcircuits is usually a few order of magnitude larger than

number of neurons. However, the model is flexible enough to accommodate unsupervised and supervised

learning processes. A synapse plasticity circuit can be simply inserted in the feedback loop of the shift

register that stores the synaptic weight. This circuit can be designed to use serial binary arithmetic to

use the timing of the pre-synaptic spike and the value of the membrane potential (or other variables if

available on the dendritic loop) to modify the synaptic weight. As both this process and the synaptic

value are local they can be integrated into the developmental processes that control the growth of the

neurites and formation/elimination of the synapses. A global reward or punishment signal can be also

used to modify some of the synaptic weights in a supervised learning model.

Moreover, it is also possible to use a few more shift registers or longer ones to create more complex

and bio-plausible synapse models. Bio-plausible synapse models have an exponential response to pre-

synaptic spikes. Synapse model used here only adds synaptic value to the membrane potential once

in one update cycle. It is easy to store a few synaptic values in a longer shift register and modify the

control unit to keep the synapse unit active for a few update cycles. Assuming a 16-bit representation, a

synapse response function of 4ms (4 different values) needs only one extra flip-flop and an extra 32-bit

shift register already available in the FPGA slice. With an 8-bit representation, response functions up to

8ms (8 values) can be implemented with the same hardware. This way it is not only possible to simulate

sophisticated synapse models but also change the response function of each synapse by changing the

values in the shift register(s). The parametric flexibility of the soma model that allows each neuron to

have a different nonlinear update function allows developing heterogeneous microcircuits.

To incorporate the nonlinear interactions between distal synapses it would be possible to use a

single synapse unit to serve as many synapses but depending on the number of virtual synapses receiving

a spike the synapse unit may use a different set of shift registers. Also synapse facilitation and depression

dynamics can be added to the synapse model similarly by modifying the control unit and adding more

shift registers to store facilitated and depressed synaptic weights.
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Compactness

All the above modifications and improvements are feasible as the original synapse model can be imple-

mented with two 16-bit shift registers, one LUT, and few flip-flops that all take less than one SLICEM on

Virtex-5 FPGA. Half of the Virtex-5 LUTs can be used as 32-bit shift registers. Each SLICEM in Virtex-

5 has 4 of these LUTs. In the original implementation 2 LUTs (one shift register and one logic LUT)

are used for control unit and one LUT for synaptic weight shift register. With a 16-bit representation it

would be possible to use the same shift registers to double the representation length, use the synapse PE

to serve two virtual synapses, add a 2 value synapse response function, or add synapse facilitation and

depression features to the synapse model. Using two other shift registers in the SLICEM or reducing the

representation length can provide enough hardware resources to add many of these feature to the synapse

unit without going beyond that one-slice hardware footprint. However, there is a trade-off between the

bio-plausible features that can be packed into the soma and synapse units and the compactness of the

neuron model.

Performance

The example design can update the membrane potential variable every T = 2N + n + 2 clock cycles

whereN is the number of synapse units (2N is the length of the dendritic tree loop), and n represents the

length of the binary representation for variables and constants in the model. For n = 16 and a dendrite

of N = 10 synapses (dendritic tree loop of 20 stages) this model updates the membrane every 38 clock

cycles. With a clock frequency of 160 MHz this resulted 4.2 million updates per second, which assuming

each update cycle to be equal to 1ms simulation of the biological neuron, it translates to 4210 times the

speed of biological neuron.

Compared to [331] that also uses serial arithmetic, this model is 43% faster, but needs more hard-

ware resources. However, it is difficult to compare these two designs due to differences in design objec-

tives (flexibility, performance, and adaptability versus hardware minimisation in [331]) and technologies.

Clearly, the replication and redundancy of the synapse control units increased the hardware resources but

also contributed to the fault-tolerance of the neuron model, adaptability of the dendrite structure, and the

real possibility of introducing meaningful development into the process.

This performance can be improved by trading-off other factors. For example by reducing the pre-

sentation length (n) to 8 bits the model performance can be increased by 26%. Using a synapse unit for

serving more than one pre-synaptic input not only allows us to simply introduce nonlinear interactions

between distal synapses to the neurite model, but also allows us to reduce the number of synapse units in

the dendritic tree. This improves both the compactness of the model and the performance by shortening

the dendritic loop. Using one synapse unit to serve up to 4 inputs can reduce the number of synapses in

the current implementation from 10 down to 3 (2.5) that in turn improves the update frequency by 65%

with a 16-bit representation and by 150% with an 8-bit representation.

Reliability

One of the main sources of the noise in the system is the quantisation error of the representation. A 42dB

SNR can be achieved by a 7-bit representation. However, in this model a 16-bit representation is used to
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be in line with the other hardware based bio-plausible models and allow space for evolution to change the

effective range of variations and compensate for the limitations of the PLAQIF soma model. Therefore,

there is a trade-off between the reliability of the model and its efficiency. Experimental results may

prove it possible to reduce the representation length down to 8 to 12 bits that can significantly improve

the performance and compactness of the model and allow for much extra features to be packed int the

same hardware area.

Scalability

At this stage that no routing resources were used for the implementation of the neural microcircuit on the

FPGA, 161 neurons and 1610 synapses could be fitted in 85% of a XC5VLX50T. It appears that even

after dedication of some resources to routing, it would be possible to develop microcircuits of about

100 neurons and 1000 synapses. High end Virtex-5 devices (XC5VLX330T) provide over 6 times more

hardware resources, which gives 660 neurons and 6600 synapses on a chip.

Although this model is designed for single chip implementations it does not limit the techniques

used for the spike transmission. The neurons and their dendrite structures are limited to a single chip but

axons can extend to other chips and make synaptic connections to neurones on the other chips. Although

this model recommends a direct mapping of axons to single wires for bio-plausibility and flexibility of

the neural coding, it would be possible to use any inter-chip communication mechanism that suits the

large scale system. In a direct mapping (one axon - one wire) the number of axonal connections between

chips is limited by the number of FPGA user IO pins. However, multiplexing and high-speed data link

cores available on Virtex-5 FPGAs can be exploited to increase the inter-chip bandwidth.

Fault-tolerance

The redundancy present in the design of this model allows a high level of fault-tolerance. Each neuron

can work separately from other neurons relying only on a global clock signal. Each soma has its own

control unit and assumes a closed dendritic loop. Each synapse unit has a separate control units and relies

only on the integrity of the data packets on the dendritic loop. If a faulty synapse does not corrupt the

passing packets the rest of the neuron and its synapses can be still functional. A faulty synapse or group

of synapses that render a neuron malfunctioning can be detected by a developmental process (sensitive

to very high and very low frequency of spiking). The developmental process can retract the dendrite tree

resulting removal of the synapse units until the neuron is either back to normal regime or out of circuit.

Modularity, distribution and local parallel processing and storage allows the developmental processes to

utilise very bio-plausible fault-tolerance schemes at a higher level.

Complexity

Design and testing complexity of the system is directly related to the bio-plausible features of the soma

and synapse model, and hardware optimisations to improve the performance and compactness of the

neuron model. For example, using a single 32-bit shift register to hold two 16-bit variable or constant

adds to the complexity of the design, testing, and debugging. However, the modularity of the neuron

model enable the designer to focus on a single unit and follow a bottom-up approach in the design,
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implementation, optimisation, testing and debugging of the whole system.

4.8 Summary
Figure 4.13 shows a graphical representation of the investigations carried out in chapter 4. First in this

chapter, the importance of the neuron model, its design and impact on both bio-plausibility and fea-

sibility of the whole evo-devo neural system were discussed. In section 4.1, different aspects of the

bio-plausibility of the neuron model and different feasibility measures in this context were considered

as general but tangible design factors such as flexibility, locality, heterogeneity, bio-plausible features,

redundancy, modularity, distribution, parallelism, time accuracy, temporal dynamics, performance, com-

pactness, efficiency, scalability, reliability, fault-tolerance, robustness, and complexity.

Based on these tangible design factors, some general design options regarding distribution of pro-

cessing, communication, and storage functions over the FPGA area, type of intercellular and intracellular

communications and their flexibility, and a bio-plausible approach to general design of the model were

discussed. As a result, the investigation was focused on a group of designs based on a general flexible

architecture for the neuron that comprised of a connected network of processing elements (PEs) that pro-

vide the infrastructure for bio-plausible simulation of neuron dynamics with the minimum use of routing

resources of the FPGA devices.

After narrowing down the general design of the model, a few possible design approaches were ex-

amined. First, as the most promising bio-plausible approach, distributed stochastic models were inves-

tigated. Centralised stochastic models, deterministic models based on uniformly-weighted bitstreams,

binary bitstreams, and distributed deterministic models were also explored in turn. Challenges, major

factors, constraints, and general trade-offs in all these design approaches were summarised in section

4.5.

By Applying the analysis of the design factors and options to the specific needs of this study, a

new neuron model called Digital Neuron Model was designed as a case study, and also as a basis for

further investigations in the following chapters. The detailed design, implementation, testing and de-

bugging of the Digital Neuron Model were explained and practical considerations in the detailed design

were summarised based on the same tangible bio-plausibility factors and feasibility measures of sec-

tion 4.1. Based on this neuron model, in the next chapter, design and implementation challenges of a

reconfigurable structure for development of neural microcircuits are investigated.
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Figure 4.13: A graph of the investigations carried out in chapter 4 regarding the neuron model.



Chapter 5

Cortex Model

Biological neural microcircuits, grow in a neural tissue called cerebral cortex. It consists of the neurons

and a large amount of supporting tissue that feeds the neurons and allow them to grow dendrites and

axons and form synapses. Likewise, to grow neural microcircuits on FPGAs, neurons must be situated in

a substrate that provides the physical resources for their functioning. In biological development, after the

initial growth, chemical signals and proteins regulate and direct the function, growth, and connectivity of

the cortex cells that already exist. These biological cells in the cortex are continuously modified instead

of being regenerated every second. Similarly, neural microcircuits in FPGAs need a similar fixed tissue,

which contains all the cells that can be modified by developmental processes. This modifiable initial

structure on the FPGA that provides the basic functionality of the neurons and neurites is called a cortex

model. The investigation of challenges in the design of this cortex model is the subject of this chapter

while the next chapter focuses on the developmental and evolutionary process that continuously modify

the cortex.

The design and implementation of such a structure, and the limitations that it may pose upon the

phenotype have great impact on the bio-plausibility and feasibility of the whole system. The design

and implementation of this reconfigurable structure can limit the flexibility, scalability, efficiency, fault-

tolerance, reliability, and modularity of the neuron model implemented on it among other bio-plausibility

and feasibility factors. It not only provides a platform for the simulation of the neural network but also

specifies the boundaries and conditions for the developmental processes. Developmental processes will

control the reconfiguration of this structure to form the neural microcircuits. Its limitations or flexibilities

that it can provide for the developmental system can suppress or promote the evolvability and adaptability

of the system. It can also have an impact on the learning process.

In this chapter, the challenges in the design and implementation of a reconfigurable cortex structure

suitable for an evo-devo neural system based on the Digital Neuron model of chapter 4 are investigated.

The investigation of the evolutionary and developmental processes that control and reconfigure the cortex

is left to chapter 6. Here, different design factors and their trade-offs are highlighted and examined, and

an example cortex model is designed and implemented as a case study.
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5.1 General Design Factors
Similar to the previous chapter, here again, we start from the general definitions of bio-plausibility and

feasibility, and their general measures from sections 2.1 and 2.2 and translate them into a set of general

but tangible design factors and constraints in the context of the cortex model design. First in this section,

we focus on the biological cortex and its properties to derive bio-plausibility related design factors and

constraints that apply to the cortex model. These factors and constraints describe the expected features

of a bio-plausible cortex model.

Next in this section, similarly, we focus on different feasibility measures to infer the feasibility

related design factors and constraints. It will be then possible, in the next sections, to discuss the general

trade-offs between these factors and constraints, and elaborate on the challenges. Given those challenges,

it would be then practical to focus the exploration on promising areas of the design space and investigate

the challenges of a few design options in depth.

5.1.1 Bio-plausibility Related Design Factors

The biological cortex is mainly composed of neurons and glial cells [213]. Biological glial cells provide

support and nutrition for neurons and act as “glue” between them. Recently, they were suspected to

be also involved in the synapse formation as well as axon and dendrite development [213, 293]. The

majority of the cortical neurons are concentrated in a few layers of the surface of the neocortex known

as the grey matter. The other major volume of the neocortex is white matter, which mainly consist of

long-range axons (that connect different areas of the cortex) and supporting glial cells.

The majority of the important features of the cortex is already discussed in section 4.1.1 on the

neuron model and here we only need to review them from a different perspective. Useful features for

a bio-plausible cortex model will be examined and classified into five groups of factors that can affect

five aspects of: neural network architecture, neural coding, the soma model, the neurite model, and the

synapse model.

Factors Affecting the Neural Network Architecture

Statistical analysis of the networks of the neocortex and nervous systems indicates that they show char-

acteristics of both small-world and scale-free networks [39, 51, 19]. The network connectivity of the

cortex is also very dynamic [403]. Developmental processes not only control the position, density, and

differentiation of the neurons in cortex but they also regulate the growth, formation, extraction, and

elimination of the dendrites, axons, and synapses. Developmental processes can isolate a faulty cell or

neurite branch and employ other cells and neurites instead. Neurons can grow dendrites and axons in

different directions guided by chemical clues that are regulated by developmental processes. Synapses

can form between axons and dendrites and soma cells. Redundant synapses and neurites can retract and

disappear. As a matter of fact, elimination of the redundant connections and apoptosis (programmed cell

death) play a major role in the development of the nervous system [404]. The placement of the neurons

and their connectivity pattern appears to be optimised for the trade-off between high interconnectivity

and interconnection cost. Also hierarchy and modularity are evident in the brain structure.

A useful bio-plausible cortex model needs to be dynamic and malleable. It must allow connections
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between neurons to form and disappear. It must also allow long range axonal connections while encour-

aging locality and modularity with a bias towards short-range connections. The reconfigurable structure

must provide evo-devo processes with all the available routing resource allowing those processes to op-

timise for the trade-off between complexity and resource utilisation to satisfy the requirements of the

application problem. This requires the cortex model to provide development with information about

availability of routing resources. Evo-devo processes must be able to regulate the ratio of resources

dedicated to neurons and their connectivity.

A cortex model must also provide means for communication of the neural microcircuit with the

outside world. A sufficient number of input and output signals must be available to feed stimuli to the

network and collect the outputs.

Factors Affecting the Neural Coding

The characteristics of the neural coding on the cortex and nervous systems is already discussed in section

4.1.1. The reconfigurable structure needs to provide the maximum flexibility for the neural coding by

minimising the assumption on the network activity, and signals temporal correlations. A high level of

jitter in the spike transmission can corrupt the temporal information in the signals. The axonal delays also

play a major role in the spiking neural networks. It is therefore important to maximise the time-accuracy

of the spike transmission while providing reliable means for axonal delays.

In biological brains, long range signals such as hormones can regulate the general regime of the

network activity through neuromodulation [73]. A bio-plausible cortex model need to support such long

range or global signals that can be used by developmental or learning processes [172].

Factors Affecting the Soma Model

The network heterogeneity, parametric flexibility of its neurons, and possibility of changing these pa-

rameters during simulation are important bio-plausible features already discussed in section 4.1.1. The

reconfigurable structure must not only allow evo-devo processes to adjust neuron parameters, but it must

also provide those processes with neuron activity and other useful information on a time-scale larger than

simulation, which can be used to regulate the development and maintenance of the network. The process-

ing resources dedicated to the biological soma is more or less concentrated in a position in 3-dimensional

space of the cortex. Biological neuron placement is controlled by the developmental processes through

cell migration and differentiation [404].

Factors Affecting the Neurite Model

A biological neuron can grow an axon and many dendrites out of the soma cell in different directions.

These neurites are malleable projections that form the means for communications between neurons.

The flexibility of the neurites in terms of dynamic connectivity, growth and retraction, and developing

non-linear interactions between distal dendrites are already discussed in section 4.1.1. This growth and

retraction is controlled by the developmental processes. A bio-plausible cortex model must not only

allow developmental process to regulate the growth and retraction of the neurites, but also it must be

able to provide developmental process with local data about the activity of the axons and dendrites that
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may affect their growth. Axons and dendrites in biological brains can fork into branches that grow in

different directions [404]. A bio-plausible cortex model needs to allow developmental processes to create

such branches in axons and dendrites. In a bio-plausible cortex model axons must have reliable delays

proportional to their length.

Neurites must be placed, preferably, in a 3-dimensional space similar to the biological cortex that

is the same (or mapped to the) 3-dimensional space used by the developmental processes, allowing

formation of layers and regions in the cortex. The biological cortex is formed as a neural cortical tube

[404] allowing for wrap-around connections at least in one dimension. A bio-plausible cortex model

must support such local connectivity. The amount of resources (the space and supporting glial cells)

dedicated to a neurite is proportional to its total length. Although neurites do not share space, they can

pass each other without any interference. However, developmental processes must be able to control

creation of synapses between axons and dendrites that are very close to each other.

Factors Affecting the Synapse Model

In a bio-plausible cortex model, developmental processes must be able to form synapses between axons

and dendrites close to them. The elimination of those synapses must be also controlled by the develop-

mental processes. The developmental and learning processes must be able to change the synaptic weight

and other parameters of synapses. The cortex model must provide the developmental processes with

enough information about the activity and state of the synapse for activity dependent neurodevelopment

to occur. Activity dependent development means developmental and neural processes can influence each

other and they must be executed concurrently. This may require dynamic partial reconfiguration or simi-

lar approaches that allow changing the connectivity and parameters of the neural microcircuit during the

simulation. This also applies to reconfiguration of somas and neurites.

Having discussed the general design factors and constraints that can affect the bio-plausibility of

the cortex-model, we can now focus on the design factors and constraints that affect the feasibility of the

cortex model.

5.1.2 Feasibility Related Design Factors

The general factors related to the feasibility of the cortex model design can be analysed based on the

feasibility measures defined in section 2.2. Except for the availability measure, which mainly applies

to the hardware platform and is already covered in chapter 3, factors that can affect other feasibility

measures are discussed here in the context of the cortex model design and implementation.

Factors Affecting the Hardware Cost

The compactness of the design and the silicon area that is needed for implementing a neural microcircuit

using a cortex model affect the hardware cost. Part of this is already dictated by the neuron model and the

amount of hardware resources needed for soma and synapse units. The rest are the hardware resources

dedicated to the reconfiguration and routing of the cortex and supporting the soma and synapse units

with connectivity and global signals such as reset and clock.
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Factors Affecting the Performance

Although the performance of the cortex is partly determined by the performance of the neuron model,

the rest of the hardware used for routing, connectivity and support of the synapse and soma units should

allow those units to perform at the highest possible speed. This requires minimising the dendrite loop

delay needed for a dendrite, which directly impacts the performance of the neuron model. Another aspect

of the cortex model performance is the configuration speed. The cortex model must allow reconfiguration

of the soma and synapse units and their connectivity in the minimum time. For concurrent execution of

neural simulation and developmental processes (as in activity dependent development), reconfiguration

needs to be repeated during the execution of neural simulation. Therefore, configuration speed will have

a great impact on the overall performance of the system.

Factors Affecting the Scalability

Design of the cortex model must be scalable. This means it must be possible to implement a larger ver-

sion of the same cortex design in a larger FPGA device or a group of interconnected FPGA devices. From

a cortex model design point of view, this means a local routing mechanism must be used or any global

mechanism must not be dependent on the size of the cortex. Moreover, preferably, the performance,

efficiency, complexity, and reliability of the system must not be impacted by the size of the cortex.

Factors Affecting the Design and Testing Time and Complexity

It must be possible to use a modular approach for design, implementation, and testing of the cortex

model to keep the design and testing time and complexity in a reasonable scale. It would be desirable to

have a design that can be scaled in terms of complexity by adding extra features and spending more time

for its design and testing. For testing and debugging purposes, the cortex model must allow probing and

monitoring the internal signals and network activities.

Factors Affecting the Reliability

The cortex model needs to be reliable and robust to faults and errors. For example using asynchronous

signals may lead to data loss or errors, affect the functionality of the reconfiguration process or neural

simulation and may impact the reliability of the whole system. Any type of distribution, parallelism, and

redundancy that can bring fault-tolerance and robustness can add to the reliability of the whole system.

5.2 General Design Options
The tangible feasibility and bio-plausibility related factors and constraints analysed in the previous sec-

tion are summarises in table 5.1. Based on these general design factors and constraints, now, it is possible

to investigate different general deign options and focus on the promising areas in the design space for

further investigation. Looking at table 5.1 it appears that the cortex model needs to implement four main

functions:

1. Intracellular communication (dendritic loops in the Digital Neuron model)

2. Intercellular communication (spike transmission and I/O)
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Table 5.1: A summary of the tangible design factors and constraints in the design and implementation of the cortex model

that can affect the bio-plausibility and feasibility of the system.

Bio-plausibility Related Design Factors Feasibility Related Design Factors

Flexibility and evolvability of the soma cells

in the cortex model that allow evo-devo pro-

cesses to regulate the placement and density of

the neurons and dynamically control the differ-

entiation of the neurons in a 3D substrate sim-

ilar to cortical tube

Compactness (minimisation of reconfigu-

ration and routing hardware overhead)

Flexibility and evolvability that allow dynamic

growth, retraction, modification, and branch-

ing of the neurites in a 3D substrate, and for-

mation, elimination, long-term plasticity of the

synapses during simulation

Simulation speed (minimisation of laten-

cies in dendritic loops and spike transmis-

sion)

Possibility of creation of small-world and fee-

scale networks

Reconfiguration speed (minimisation of

reconfiguration latencies and overheads)

Possibility of cell isolation and apoptosis Scalability to larger chips and multi-chips

(performance, efficiency, reliability and

complexity must not be impacted signif-

icantly by the size of the cortex)

Cortex model must be locally controlled and

organised by concurrent evo-devo processes

and also provide local feedback information

about network activity (soma, synapse, and

neurites) and routing resource availability

Manageable (modular and structured) and

scalable complexity (by adding or remov-

ing extra features)

Communication with outside world (stimuli

and response)

Accessibility of the internal signals for

testing and debugging

Reliable and low-jitter delays for axons propor-

tional to their length

Robustness, fault-tolerance (by redun-

dancy, parallelism, and distribution)

Possibility of long-range and global signals for

network activity regulation and learning
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3. Reconfiguration of the parameters and network connectivity (by concurrent developmental pro-

cesses)

4. Providing local feedback information to developmental processes

Each one of these functions, and possible general options regarding each one are discussed here in

detail.

5.2.1 Intracellular Communication

The intracellular communication, between synapse units of a neuron and its soma unit through a dendritic

loop is mainly dictated by the Digital Neuron model that is used as the basis for cortex model design

investigation. For achieving bio-plausibility and fault-tolerance and using the potentials of the FPGA

architecture, synapse units must be distributed over the area of the FPGA rather than concentrating them

in one region.

The intracellular communication infrastructure of the cortex model can be seen as an interconnected

network [294] of PEs (Processing Elements, here, soma and synapse units) sending packets of neuron

state variables (only membrane potentials in this case). From this point of view, a shared media network

or a switched media network can be considered. Sharing a medium between different PEs (e.g. a bus)

with different packet timings requires a very complicated arbitration mechanism and with the high traffic

of the packets between soma and synapses it will lead to very high packet latencies. This significantly

degrades the performance of the Digital Neuron model as it is highly sensitive to the packet latency in

the dendritic loop. The other option is to use a switched media network. In a switched media network, a

network fabric of links and switch components is used to convey messages between PEs. Such a network

must implement three main functions of routing, arbitration, and switching.

Evo-devo processes can be responsible for routing the packets along with allocating the PEs (soma

and synapse units). Another option is to let the developmental process specify the dendrite structure in a

virtual 3D space that is then mapped to the physical network and routed by a separate process in the cor-

tex model. This effectively decouples the evo-devo processes from resource management, the physical

shape of the dendrite, and proximity of the synapses, which not only reduces the bio-plausibility of the

system, but also adds to the hardware resources needed in cortex model for routing. Therefore, here, we

focus on a bio-plausible approach of leaving routing to evo-devo processes. Chapter 6 will discuss the

evo-devo processes that perform the routing and reconfiguration of the cortex. Intracellular signals need

to be reconfigurable for a flexible and dynamic dendrite model. Therefore switching hardware resources

are needed that allow growth and branching of the dendrites. This way, synapse units and dendritic rout-

ing resources can be shared between neurons and developmental processes can assign them dynamically

to different neurons instead of preallocating a fix number of synapses and a fixed dendritic tree for each

neuron.

Different switching techniques for Networks On Chips (NOCs) are discussed in [294, 188]: circuit

switching, packet switching, and cut-through switching. In circuit switching, a circuit is established by

a probing packet following the route before any payload packets are sent. All the links on the path will
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be reserved for that circuit until all the packets are passed. As the routing is carried out and repeated by

the developmental processes during simulation, this effectively creates a set of configured circuits that

have deflected each others, depending on which one was first stablished. With dendrite packets being

send continuously, once a circuit is established it needs be kept until the dendrite is reconfigured. This

mechanism leads to a subset of circuit switching called configured switching [188].

For fairly short dendritic loops that are continuously used, configured switching can provide the

best performance and efficiency as there are no latency or hardware cost overheads involved. However,

it requires the circuits to be freed (by developmental processes) when they are not needed anymore.

This is in agreement with a bio-plausible model in which developmental processes are responsible for

deallocating redundant synapses and retracting dendrite subtrees.

For longer dendritic loops, the bandwidth of the links in the circuit will be under-utilised. Packet

switching allows the bandwidth of the links to be shared and allocated more efficiently when packets are

not sent continuously. This is apparently not the case in the Digital Neuron model dendrites. Moreover,

packet switching stores a packet at each node and then forwards it to the next node based on the rout-

ing information in the packet, which dramatically increases the hardware cost and the latency of each

node. The third option is cut-through switching. This technique and its variants (virtual cut-through and

wormhole switching) reduce the hardware cost and latency of the packet switching by only storing part

of the message that is required for switching the next hop. However, in this technique, different packets

can block each other that again can cause long delays and even deadlocks that is not tolerable for the

Digital Neuron model.

Therefore, it is reasonable to focus on configured switching as a promising bio-plausible and effi-

cient solution for intracellular communication network of dendrites. Additionally, by leaving the routing

of a configured switched network to developmental processes, the arbitration process can be also ab-

sorbed into the routing functionality, which reduces the hardware cost of each node.

Reducing the distance between synapse units and using shorter wires for dendritic loop signals

reduces both the hardware cost and also improves the simulation performance. Therefore, it is better to

use local FPGA routing resources for these signals rather than global or long-range wires. This points to a

locally connected network topology. The bio-plausibility requires this topology to be 3-dimensional and

wrapped around in one dimension. Different topologies for the cortex model substrate are investigated

later in this chapter.

5.2.2 Intercellular Communication

Another function of the cortex is to implement the spike transmission between presynaptic soma units

and synapse units. This, again, can be regarded as a communication network. In contrast to the intracel-

lular network with a continuous flow of membrane update packet, spikes are sent intermittently and less

often. Assuming one membrane potential update for simulation of one millisecond of neuron activity, a

maximum spiking frequency of 200Hz shows that spike packets are at least 5 times less frequent than

dendritic update packets. Unlike intracellular communication that is unicast (from one PE to the other),

intercellular communication needs to be multicast, as one presynaptic neuron can send spikes to may
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postsynaptic neurons. Additionally, spike packets does not need to convey any extra information other

than their source identity and their timing (which is implied in the existence of each spike packet).

A shared media network such as a shared bus is not an option as the number of nodes and number

of spikes that must travel through the network at the same time are quite high and the long and variable

latencies and hardware cost of arbitration in shared media networks are not justified here [188, 294].

Using a switched media network requires routing, arbitration and switching functions. Similar to

intracellular communication, to follow a bio-plausible approach, evo-devo processes must be responsible

for the routing of spike packets. Alternatively, as in [275, 301, 72, 300, 378], the physical and logical

network connectivity can be decoupled, which effectively deprives the system from the role that evo-devo

processes can play in the resource management and optimisation of the neural microcircuit. Allowing

evo-devo system to control the physical routing of the neurites enables it to exploit all the physical and

even unwanted properties of the cortex substrate to optimise the functionality of the neural microcircuit.

It also removes the burden of routing and arbitration from network nodes that significantly reduces the

node latency and hardware cost. Moreover, [188] reported that offline scheduling of switches can yield

up to 63% performance increase over online scheduling.

With the routing being performed by the evo-devo processes (discussed in chapter 6), three different

main switching techniques are available: packet switching, cut-through switching, and circuit switching.

These methods have different throughput, bandwidth, hardware cost and latency trends. Unlike intracel-

lular network packets, spikes packets have more time for delivery. Performance of the system is also less

sensitive to the latency of the spike packets. The spikes in biological brains can have a delay of up to

20ms depending on their length and other factors. Assuming a simulation resolution of one membrane

update for equivalent of 1ms time of biological neuron activity, and an average of 50 clock cycles for

each update, spike packets in the cortex model need to be delivered in 50-1000 clock cycles depending

on their length. However, the spike packets latencies need to be reliable and accurate enough. For the

spikes to have the same resolution of 1ms, their timing accuracy must be ±25 clock cycles.

Packet switching has a high latency compared to the other two as it requires buffering the whole

packet to decode the routing information before forwarding it to the next node. While packet-switching

works perfectly in some large-scale applications such as [300], where real-time simulation is intended

and very short packets are used, it is not a feasible solution for hyper-realtime simulations such as this.

Even with 256 neurons, a spike packet needs to be at least 8 bits long and it can pass through a maximum

of 125 hops in 1000 clock cycles. With different packets blocking each other and multi-casting of the

packets to different destinations adding to the network traffic, this latency will be fluctuating and far

from guaranteed.

Considering cut-through switching, as the whole spike packet is needed for decoding the routing

information, each packet will consist of only one flit (flow unit [294]). Therefore, in this case cut-through

switching will be equal to the packet switching in practice. Packet switching and cut-through switching

methods also require buffers, and logic for flow control and arbitration that further add to the latency

and hardware cost of each node. The hardware cost and unreliable latency of packet switching and
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cut-through switching techniques render them infeasible for this intercellular communication network.

Considering circuit switching, apart from the initial latency for establishing a circuit, it has the best

latency among switching techniques. With routing and arbitration already carried out by evo-devo pro-

cesses, circuit switching turns into configured switching [188]. Configured switching has the minimum

hardware cost per node as it does not need any buffers or logic for routing and arbitration. While con-

figured switching provides a possible solution, it can wastes the bandwidth of the links by preallocating

them to circuits that are very rarely used (for sending a spike packet). Additionally, by dedicating a

circuit to a single axon, there will be no need for explicitly sending the pre-synaptic neuron ID, and

the spike packet size will be reduced to only one bit. Taking this into account, degrades the channel

utilisation of the configured switching even further by a factor of log2(n), where n is the number of

neurons.

Fortunately, it is possible to use time-multiplexing to utilise the bandwidth of the links more effi-

ciently. In time-multiplexed switching each switch in the network follows its own predefined schedule

on a time-division basis. Based on the length of the repeating schedule (number of contexts, n) this

creates n virtual channels on each physical link between two nodes. However, this techniques requires

that the switching schedule on every cycle to be locally stored (or somehow be available) in each node.

The switching memory hardware cost for each port is of order O(n log2(m)) where m is the number of

ports in each node.

Table 5.2: Summary of different design patterns for implementing communication in FPGAs, and their characteristics and

trade-offs (adopted from [188]).
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Communication predictability High Low

Latency Lowest Low Highest Moderate

Switching logic HW cost Low Low High High

Switching memory HW cost Lowest Low Highest Modest

Comm. throughput-physical link bandwidth ratio Highest High Low Lowest

Channel utilisation (Application dependent) Depends on app. Low

Latency overhead (Message length dependent) Lowest Low Highest Depends

Kapre et. al. have investigated the hardware costs, latency and trade-offs of time-multiplexed

switching versus packet switching networks for FPGAs in [188]. Table 5.2 summarises their evalua-
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tion of four different design patterns for implementing communication in FPGAs: configured switching,

time-multiplexed switching, packet switching, and circuit switching. Clearly, with the lowest hardware

cost and latency, and highest throughput, configured switching is the best option when application needs

to use a circuit all the time. This is the case for intracellular communication in short dendritic loops.

However, if application is using the network sporadically, configured switching is not the best options.

Then, if communication predictability is important, time-multiplexed switching will be the best option as

circuit and packet switching can not provide that predictability. This is clearly the case for intercellular

communication in a hyper-realtime neural microcircuit application. However, in realtime neural applica-

tions, such as [300] and [147], packet switching makes much more sense particularly when packets are

very small and number of PEs is very large [188]. Circuit switching is only an option when application

needs to send very long messages sporadically and the latency overhead compared to the length of the

message is negligible.

Utilising time-multiplexed switching for the intercellular communication network not only provides

a solution to use the routing resources in FPGA efficiently, but also, as will be explained in section

5.2.2, it extends a 2D interconnection network, that is feasible on an FPGA, to a 3D virtual intercellular

network, that is bio-plausible. Using such time-multiplexed communication network can also increase

the scalability of the system to multiple FPGAs [235]. If all the physical links are local, as a bio-plausible

approach suggests, it will be possible to run a time-multiplexed network at much higher clock frequency

than rest of the system and increase its bandwidth even further.

Topology

Before moving to discussion of the reconfiguration and feedback functions of the cortex model, topology

of the intercellular and intracellular networks must be discussed, so that the next sections can focus on

particular promising topologies. From bio-plausibility point of view, although biological neurons and

their projections are embedded in a 3-dimensional substrate, the fractal dimension of the connectivity

of the neurons in C. elegans and the human brain are measured at around 4 [19]. This is indicative of

much higher dimensional topology in these nervous systems. However, looking at the local interactions

underlying these long range connectivity, they are still all local interactions with neighbouring elements

in a 3-dimensional space. This 3D space is wrapped around in one dimension and has connections to

the outside world at one of its edges, since a brain is modelled as a layered neural tube connected at the

root to the rest of the body. This 3D space must provide enough resources and connectivity that supports

networks with small-world and free-scale characteristics.

In terms of feasibility, the topology must provide low and reliable communication latency and

enough throughput with the minimum hardware cost. To achieve this, it is important to appreciate

the PEs vs. interconnection trade-off and find the balance between the amount of hardware resources

dedicated to computation versus communication. A modular and structured topology is preferred for its

reduced and manageable design and testing complexity. Reliability, robustness and fault tolerance are

other feasibility factors related to the topologies of these networks.

Figure 5.1 shows different common topologies studied in the context of NOCs (Network-On-Chip)
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Figure 2. The NoC topologies considered: (a) mesh, (b) torus, (c) bidirectional torus, (d) binary tree using 3⇥ 3 routers, (e) fat-tree built from identical
4 ⇥ 4 routers, (f) ring, and (g) bidirectional ring. A filled circle represents a node, comprising a router and an IP-core as shown.

the neighbor processor in 3 cycles. This tight integration
of the network and the processor pipeline is the basis for,
so-called, software circuits, i.e., applications that resemble
ASIC circuits.

B. Routing Schedule Construction

Lu and Jantsch [13] propose a configuration technique for
the Nostrum NoC [5] that allows multiple virtual circuits
to share buffers of the network. They present a problem
formulation that defines a legal allocation of TDM time slots
using a backtracking search algorithm. In contrast to our
problem, only a single assignment of a given set of virtual
circuits is needed that satisfies the required bandwidth and
a conflict-free operation of the NoC.

A similar slot allocation problem appears for the Æthereal
NoC. The allocation here proceeds in two steps. First,
routing paths are determined through the NoC depending
on a mapping of an application to the network and the
application’s communication requirements [14]. Given these
paths, TDM time slots are allocated for each virtual circuit in
turn [15]. This technique has been extended to split packets
and deliver the individual fragments of the packet over
multiple paths in order [16]. This approach provides a single
solution satisfying the application-specific communication
and bandwidth requirements.

The scheduling problem considered in this work can
formally be stated as a dynamic multi-commodity flow prob-
lem over time. A seminal work by Ford and Fulkerson
introduced time-expanded flow networks to model dynamic
flow problems using equivalent static problems [17]. A time-
expanded network is a structure containing replications of

the network for several time instants (e.g., clock ticks).
Fleischer and Skutella study variants of the NP-hard quickest
multi-commodity flow problem [18] and present a polynomial
2-approximation algorithm. Although closely related, these
results apply to general multi-commodity flow problems,
where fractional solutions are acceptable. In the context of
this work, however, integer solutions are required since the
physical hardware resources are indivisible.

III. REAL-TIME NETWORK-ON-CHIP

In dependable real-time systems it needs to be guaranteed
that all deadlines will be met. This guarantee is performed
by schedulability analysis. The input to this schedulability
analysis is the worst-case execution time (WCET) of the
tasks. To enable WCET analysis, all components of the
system (the application software, the processor, the memory
subsystem, and the communication network) need to be
time-predictable. We aim for a time-predictable NoC that
supports WCET analysis.

To enable time-predictable usage of a shared resource the
resource arbitration has to be time-predictable. In the case
of a NoC, statically scheduled TDM is a time-predictable
solution. This static schedule is repeated and the length of
the schedule is called the period. Like tasks in real-time
systems, also the communication is organized in periods.
One optimization point of the design is minimizing the
period to minimize the latency of delivering flits and the
size of the schedule tables.

Many NoCs are intended to be optimized for a given
application or application domain. The NoC structure and/or
the routing schedules are then optimized and are then

Figure 5.1: Common NOC topologies along with their router(R) and PE (IP) connections and ports (From [328]).

[294]. Inadequacy of bus (star) topology is already discussed in sections 5.2.1 and 5.2.2. A very straight-

forward topology (not shown in the figure) is a fully-connected graph that usually uses a single switch

for connecting all the nodes centrally. Since the hardware cost of the switching is of orderO(n2), where

n is number of ports (equal to number of PEs here), total switching hardware cost in a fully-connected

network is only justifiable for small number of PEs. Moreover such a topology does not represent the

locality required as a bio-plausibility factor.

Table 5.3 shows characteristics and hardware-performance trade-offs in different common NOC

topologies . Bisection bandwidth is a measure of total performance of the network in terms of throughput.

Maximum and average hop counts show the upper bound and typical number of hops that a packet needs

to travel, which is directly related to the total latency. These two are the main performance factors of

a topology. Switching hardware cost comes from the total number of switches in the network times

hardware cost of each switch (number of ports squared). Number of links represent the hardware cost of

physical links including the links between PEs and their corresponding switches.

Between these common topologies used in the NOC context, bus and fully-connected topologies

can be rejected straightaway for very low bisection bandwidth and very high hardware costs respectively.

Among the rest of the topologies, hyper-cube and fat-tree topologies have very good performances for

a hardware cost that grows rather rapidly with the number of PEs. They also need many long-range

connections, when embedded in a 2D substrate of an FPGA. Long-range wires in FPGAs are scarce and

costly, and cause long delays that lead to a lower clock frequency impacting the overall performance of

the network. Ring, 2D mesh and 2D torus are the only topologies that can be simply implemented on

a 2D silicon chip using only short, local, and high-performance links. Therefore, 2D Mesh and torus

topologies are two of the very popular topologies in NOCs. Ring can be seen as a 1-dimensional version

of the torus. Higher dimensional versions of the mesh and torus are also conceivable. However, they

have the same problem of long-range links when mapped to a 2D FPGA. It is also possible to have a

hybrid of ring and mesh or torus by dividing each link into segments and adding more nodes in between.
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Table 5.3: Characteristics and hardware-performance trade-offs in different major NOC topologies where n is number of

PEs [294]. Bisection bandwidth represent the total bandwidth of the network in unit of link.
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√
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n/4) O(25n) 3n Yes

Hyper-cube O(n/2)
√
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Fat-tree O(n/2) O(> Mesh,< Ring) O(2kn logk/2(n)) O(n logk/2(n)) No

Fully-conn. O(n2) 1 (1) O(n2) n2 + n No

This leads to a heterogeneous networks with two type of switches (5 and 3-port) and slightly increases

the PE-interconnection ratio, which can be used to adjust the ratio for best overall hardware cost and

performance. It is also possible to do the reverse and increase the number of local links to 6 or 8 as

in [275], which practically decreases the PE-interconnection ratio. Schoeberl et. al. have investigated

different topologies for time-multiplexed NOCs on FPGAs in [328] and reported that for networks above

16 nodes, only torus and fat trees have enough link capacity to enable a schedule period that is in the

same range as the IO capacity of the IP cores. With respect to the local connectivity pattern of the FPGA

CLBs, a 2D grid torus with 4-neighbourhood connectivity appears as a simple and efficient option that

can be extended to 6 or 8 neighbours since each Virtex-5 CLB has 1-hop (low-latency) connectivity

wires to all 8 neighbouring CLBs. Selection of the best neighbourhood connectivity and cell design is

a separate subject that needs mush further investigation with comprehensive simulations or analytical

study (see [92] for example).

Although a 2D torus appears to be the best feasible topology for intercellular and intracellular

communication networks of the cortex model, it does not map perfectly with the 3D substrate needed

for bio-plausible neural microcircuits. Fortunately, time-multiplexing a 2D topology can create a virtual

third dimension in time axis that allows a better mapping to a bio-plausible 3D substrate. This has been

already proposed in previous section for intercellular communication network. However, due to the

asynchrony of soma units and timing of their packets in dendritic loops, it is not possible to use time-

multiplexing for intracellular communication network and extend the growing substrate of dendrites to

three dimensions.
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Figure 5.2 from [328] depicts the general circuitry for a 2D mesh or torus time-multiplexed switched

network. Each switch is shown as a multiplexer receiving inputs from north (N), south (S), west (W),

east (E), and the local PE (L). The scheduled switching data for selecting inputs for each multiplexer

come from a Schedule Table (ST) that is addressed sequentially by a time-slot counter that can be local

to each node or global. This counter generates the slot numbers from zero up to the length of the schedule

period. The main hardware cost overhead in this method is the memory needed for the schedule tables.

A m-port switch needs a total of mn log2(m− 1) bits of RAM, where n is the length of the schedule. If

a global time-slot counter is used, log2(n) global signals are also needed to be connected to all switches.

Otherwise each switch or group of switches need a local counter of complexity O(log2(n)).

5.2.3 Reconfiguration

To evaluate the fitness of each individual, evo-devo processes must be able to modify the parameters and

connectivity of the neurons and synapses both for setting up the neural microcircuits and for successive

modifications during development. This process is called reconfiguration of the cortex, although it may

not necessarily entail using the reconfiguration feature of the FPGA.

Regarding the bio-plausibility of the cortex, reconfiguration must allow localised modifications of

the parameters and connectivity of the neurons, neurites and synapses. The cortex model must also

allow the density and location of the soma and synapse units to be controlled by the evo-devo processes.

From a feasibility point of view, the cortex reconfiguration must introduce the minimum overhead on

the hardware cost of the cortex model and performance of the simulation and reconfiguration processes.

Since the cortex needs to be reconfigured at least once, and many times in case of activity-dependent

development, for evaluation of each individual during evolution, the reconfiguration overhead directly

affects the performance of the whole system. This can be due to long reconfiguration times or because

simulation may need to be stopped during cortex reconfiguration.

Virtex-5 FPGA supports different ways for reconfiguring the device. JTAG and SelectMAP are se-

rial and parallel modes of externally reconfiguring the device. Internally, there are two identical Internal

Configuration Access Ports (ICAP). These are very similar to the SelectMAP port available externally

to the FPGA user but they are available to be used by the internal circuit of the FPGA to partially recon-

figure itself at the highest possible speed.

The type of memory elements that are used for storing the configuration of the cortex parameters and

connectivity has an impact on both reconfiguration time, need for pausing the simulation, and hardware

cost of reconfigurability of the cortex. Different types of memory elements available on the Virtex-5

family of FPGAs and their use as a reconfigurable element are discussed here [408, 411].

Flip-flops and Latches

Storage elements are the simplest type of memory primitives in Virtex-5 FPGAs available to the user that

can be configured as edge-triggered flip-flops (FF primitive) or level-sensitive latches (LATCH primi-

tive). Their states can be modified by pushing new data in the storage element. They can be also reset

to an initial state (specified at FPGA configuration time) with a signal global to the slice. The density of

these storage elements is quite low (only 4 elements per slice) compared to the other possible memories
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application-specific. While our proposed network can be op-
timized this way, we aim at a general-purpose solution. The
general-purpose solution allows each core to communicate
to every other core and the bandwidth is identical for each
communication channel. For a general-purpose solution we
need to find a single static schedule, which can then be
implemented in hardware.

We look at several different NoC topologies and evaluate
how well they support this general-purpose static schedule.
We consider mesh, torus, torus with bidirectional links (bi-
torus), tree, fat-tree, ring, ring with bidirectional links (bi-
ring), and bus topologies. Figure 2 shows these topologies.
Except for the tree, the fat-tree and the bus, we assume that
each topology is composed of n nodes each consisting of an
IP-core and a router. With tree structures the IP cores and
router do not have a one-to-one mapping. The routers range
from 2-ported routers (2 in and 2 out) to 5-ported routers: the
mesh (inner nodes) and the bi-torus use 5-ported routers; the
fat-tree uses 4-ported routes; the torus, the bi-ring, and the
tree use 3-ported routers; and the ring use 2-ported routers.

In this paper we concentrate on the network itself and con-
sider it as a structure that supports communicating streams
of flits. Designing the network interface and the flow control
are out of the scope of this paper.

IV. NETWORK DESIGN

A static schedule guarantees latency and bandwidth for
sending data over the NoC, which itself enables WCET
analysis of tasks. Furthermore, this static schedule allows
optimization of the routers. With our design we avoid
transmitting the packet route via the network, but keep the
network schedule in the routers. With a predefined schedule
there are no collisions possible.

The simple router, as shown in Figure 3, consists of
multiplexers and registers. This structure fits very well to
the structure of a logic cell (LC) in an FPGA. A LC usually
contains a lookup table (LUT) and a register. The LUT is
used to build combinational logic (e.g., the multiplexer).
Although we do not want to restrict our NoC to FPGAs,
we consider FPGAs as an important platform and aim for
an FPGA-friendly design.

A. Packet Organization

As the static schedule is contained in the router, the flits
traveling through the network contain only data and no
routing information. The time slot the flit is injected to the
network implicitly gives the destination address. Without the
address header we are less constrained on packet lengths
– we do not need to amortize for the address overhead.
Therefore, we define that a packet is a single flit long and use
schedules for single clock/flit granularity. This short packet
length minimizes the latency for short data transportation.

The link width is usually determined by the length of the
address field (the packet header) and therefore depends on
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Figure 3. Connections of the multiplexer based router

the network size. Free of these constraints, we can use any
link width that is needed for the bandwidth requirements.
The resource consumption of a router is directly related
to the link width. Therefore, we can trade bandwidth with
resource consumption.

At the lowest level the individual flits are considered to
be individual words of a data stream – similar to a serial line
connection. The only control structure is a valid bit in the flit.
The framing of the data, the forming of longer packets (e.g.,
cache line fills), and the meaning of the stream is defined
in the network interface. Or in other words: the NoC just
represents a transport layer with end-to-end channels.

Using single flit packets and a static schedule results in a
deadlock free design.

B. Router

One of the benefits of a static scheduled NoC is the simpli-
fication of the network routers. Figure 3 shows the router for
our NoC. A router consists of registers for a single flit at the
output ports and a multiplexer feeding this register from each
input port. Due to the static schedule there is no need for
dynamic arbitration or additional buffers. Furthermore, there
are no flit collisions or deadlocks possible. Flits move each
clock cycle one hop. They cannot stay within the routers’
registers.

Figure 5.2: The circuit to be added to each PE for time-multiplexed switching of a 2D mesh network (From [328]). L, N,

S, E, W respectively present links to and from Local PE, North, South, East, and West nodes. ST represent a Scheduling

Table.
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in the slice. They are usually used for storing the state of the sequential logic circuits. They can be

used as a reconfigurable element by directly feeding the data in them at run-time or by reconfiguring the

FPGA. It is also possible to specify the set or reset initial value of these elements by reconfiguring the

FPGA and then asserting the set or reset signals of the slice (as clock and these signals are shared over

one slice). Although these primitives can be used to store parameters (and connectivity if connected to

a multiplexer) but the low density of these memory elements in the slice makes them a scarce resource

that is better to be used for sequential logic and control rather than reconfigurable memory.

Lookup Tables (LUTs) and ROMs

Each slice in Virtex-5 contains four LookUp Tables (LUT). Each LUT has six inputs and two outputs

and can be configured as two 5-input LUTs (with the same set of inputs), a 6-input LUT with one output,

or equivalently a 64-bit ROM. Content of these LUT primitives can be only modified through FPGA

reconfiguration. These are the most abundant reconfigurable resources in FPGA CLBs, which can be

used to store parameters and connectivity (if configured as a multiplexer). They are only reconfigurable

through the global FPGA reconfiguration process, and there is no way for a local process (such as

developmental processes) to reconfigure these primitives.

Distributed RAMs

LUTs in Virtex-5 SLICEMs (left side slice of every other CLB, 1 in every 4) can be also reconfigured

as a 64-bit single port RAM. It is also possible to join two of these LUT primitives in the same slice to

create a 64-bit dual port RAM as SLICEM RAM primitives have separate read and write address inputs.

Other mixed combinations of single and dual port RAMs with more outputs or capacity is possible by

combining four RAM primitives in a SLICEM. The contents of these distributed RAM primitives can

be modified directly by feeding synchronous data into them (asserting Write Enable input and feeding

the address and clock) at run-time, or through FPGA reconfiguration. After LUTs, these are the second

most abundant resource available for reconfiguration in CLBs. The fact that they can be reconfigured

by writing data directly to them makes it possible for a local developmental process to reconfigure these

elements.

Shift Registers

LUTs in Virtex-5 SLICEMs can be also configured as 32-bit shift registers (SRL32). They provide a

shift-in input (DI1), and a multiplexed output that can be selected by address inputs to provide the state

of any of the 32 bit values in the register at any time. A shift output (Q31) is also available inside

the slice that can be configured to be cascaded to the input of other shift registers to make longer shift

registers. However, this signal in not available outside of the slices for three shift registers out of four

in one slice. The content of these primitives can be directly modified by shifting data in at run-time or

by FPGA reconfiguration. These are as abundant as distributed RAMs. In fact they are essentially the

same primitive that is configured to behave slightly differently. However, they offer half of the capacity

when used as a shift register. Nevertheless, the fact that they can be configured serially by a local process

without addressing makes them a very efficient option for both storing the parameters and connectivity.
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Block RAMs

Block RAMs are modules of 18Kbits of dual-port RAM that can be configured as 32K, 16K, 8K, 4K,

2K and 1024 words RAM and FIFO modules with 1,2,4,9,18, and 36-bit width respectively. Different

Virtex-5 devices have different number of Block RAMs, which is proportional to the size of the device.

A 50K logic element FPGA such as XC5VLX50T, which is used in this study, has 60 36KBit Block

RAMs providing a total of 2160KBit RAM. This is 4.5 times the total distributed RAM available in all

the SLICEMs. However, these Block RAMs are condensed in a few columns in the FPGA and are not

distributed evenly over the whole silicon area. Apart from writing directly to Block RAMs at run-time,

it is possible to specify their initial content through FPGA reconfiguration.

Programmable Interface Points (PIPs)

One of the most abundant reconfigurable resources in the FPGAs is part of the reconfiguration memory

that controls the Programmable Interface Points (PIPs) in the switch boxes used for the interconnection

of the logic resources. These switch boxes are only reconfigurable through the FPGA reconfiguration

process and are not accessible directly to the user. However, if they can be somehow used for storing the

connectivity (and parameters when used as a register), the hardware cost can be reduces significantly.

Since these are not supposed to be available to the user for direct partial reconfiguration, Xilinx does

not suggest a method for modifying connectivity directly at such a low level. The only way they can

be partially reconfigured at run-time is using a difference-based partial reconfiguration workflow. This

work flow requires that the connectivity of the part of the circuit to be modified using a Xilinx tool such

as FPGA editor and then saved. Then another Xilinx tool (Bitgen) can be used to create a difference-

based reconfiguration bitstream from the two versions of the circuit. Bergeron et. al. in [29] proposed a

method specifically for low-level reconfiguration of PIPs in Virtex-II FPGAs[29]. Direct generation or

manipulation of the bitstreams would not be possible without knowing the complete bitstream format.

Although the general format of the Virtex-5 configuration bitstream is publicly available [411] but the

detail of the data format in each frame is proprietary and not released. However, it would be possible

to reverse engineer and use that information as shown in [83, 28, 279]. However, using PIPs in a DPR

workflow must be thoroughly tested as glitches may affect the functionality of the circuit or contentions

damage the device permanently.

Dynamic Partial Reconfiguration vs. Virtual FPGA

In Virtex-5, reconfigurable elements and user storage elements can be read or written through reconfig-

uration process. Both full and partial reconfiguration (and read-back) is possible [411]. Virtex-5 also

allows user to dynamically reconfigure the device modifying the reconfiguration of part of the FPGA

when the rest of the device is working normally (DPR or Dynamic Partial Reconfiguration). Event the

reconfigured region may continue running as in many cases (such as LUT content modifications) there

is no glitches in the transition. However, the smallest readable or writable unit of information through

reconfiguration process is one frame. A frame in Virtex-5 is part of the reconfiguration information that

spans across a column of 20 CLBs. This is particularly restrictive in partial reconfiguration as write op-

erations to the frames that span over some storage elements (such as FFs, RAMs, or SRLs) will corrupt



5.2. General Design Options 151

the content of these primitives. This is because the content of these elements can change in the period

between reading a frame and writing it back with modification as the reconfiguration process does not

support an “atomic” read-modify-write operation.

Two general types of dynamic reconfiguration of the cortex is conceivable. One is to use the normal

dynamic partial reconfiguration of the FPGA [184]. This may allow the user to somehow access all the

reconfigurable elements such as PIPs and ROMs (LUTs) that are not writable through the circuit itself.

There are some limitations, requirements, and possibilities:

1. Access to details of the bitstream and frame format of the FPGA

2. Performing the reconfiguration centrally from outside of the FPGA or through one of the ICAPs

3. To avoid corruption of the neighbouring reconfigurable memory elements in the same column

during reconfiguration, simulation must be paused and a frame must be first read, modified, and

then written back, which adds another overhead to reconfiguration time.

4. Xilinx offers some C libraries for reading and writing the content of LUTs and FFs through ICAP

that can be run on the MicroBlaze soft processor core connected to a XPSHWICAP IP core (both

provided by Xilinx).

5. With some reverse engineering to discover the reconfiguration frame format, it would be possible

to use PIPs as well.

6. This method offers relatively lower reconfiguration speeds as FPGA needs to sequentially receive

all the reconfiguration frames padded with header and trailer data. Also partial reconfiguration of

only a single bit require reconfiguration of a whole frame of 1312 bits. Moreover, content of a

single LUT is segmented over four different frames.

The second method is to use the virtual FPGA approach and take provisions for the run-time recon-

figuration of parameter and connectivity by allowing separate data path and logic for modification of the

parametric and routing data. This has some advantages and some drawbacks too:

1. It allows a distributed, scalable, and even asynchronous reconfiguration process by local interac-

tions at low level.

2. This method also offers much higher reconfiguration speed as it does not have the overheads of

the FPGA reconfiguration.

3. It requires to dedicate extra hardware resources for reconfiguration of each parameter or switch.

4. It is only limited to Block RAM, RAM and SRL primitives that are four times less abundant than

simple LUTs. Therefore, it is not possible to use PIPs as switches with this method.

5. All the RAMs and SRLs in the same SLICEM share the same WE (write enable) and clock signal,

which is a limiting factor.
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Relocatability

One of the bio-plausibility factors requires the evo-devo processes to specify the density and position of

the neurons in the cortex. This requires a structure that allows neuron modules to be plugged in to the

substrate anywhere in the middle of the cortex. Two conceivable methods are considered here: Plug-in

method and module-based PR workflow.

One method would be to locate the neurons all around the cortex and then plug them in anywhere

they are needed using long-range wires as they only have 3 ports (one axonal out put, one dendritic

input and one dendritic output). This method has few drawbacks: First, long range wires introduce long

delays that significantly impact the performance of the simulation as discussed earlier. Secondly, number

of neurons will be fixed and limited. Even if some of the neurons are not plugged into the cortex, their

hardware resources is not used in any other way, which impacts the efficiency of the cortex. Finally,

the long wires are really scarce in the FPGA and there might not be enough wires to plug neurones in a

flexible manner and therefore not only neuron relocation but also the density control requirement of the

cortex can not be fully addressed. This method can be used both in conjunction with the virtual FPGA

reconfiguration method or with normal FPGA reconfiguration process.

A second method is to have a modular 2D grid structure for the cortex that provides the infrastruc-

ture for inter and intracellular communication networks and synapse formation and use a module-based

dynamic partial reconfiguration workflow to replace some of the modules with relocatable neuron mod-

ules. This requires exact matching of the input-output ports of the modules. To address this, Xilinx

proposes an intermediate static circuit called Bus Macro that takes one CLB (2 slices) of the FPGA and

provides 16 input or output lines at the edge of the partially configurable module. It also requires that

the underlying FPGA resources exactly match with the resources of the original location of the module.

As Virtex-5 and many other new FPGAs are quite heterogeneous, the modules placed, and routed for

one region (e.g. one column or top half) of the FPGA may not be compatible with another region of

the FPGA. There are solutions to these problems that reduces the hardware cost of relocatability of the

neuron modules and reduces the number of different modules for different regions of the FPGA [20]. In

[357] Strunk et. al. suggest a detailed approach for such modular grid structure for a similar fine-grain

parallel processing network. However, the hardware cost overhead of adding 2 slices for a Bus Macro

to each node is simply not justifiable, when one synapse fits in less than one slice, a soma unit can be

implemented in about three slices, and each LUT can support up to two 5-port switches.

5.2.4 Feedback

Developmental processes need to receive information about the activity and performance of each part

of the cortex. Neurons activity and health are the very basic information that can be fed back to de-

velopmental process. In an activity-dependent neurodevelopment process, unused synapses where an

axon and a dendrite cross each other can feedback information about their potential to be connected.

Used synapses can also feedback data about their redundancy. Every other piece of the communication

network can also feedback data about the congestion and activity at that point.

Each neuron in the Digital Neuron model is emitting spikes through the axonal output and sending
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membrane potential packets out of its dendritic output. The pulses on these two outputs can be used to

evaluate the health and activity of the neuron. As it is not necessary to measure the activity of the neuron

with high resolution, it is possible to use a simple circuit consisting of a shift register (or a RAM that is

continuously addressed by random numbers) to keep track of the activity level of a neuron. Figure 5.3

shows an example stochastic circuit using a shift register that can measure the activity of the neuron on

a scale between 0 and 32 over a time period. The pulse width of a global measurement window signal

can be adjusted so that very low activity is measured as zero or a few 1s in the stochastic bitstream, and

too much activity saturates the stochastic value. The output of this circuit can be used in a stochastic

developmental system for regulation of the neurons activities by evo-devo processes. For a synapse, two

most significant bits of the membrane potential packet can be sampled when the synapse has received a

presynaptic spike and combined in a similar circuit for a very rough stochastic Hebbian output that can be

both used for local unsupervised learning in the synapse or to feedback potentiality or redundancy of the

synapse to developmental processes that regulated both connectivity and efficacy of the synapse. Similar

designs can be used for outputs of the switches in the communication networks to measure the activity

and network congestion to provide developmental process with more information during simulation.

These example measurement circuits do not pose any performance overhead on the cortex model

and given the benefits of optimising the microcircuits by evo-devo processes may increase total perfor-

mance of the system. However, they slightly add to the hardware cost. Each one of these feedback

features can be separately added to or removed from the design, that offers a controllable level of com-

plexity to the design, which is one of the feasibility factors of the cortex model.

Measurement window 

32-bit Shift Reg
Stochastic activity

value

Neuron Axon

Figure 5.3: An example of a circuit that can be used to gather stochastic measurements of the activity of a neuron over a

measurement period.

5.3 Summary of Design Options

Here we summarise different options and approaches in the cortex model design, their challenges, major

factors, constraints, and trade-offs. We assumed a minimum required level of bio-plausibility and fea-

sibility to focus the exploration on promising cortex models and prepare for the design of a case study

cortex model.
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Bio-plausibility

Different approaches, design options and factors that affect the bio-plausibility of the cortex can be

summarised as:

1. Using a virtual 3D topology for intercellular communication network adds to the bio-plausibility

of the cortex model.

2. Using a 2D intracellular communication network instead of a 3D network topology reduces the

bio-plausibility.

3. Routing by evo-devo processes adds to the bio-plausibility of the cortex.

4. Using a mesh or torus topology with local connectivity is more bio-plausible than hyper-cube or

fat-tree topologies.

5. Having relocatable neuron modules on the cortex is more bio-plausible as it allows both den-

sity and position of the neurons to be controlled by evo-devo processes. However, employing a

module-based partial reconfiguration workflow results in restrictions in neuron relocatability that

impacts the bio-plausibility.

6. Adding circuits to cortex model to feedback data to developmental processes enables activity-

dependent development and provides evo-devo processes with useful information about the activ-

ity, health and performance of the neural system and its underlying networks, which can effectively

add to the evolvability and bio-plausibility of the cortex model in general.

Bio-plausibility-Performance Trade-offs

Special requirements of the intracellular communication in the Digital Neuron model can be only ad-

dressed by a configured switched network and a 3D topology of such network can not be implemented

on a 2D FPGA efficiently, which creates a trade-off between performance and bio-plausibility. The vir-

tual FPGA method of cortex reconfiguration is both faster and more bio-plausible as it uses distributed

and local mechanisms for reconfiguration. Plug-in approach, with a fixed number of neuron modules

around the cortex, needs long wires that impacts the performance of the cortex but it may provide some

degree of neuron relocatability.

Compactness

Using a configured switched network creates a constraint on the compactness of the cortex model as

it needs a minimum required resources. 2D or virtual 2D (time-multiplexed switching) intercellular

communication networks are more compact than 3D networks.

Bio-plausibility-Compactness Trade-offs

Relocatability of the neurons with the module-based PR workflow (using Bus Macros) adds significant

overheads to the hardware cost of the cortex substrate. Using virtual FPGA method leads to a more bio-

plausible cortex model but significantly increases the hardware cost of the cortex. The interconnection-

PE ratio in intra and intercellular communication networks is an important factor that can affect the
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bio-plausibility of the cortex as very low connectivity may reduce the possibility of networks with the

right characteristics. Using topologies with higher connectivity degrees add to the hardware cost.

Efficiency and Performance-Compactness Trade-offs

Allowing evo-devo processes to perform the networks routing may lead to better utilisation of the re-

sources and improvement of both performance and compactness of the cortex, which effectively in-

creases the efficiency. Providing feedback about available resources and network activity can intensify

the effect. Using a 2D torus topology can improve both performance and compactness of the cortex

model as well. A virtual FPGA reconfiguration method can significantly improves the reconfiguration

speed but adds to the cortex hardware cost, which effectively creates a trade-off between performance

and compactness.

Bio-plausibility-Efficiency Trade-offs

A virtual 3D topology for the intercellular communication network (using time-multiplexed switching)

increases bio-plausibility, performance and compactness of the cortex model at the same time, which

effectively relaxes some of the trade-off between bio-plausibility and efficiency.

Scalability

A low-connectivity configured switched network for intracellular communication can impact the scal-

ability of the cortex model as it highly restricts the neurite growth to local regions around a neuron.

This creates a trade-off between compactness and scalability. Using a time-multiplexed switched net-

work for intercellular communication can improve the scalability of the system to larger devices and

many FPGAs. Using virtual FPGA method for reconfiguration is more scalable than dynamic partial

reconfiguration.

Reliability, Fault-tolerance, and Robustness

Using evo-devo processes for routing can in fact add to the fault-tolerance and robustness of the system.

Using virtual FPGA reconfiguration method can be distributed, parallel, asynchronous, and redundant,

which significantly adds to the reliability of the cortex in terms of fault-tolerance and robustness. Relo-

catability of the neurons can add to the fault-tolerance of the cortex.

Simplicity

Using dynamic partial reconfiguration process for configuring the cortex can significantly add to the

design and testing complexity particularly if it requires reverse engineering the bitstream format and

testing unofficial workflows and using PIPs, etc. Design of a cortex model with relocatable partial

reconfigurable neuron modules is very challenging and involves complex testing procedures. A 2D grid-

mesh or torus reduces the complexity of the cortex. It also allows any dendritic or axonal signal on the

cortex substrate to be simply routed to the edge of the cortex and be probed to monitor the activity and

membrane potential of the neurons in the cortex. This increases the observability of the cortex model,

which simplifies the testing and debugging processes.

Table 5.4 summarises the above factors and trade-offs for major different options and methods of

designing the cortex model. A brief look at the table shows clear advantage of using evo-devo pro-
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Table 5.4: Summary of different factors and trade-offs for major competing options and design approaches. +, − and

∼ show that employing a design approach or option can increase, decrease, or affect a factor respectively. Empty cells

represent items where the analysis did not reveal a factor to depend on a design option. Major trade-offs are highlighted

in blue, and clear win-win choices in green.

Competing design approaches and general options B
io

-p
la

us
ib

ili
ty

Pe
rf

or
m

an
ce

C
om

pa
ct

ne
ss

Sc
al

ab
ili

ty

R
el

ia
bi

lit
y

Si
m

pl
ic

ity

Intracellular
3D + − − − ++ −

comm. network 2D (configured switching) − + − + + +

Intercellular

communication

network

2D − + + − + +

3D ++ − − − ++ −

Virtual 3D (time-multiplexed switching) + + + + + −

Routing
Using evo-devo processes + + + + +

Run-time routing using hardware − − − − −

Topology

2D mesh + + ++ + + +

2D torus ++ + + + + +

Hyper-cube − − −− − ++ −

Fat-tree − − − − ++ −

Cortex substrate
High Interconnection-PE ratio + ∼ ∼ + +

Low Interconnection-PE ratio − ∼ ∼ − −

Reconfiguration
Virtual FPGA + + − + + +

Dynamic Partial Reconfiguration (DPR) − − + − − −

Neuron Fixed number and location − + + + − ++

Relocatability Module-based PR workflow + + − − + −

Plug-in approach (fixed number) + − + + − +

Feedback
Neuron activity and membrane potential + − + −

Synapse potential and redundancy + − + −

Network activity and congestion + − + −
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cesses for routing, a 2D torus topology for the communication network, and virtual FPGA technique for

reconfiguration. It also presents the major trade-offs between bio-plausibility and performance in the

intracellular communication network design, bio-plausibility versus simplicity in intercellular commu-

nication network, and bio-plausibility versus efficiency in neuron relocatability. In the next section these

general insights are used to design a cortex model as a case study.

5.4 Case Study: The Cortex
In this section an example cortex model is designed based on the investigation and analysis of the general

options, approaches and design factors in the previous section. The intention is to investigate design and

implementation challenges of a cortex model in practice, and create a cortex model that can be used

in the next chapters as a basis for further investigation of the other aspects of this study. It also offers

a flexible and extendible example cortex model that can be modified and used by other researchers or

designers.

The general design of the cortex follows the analysis of the previous section in the context of inves-

tigation of challenges within the timeframe of this project. Therefore design decisions are made on the

basis of exploring new areas for improvements rather than exploiting the available solutions. Moreover,

due to the time restrictions of this study, simpler design approaches can be followed, particularly if it

does not impair the generality of the study. Some of the trade-offs that are highlighted in the previous

section will be further investigated in practice given the specifics of the case study.

General Choices and Trade-offs

In the case study, evo-devo processes will be used for routing since it is the bio-plausible winning option

according to the analysis. Similarly a 2D torus will be used given the results of the analysis.

Although the virtual FPGA method for reconfiguration of the cortex leads to a more bio-plausible

cortex model and faster reconfiguration for the price of higher hardware cost, dynamic partial reconfig-

uration method is used instead. This is mainly because the hardware cost overhead is very high. Not

only extra circuit is needed to be added for supporting local reconfiguration, but also only a quarter of

the FPGA resources can be used as reconfigurable elements. Furthermore, many bio-inspired models

of evolvable hardware and neural networks in the literature already use Virtual FPGA method and it is

fairly investigated and exploited. On the other hand, dynamic partial reconfiguration method is full of

challenges yet to be discovered and tackled. Further investigation of dynamic partial reconfiguration

method may lead to advances in relaxing the trade-offs. Moreover, this method results in a compact

cortex model that is also compatible with the simulation of the developmental processes in software in

the next phase.

The trade-off between bio-plausibility and performance of the intracellular communication network

is decided based on the simplicity of the 2D configured switching method, and its scalability and rela-

tive reliability compared to a 3D network on a 2D chip. Similarly a less bio-plausible but simpler 2D

intercellular network can be selected if it can be shown how to extend the case study design to a vir-

tual 3D time-multiplexed switched network. This is an example of manageability of the design, which
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Figure 5.4: (a) A sample 12x24 cortex with 20 neurons. (b) The 2D cylindrical structure of the cortex.

allows a designer to balance a trade-off in the context of requirements and project timeframe. The bio-

plausibility-efficiency trade-off in neuron relocatability is investigated further in section 5.4.5 to see if a

new method can be found to break this trade-off.

5.4.1 General Architecture

Based on the 2D torus topology from the analysis, a cellular substrate for development of the neural

microcircuits in the FPGA (called the Cortex) is proposed. The Cortex consists of a 2D grid of glial cells

with neuron soma cells embedded in the middle of them. Here, “glial cells” refer to non-neuron cells that

provide the means for routing dendrites and axons, and formation of synapses at their intersections. The

grid is wrapped around like a cylinder to create a bio-plausible cell neighbourhood similar to the neural

tube. A hexagonal mesh topology is also possible, thanks to the diagonal local connections between

neighbouring CLBs in Virtex-5 and other new FPGAs. However, the limited resources of the FPGA

logic blocks make a 2D grid simpler and more feasible. To keep the regularity of the cellular structure,

it is desirable that soma and glial cells be of the same size. Nevertheless, as functionality of soma cells

requires more hardware resources than glial cells, they are two times larger than glial cells and fit into two

vertically adjacent grid cells. The vertical option is preferred as it minimises the signal delay between

neighbouring cells on the actual chip (see section 5.4.5). A column (ring) of IO cells is also connected to

the left side of the cortex that provides the interfacing with the outside world. Figure 5.4 shows a 12x24

Cortex with 20 neurons. Each glial cell receives an axonal and a dendritic input signal and has an axonal

and a dendritic output on each side. Soma cells have six of those signals as they are in contact with six

neighbouring glial cells.

5.4.2 Soma Cells

Each soma cell consists of a soma unit, six reconfigurable multiplexers and six pipeline D flip-flops

(DFF). Reconfigurable multiplexers (from now on we refer to them as MUX) are essentially FPGA LUTs

(look-up tables) that are dynamically reconfigured to work as many-to-one switch boxes. Using LUTs

for this purpose makes it possible to investigate both (difference-based) dynamic partial reconfiguration
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Figure 5.5: (a) Internal Architecture of soma cell. (b) Internal architecture of glial cell

[406] and Virtual FPGA method (using RAMs or SRLs instead). The internal architecture of the soma

cell is shown in figure 5.5(a). The axon output of the soma unit is connected to all the six axonal outputs

of the soma cell (XN, XS, XW, XW’, XE, XE’). This way axons can project out of the soma cell in

any direction before branching into branchlets, increasing the flexibility of the model. When there is no

dendrite growth, DFFs and MUXs can form the dendritic loop right inside the soma cell by switching

all MUXs to their first inputs. A soma cell can start growing a dendrite branch on any of its edges

by switching the corresponding MUX to its second input. Therefore, a soma cell can project up to six

dendrite branches directly from the cell body before any division into dendritic branchlets. This adds to

the flexibility of the routing while resembles to dendrite growth of the biological neurons.

5.4.3 Glial Cells

Figure 5.5(b) shows the internal architecture of the glial cells. Each glial cell consists of a synapse unit,

ten MUXs, and eight DFFs for routing axons and dendrites. On each side of a glial cell, there is one

axonal output coming from a pipeline DFF connected to a MUX. Each axonal MUX can switch to any

of four axonal inputs on the edges of the glial cell (XN, XS, XW, XE). This way, it is possible to route
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up to four axons through a glial cell as explained later in the example of section 5.4.4.

A similar circuit can be employed for the dendrite routing. However, each MUX in the dendritic

circuit has a fifth input, which is connected to the dendritic output of the synapse unit (DO). The dendritic

input of the synapse unit (DI) comes from another MUX that can switch to any of the dendritic inputs

on the edges of the glial cell (N, S, W, E). Therefore, the synapse unit can be inserted into any of the

dendritic loops routed through the glial cell. The axonal input of the synapse unit can also be connected

to any of the four axonal inputs of the glial cell using a 4-to-1 MUX. Therefore, it is possible to form

a synapse between any dendrite and axon routed through a glial cell in three simple steps: 1. Copy

the configuration of the corresponding dendritic MUX to the dendritic MUX of the synapse unit. 2.

Switch the corresponding dendritic MUX to synapse dendritic output (DO). 3. Switch the axonal MUX

of the synapse unit. Similarly, a reverse procedure can be use to eliminate a synapse. Although due to

the latency of the synapse unit and its input MUX, these steps do not guarantee a glitch-less transition,

the glitch can only corrupt one single bit. Worst-case scenario, is that the header bit of the packet

gets corrupted and the whole packet is logically shifted right. In this case the neuron may go through

a transient change and then return back to normal regime or it may enter into a tonic spiking regime

depending on its parameters. Such transient Single Upset Events (SUE) are quite normal in neural

systems and they must be designed (or evolved) to be robust to such input and internal noises. However,

if the reconfiguration clock and cortex clock (feeding the pipeline DFFs) are the same, the transition will

be glitch-less if all timing constraints of the design are met during implementation. This is thanks to the

pipeline DFFs in the routing circuit that improve the clock frequency and allow evolution to optimise

dendritic and axonal delays by changing the length and path of each branch.

One limitation in this design is that there is only a single synapse unit available in each glial cell. The

other option is to assign more hardware resources to glial cells and have two (or even more) synapse units

in each glial cell. By increasing the number of synapse units, fan-in of the dendritic MUXs increases

(to 6 inputs for 2 synapse units) and hardware resources to implement them grow exponentially. For

efficient use of the hardware resources, there should be an appropriate ratio of functional resources to

routing resources (interconnection-PE ratio) in each cell. Although up to four different dendrites can

project into a glial cell, and a maximum of two dendrites can pass through it, the average number of the

dendrites passing through a cell will be less than two in practice. Therefore, one synapse unit per glial

cell seems reasonable at this point.

5.4.4 Example

Figure 5.6(a) shows a symbolic view of an example microcircuit. It consists of three soma cells in a 6x4

Cortex. Figure 5.7 shows the active circuit elements of the same microcircuit. The bottom soma in the

E2 and F2 cells projected three dendrites and one axon. On the bottom edge, there is no dendrite thus the

bottom MUX is switched to input 1 to bypass the external circuit and use a pipeline DFF instead. On the

bottom-left edge, a very short dendrite is projected into the F1 cell. Therefore, the bottom-left MUX is

switched to input 2. In the F1 cell the dendrite is looped back without forming any synapse by switching

the corresponding MUX to input E. The dendritic loop is continued on the top-left edge of the soma cell
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Figure 5.6: (a) Symbolic view of the example microcircuit in a 4x6 cortex. (b) Assignment of FPGA CLBs to glial and soma

cells.

with another short projection, this time forming a synapse with an axon coming from north. The other

projection of the soma cell on its bottom-right edge has passed through a number of MUXs in different

glial cells and formed a synapse with another axon in D4. The dendritic loop of this neuron contains

twelve FFs, seventeen MUXs and two synapse units. Its axon has gone through three MUXs and FFs

upwards into A2 and then divided into two axons extending outwards. Routing of the projections from

the other two neurons can be also tracked in a similar manner. In C3, for instance, a dendrite is divided

into two branches. In B2, another dendrite formed a synapse as it extended into C2.

5.4.5 Virtex-5 Feasibility Study

A feasibility study of implementing this cellular structure in the Virtex-5 FPGAs was carried out to verify

speed, area and possibility of a dynamic reconfiguration. Two horizontally adjacent CLBs (Configurable

Logic Blocks) are assigned to each cortex cell. This is because synapse and soma unit designs make

extensive use of Virtex-5 32-bit shift registers (SRL) and only one out of four slices in two horizontally

adjacent CLBs is a SLICEM capable of implementing SRL primitives [408]. As soma cells need more

hardware resources, they can occupy a square block of four CLBs on the FPGA. This is because assigning

4 CLBs in a row to soma will double the partial reconfiguration overhead as number of frames that must

be reconfigured will double. It also leads to employing long-range routing lines of the FPGA for intra

and intercellular connectivity. These lines are limited in number and have longer signal delays. Figure

5.6(b) shows how cellular structure of the above example can be implemented in the Virtex-5 CLBs.

VHDL and ISE 9.2i design tools were used for implementation of a sample cellular structure in a

LX50T Virtex-5 FPGA. Implementing and floor planning of the soma and glial cells on the chip revealed

that it is possible to pack the soma and glial cells in 2 and 4 CLBs respectively. Every two 5-to-1 MUXs

with the same set of inputs can be implemented in a 6-input LUT configured as two 5-input LUTs. This

way, the whole routing circuit of a glial cell is implemented with six LUTs and eight DFFs, which is less
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Figure 5.7: Schematic diagram of the active parts of the example microcircuit.
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than the available resources in the right CLB of the glial cell. The synapse unit takes most of the left

CLB of the glial cell. The routing circuit of the soma cell can be implemented using six DFFs and three

LUTs, each configured as two 2-input LUTs. The rest of the hardware resources were more than enough

for implementing the soma unit. Therefore, the extra hardware resources in each cell were reserved for

future improvements (e.g. synaptic plasticity or upgrading to a more bio-plausible soma model) and

corrections.

This way it will be possible to pack 1800 glial cells in an entry-level Virtex-5 FPGA (LX50T) and

12960 glial cells in the largest Virtex-5 chip (LX330T). With a 1 to 10 soma to glial cell ratio (each

soma cell surrounded by a layer of glial cells), it is possible to implement networks with 150 and 1080

neurons with up to 1500 and 10800 synapses in LX50T and LX330T chips respectively. This might not

be the optimum ratio but this can be ideally left to evolution to tune the ratio and placement of the cells

in order to optimise the resources and performance. Alternatively, different but fixed ratios and neuron

placements can be used to test the effect of neuron placement on the system performance.

Dynamic Partial Reconfiguration and Neuron Relocatability

The cellular structure was first designed to exploit the dynamic partial reconfiguration feature of Virtex-

5 FPGAs. Here, the feasibility of different methods for relocation of the neurons at the first stage of

the development and runtime modification to parameters and connectivity of the neural microcircuit are

studied. The reconfiguration may be carried out in three main steps:

At the first step, the whole area on the FPGA that is assigned to the cortex is configured as glial

cells. This is simply done through the standard flow, configuring the device with a bitstream generated

from HDL. However, glial cells need to be defined as hard macros so that the exact locations of all

MUXs (LUTs) and cell ports be fixed and known a priori. Hard macros are blocks of circuit designs that

are already placed and routed for specific location(s) of the FPGA substrate and are fixed compared to

the rest of the circuit that will be placed and routed later. Hard macros can be placed in any compatible

location in FPGA or specific locations using constraints. In both cases the relative location and routing

of the internal resources of the macro will stay the same.

In the second phase, soma cells are reconfigured instead of glial cells in the required places using

merge dynamic reconfiguration technique [334]. Soma cell should be defined as a hard macro again

with its ports carefully matched with the ports of the neighbouring glial cells. The merge reconfiguration

technique [334] allows to vertically relocate a module with an arbitrary shape and size (2x2 CLBs in

this case). Therefore, a relocatable soma bitstream should be created for each cortex column (2 CLBs

wide). In the final phase, soma and synapse parameters and axon and dendrite routings are modified by

runtime difference-based dynamic partial reconfiguration of LUTs [406, 376, 377] provided that all the

parameters and routings are based on LUTs, RAMs and/or SRLs contents and the exact locations of all

these primitives on the FPGA are known. This can be achieved by constraining the placement of hard

macros using LOC statements in a UCF (User Constraints File) or original VHDL/Verilog structural

description of the cortex. Therefore, it will be possible to grow dendrites and axons and form/eliminate

synapses on the fly.
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Further investigation of the reconfiguration process on the actual hardware platform revealed that

relocatable reconfiguration of soma cells is not such a straightforward process. In a relocatable design,

all the routed internal signals of each cell need to be routed only through routing resources inside that cell

area and all the cell input/output signals should use the same signals regardless of cell type (soma, glial

or IO cell). Finding a streamlined module-based partial reconfiguration method for many relocatable,

or even only mutually compatible, modules that can be reconfigured on a modular grid cell structure

appeared to be out of the scope of this study.

Therefore, for simplicity, the location of soma and IO cells are predefined and fixed during evolu-

tionary process. Based on those locations, a primary reconfiguration bit-stream will be generated using

traditional FPGA design process and tools. Then during the developmental process, the reconfigurable

multiplexers (implemented in LUTs, SRLs and RAMs) on the edges of the soma and glial cells are re-

configured occasionally using the results from developmental process. This way the neural simulation

can keep running on the chip during development without any interruption. This allows the neurode-

velopment process to be provided with the activity data from the network simulation for addition of

activity-dependent development and synaptogenesis.

As explained earlier, reconfiguring a SLICEMs can corrupt the content of the RAM and SRLs in

the same frame. This is because in the period between reading and modifying to writing the frame it is

possible that the content of other RAMs and SRL in the same frame are changed and an old data will be

written back to those memory elements. This can be resolved in two ways. First, to freeze the circuit

during reconfiguration and second, reconfiguring all those dynamic elements with initial data. The first

solution puts the whole cortex on hold even when only one soma or synapse is being modified. This

increases the impact of reconfiguration overhead on the simulation performance. The second solution is

only useful when all the soma and synapses are reset and a new simulation is started. That means there

is no simulation running yet and therefore this method has no advantage over the first method.

Preliminary tests were performed on the hardware platform to find practical ways to reconfigure

the chip and to estimate the reconfiguration overheads. The library functions for the MicroBlaze pro-

cessor provided by Xilinx as the driver for XPSHWICAP IP core, which uses ICAP to reconfigure the

FPGA were tested. Preliminary tests revealed that the reconfiguration overhead of using this driver for

modifying the content of the LUTs and SRLs is far from the nominal speed of the ICAP (in order of

milliseconds) for modifying contents of a single LUT. This is mainly due to the way that SetCLBBits()

function works. This function receives the bits that are supposed to be reconfigured in a LUT, along

with the position of the LUT in the FPGA (X,Y of the CLB, Slice number, LUT number) as parameters.

For the function to be able to set these bits it first needs to read 4 different frames that contain bits for

this LUT, modify them and write them back. It also needs to fix the order of the bits depending on the

slice type (SLICEM or SLICEL) and position of the LUT in the FPGA. A large amount of overhead is

involved in reading or writing each frame of data. Some ICAP initial codes, and commands, frame ad-

dress, etc. need to be written first before reading or writing a frame. Also because ICAP has an internal

frame buffer, for reading each frame, it is needed to read two frames to push the data out of the ICAP.



5.4. Case Study: The Cortex 165

Similarly two frames of data need to be written back to push the frame into ICAP. This requires a total

of 16 frame read/writes for setting a single LUT. This is far from efficient reconfiguration. Another part

of the speed problem may relate to the speed of the XPSHWICAP IP core that is documented to work

with at a maximum clock frequency of 100MHz with 32-bit words. It appears that depending on where

and how the XPSHWICAP IP core is place and routed the performance of the IP core varies. Some

results in the FPGA design community suggest that by placing and routing this core carefully, it would

be possible to achieve speeds of up to 200MHz. With a few constraints on the placing of the IP core a

clock frequency of 125MHz was achieved.

To mitigate some of these reconfiguration overheads, a set of new library functions were developed

that allows reconfiguration of 80 LUTs to be configured in one go by reading and writing four consec-

utive frames (see appendix B for the source code). This reduced the software and interfacing overheads

significantly and allowed four frames to be read, modified and written back in 120µs. To develop these

library functions some parts of the reconfiguration bitstream format related to partial reconfiguration of

LUTs and SRLs were reverse engineered (see appendix A for details). Needed routines for reconfigura-

tion of one LUT, a group of LUTs and all the LUTs in a full slice column of FPGA using MicroBlaze
TMprocessor was implemented and tested on the actual hardware.

System Performance Estimations

To reconfigure a cortex cell, 4 FPGA frames should be read, modified and written back. These 4 frames

also contain data for 19 other glial cells. Therefore, 20 cells can be modified in one read-modify-write

operation which takes about 120µs. This should be performed 72 times to completely reconfigure all

the cells in a cortex of grid size 12x120. Another set of frames should be accessed for modifying

the soma cell parameters and synaptic weights. Thus, each reconfiguration cycle of the whole cortex

takes about 17.28ms. Assuming 100 development cycles during simulation, total reconfiguration time

for each network would be equal to 1.7s. Since only some of the frames need modification in each

cycle, a maximum of 1s reconfiguration time can be expected. A few other techniques can be also used

to improve performance. For instance, in case of routing modifications, it is possible to keep the last

changes in memory and skip the read operations to effectively cut the frame modification time in half.

Assuming a clock frequency of 160MHz for simulation of the network, and a dendrite length of 72

grid cells (maximum distance between two cells on the cortex), a membrane potential can be updated

about 1 million times per second. It results in a simulation speed 1000 times faster than real time

simulation of biological neurons with a reasonable resolution of one update per 1ms of simulation. With

data sets of 1000 samples of approximate length 1s each, it will take 1 second to simulate the network

activity for the whole data set.

In case that it would be necessary to stop the simulation when reconfiguring the chip, and if the

microcircuit should be developing during the simulation (only for one cycle of activity-dependent devel-

opment), maximum estimated evaluation time for each microcircuit would be about 3 seconds (2 seconds

of simulation and development + 1 second of simulation). This will give about 30,000 evaluations a day,

or 1000 generations a day assuming a population of 30 individuals.
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5.4.6 Detailed Design and Implementation

The FPGA used in this study (XC5VLX50T) has 120x30 CLBs. Part of this area is needed for I/O

circuits, MicroBlaze embedded processor, and the XPSHWICAP cores. These 3600 CLBs are heteroge-

neous. Every other column of CLBs have a SLICEM on the left. Also, the two consecutive CLB columns

on the left side of the DSP blocks column, in the middle of the FPGA, have a SLICEM. However, a large

region of 120x24 CLBs on the right side of the FPGA is fairly homogeneous that can be used for a good

size Cortex of 120x12 grid cells. The remaining region of 120x6 CLBs is more than enough for IO,

MicroBlaze and XPSHWICAP cores.

The global clock signal of the whole Cortex, which is used by all memory elements (RAMs, DFFs,

and SRLs) in the glial and soma cells, needs to be gated by a clock enable signal which is controlled

by the processor. This allows processor to freeze the Cortex before reconfiguration, by disabling the

clock signal, and then resuming it after reconfiguration. This is necessary to avoid corruption of the

neighbouring memory elements in the Cortex during configuration of a SLICEM as explained in section

5.4.5.

A set of IO cells were designed for sending and receiving spikes to the left side edge of the cortex.

As delivering and receiving spike trains to and from a cortex of this size and speed requires 240Mbits/s

raw throughput, I/O cells must be able to cope with this bandwidth and allow encoding and decoding

of the spike trains to a more compressed representation that can be handled by the embedded processor.

Spike density coding appears to be a relatively simple and useful method. DSP48E blocks available right

on the edge of the cortex were exploited to create spike generators and spike counters that are connected

to the MicroBlaze processor as IO cell custom IP cores. This way the processor is able to read and write

the spike densities to and from these IO cells with simple memory accesses at high speed. The detailed

design of the IO cells is explained in appendix D. Figure 5.8 shows how the Spike Generator and Spike

Counter modules are connected to the Cortex. Each spike counter is implemented using a DSP48E block

configured to work as eight 6-bit counters that can be used to count the number of spikes received during

a 1ms interval. Fifteen DSP48E blocks are used for counting the spike out of the Cortex. Spike generator

registers are 32-bit registers that can be written to using the processor to generate spikes in the next clock

cycle. The rest of the available DSP48E blocks on the FPGA can also be used as timers for generating

spikes with specific densities when needed by the application. This design allows both generation of

spike trains with a variable density and density measurement of spike trains from the Cortex in real time.

It also supports sending spikes with specific timing and measurement of the timing of received spikes.

Another DSP is used to generate the simulation clock which shows duration of one ms of simulation

by a pulse of width equal to 1 cortex clock every n clock cycle. this can also be used to interrupt the

CPU for getting more data or something. A timer can also be used as it is easier to get an interrupt signal

from a timer in the embedded system.

Few Cortex designs with different neuron placements (discussed in detail later in chapter 6) were

implemented and successfully placed and routed in the FPGA. Figure 5.8 shows a sample neuron place-

ment of a smaller 16x12 cortex. Implementing the reconfigurable cortex required using constrained Hard
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Figure 5.8: Spike Counters and Spike Generators as IO cells connected to a sample 16x12 cortex. This figure also shows

the spike signals being looped back in to the IO cell for verification and testing of the spike generator and counter modules.

Macros for Soma and Glial cells, since the suggested workflow by Xilinx using RPMs (Relatively Placed

Macros) did not work in the design tool as expected. The proper placement and routing of the cells was

a cumbersome and challenging task. It is necessary to constrain both the placement and routing of the

reconfigurable elements so that the location of every element is known and LUT and SRL inputs are

not interchanged (Using LOC, BEL, and LOCK_PINS statements in UCF file [414]). Different versions

of the design tool behaved differently and were sometimes unstable, which immensely increased the

time and complexity of this phase of the project. However, Xilinx is announcing now that the partial

reconfiguration and other related workflows has been streamlined in the newer versions of the tool.

5.4.7 Verification and Testing

All the hardware or software modules implemented for the Cortex and its reconfiguration through the

embedded system were verified and tested at different stages.

Software Verification and Testing

Two simple reconfigurable circuits were designed and implemented that allowed every single LUT in

the FPGA to be connected to the processor through a large multiplexer in turn. Then every LUT was
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(c)

Figure 5.9: Three examples of test cases for testing axonal signal routing around soma cells on the cortex. The particular

shape in (a) and (b) insures that every different switch state is at least once tested through an axonal path.

reconfigured with all the possible single bit values through the developed software library and its contents

verified by the processor. The software library functions were also tested and debugged during the

end-to-end hardware verification test cases (see appendix B and C for the source code of the program

developed for the embedded processor.)

Hardware Verification and Testing

Glial, soma, and IO cell designs were simulated using Xilinx simulation tool at the design stage. A

program running on the embedded processor automatically reconfigured the Cortex for different test

cases and then generated spikes in the input and monitored the spikes on the output.

After implementation, first, IO cells (the spike generators and counters) were tested using axonal

loops that connected each cortex input directly to the axonal output in the same cell at the very edge of

the Cortex. Figure 5.8 shows these spike signal loops in a 16x12 Cortex.

Secondly, glial cells and reconfiguration of their switches were tested using a pattern that has all

the different switching situations to verify that spikes and dendrite packages are passed correctly and

with the expected delays. Spikes were fed into cortex inputs and routed in different directions through

the dendritic and axonal paths of the glial cell. The axonal paths were configured around each soma

cell and spikes were sent through the axon and received on the other end using spike generator and

counters. Figure 5.9(a) to 5.9(c) show examples of the test cases for testing axonal routing. In the next

step, depicted in examples of figure 5.10(a) to 5.10(c), axons and dendrites were reconfigured around

every soma cell in each test case and a single dendritic wire was used to monitor the dendritic packets of

the soma through one of the FPGA pins for debugging. Each soma was configured as a simple regular

spiking neuron. After testing the soma without any input, one of the synapses was connected to the axon

and behaviour of the soma was monitored. Then the synaptic weight was changed and its effect on the

activity of the neuron was checked. This process was repeated for all the synapses and soma units in the

Cortex using a software program.
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Figure 5.10: Three examples of test cases for testing dendrite signal routing around soma cells on the cortex. The particular

shape of the dendrite in (a) and (b) tests all possible different switch states through a single dendrite loop.

Finally, a single soma unit was configured with 10 synapses connected to 10 different Cortex inputs.

Figure 5.11 shows the connectivity of the single soma cell in this set of test cases. Each synapse weight

register was configured by exponents of two so that by reading different binary values at each update

cycle it was possible to feed different presynaptic currents into the soma. Testing and verification process

revealed some problems and limitations in the design and implementation of the Cortex and Digital

Neuron model. After addressing them through few modifications that are reported in the next section,

verification process was repeated.

Modifications to the Cortex and Digital Neuron Model

Final stages of the testing and verification processes revealed a number of issues in the Cortex and Digital

Neuron model that needed to be addresses before further development on their basis. There were a few

bugs in the implementation detected during the verification process that were fixed before continuing the

verification.

Also, in the design of the Digital Neuron model, the zero crossing points of the equation 4.11 are

always at the same value of ur and ut and only middle point and two ends of the curve are controllable

by parameters. This poses a major limitation on the resting and threshold potentials of the neuron that

can only be changed by postsynaptic current I or a bias value. At that point it was simply assumed that

adding a synapse with an always-active presynaptic input to the dendrite of the neuron will be enough

to add a bias to the membrane potential. While this was a valid assumption, now that the the soma cell

design is complete, it is clear that still enough resources are available in the soma cell to incorporate that

functionality into the soma unit and save that synapse for better use outside of the soma. Therefore, a

16-bit shift register with a feedback loop that stores the bias parameter and a serial adder were added to

to the dendritic output of the soma unit. This effectively adds the bias values to the membrane potential

in each update cycle before sending it off to the synapse units in the dendritic loop.

Another issue was that when the soma and glial cells around it are configured for very short den-
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Figure 5.11: Connectivity of a single soma unit with 10 cortex inputs for testing different soma parameters settings and

final test of the neuron model behaviour.

drites, the length of the dendritic loop can be too short for the Digital Neuron to work properly. The

soma unit will not accept any packets before it is finished processing the last packet. Since there are two

taps in the Digital Neuron model update cycle and the first tap is performed when the packet is arriving

and the second tap is carried out when the new packet is transmitted, the processing time is equal to the

length of the packet (17 bits = 16 bits +1 header bit). During sending the new packet, the soma unit can

not receive a packet and therefore a dendritic loop of at least 17 bits is needed. The minimum possible

dendritic loop length in the current soma and glial cell designs is six bits (the internal default dendritic

loop of the soma cell), which is 11 bits short of the minimum acceptable length for soma unit. To resolve

this issue, a 11-bit shift register (called pad) was added to the dendritic output of the soma unit to pad

the dendritic loop and delay the packet for 11 clock cycles.

A third issue spotted during verification was resuming the simulation after configuration. Some-

times after a simulation period, when a soma cell was reconfigured and the Cortex was resumed, it could

stop working properly. There were two cases for this: In the first case when the Cortex was paused this

soma was processing a packet. After reconfiguration, all the SRLs were configured based on the initial

state of the soma but soma was not in its initial state and therefore the state of the parameters in the SRLs
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Figure 5.12: Block diagram of the revised soma unit showing the bias register, and the delay block that were added to the

soma unit. The global reset and clock signals are not shown here.

did not match with the state of the soma that was stored in the control unit DFFs and SRLs. All these

state memory elements also needed to be initialised. This could be done by reconfiguration of those

SRLs and DFFs. Initialising SRLs can be carried out at the same time of reconfiguring the parameters in

the other SRLs as long as they always belong to the same frame. However, initialising DFFs by recon-

figuration creates an extra overhead as those memory elements are located in another frame. It is more

efficient to initialise them using a global reset signal.

In the second case, when the Cortex was paused, the soma was in idle mode awaiting a packet to

arrive, meaning that there was a packet being processed in the dendritic loop. In this situation soma would

be initialised and after resuming the Cortex, it would send a packet immediately. This could effectively

create two different packets in the same dendritic loop and potentially disturb the normal behaviour of

the soma unit. This can be also resolved by clearing the old packet from dendritic loop by resetting all

the pipeline DFFs in the dendritic loop. However as dendritic loop of a soma cell can potentially involve

any glial cell in the Cortex, this means to reset all the glial cells after reconfiguration of a single soma,

which can clear all the valid packets of other somas in the Cortex. Therefore, there is no way other than

reconfiguring all the somas and resetting all the DFFs in the Cortex globally before resuming the Cortex.

To resolve this issue, a global reset signal that is controlled by the processor was added to all the glial

and soma cells. To reconfigure the Cortex, processor must enable the global reset, then after at least one

clock cycle disable the global clock, perform the reconfiguration of all the soma cells, disable the reset

and finally enable the clock to start the simulation. Other solutions are also conceivable that involve,

for example, adding an initialisation mechanism to the soma unit that makes it wait for the old packet

to clear out of the dendritic loop and also initialises all the state DFFs in the soma. The global reset
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solution was selected as a fix for this issue due to its simplicity and the fact that allocating resources to

that mechanism required manual placement of the soma cell hard macro, which was a complicated and

time consuming task due to the issues in the tool chain. These issues are discussed in the next section.

All the above modifications and bug fixes were applied to the soma and glial cells. Figures 5.12 and 5.14

show a block diagram and a more detailed diagram of the revised soma unit respectively.

End-to-end Testing

For end-to-end testing of the Digital Neuron model in the Cortex, different soma parameter settings were

found to generate all the different behaviours expected from a normal QIF neuron model. The parameter

settings were found by trial and error using the similarity of the PLAQIF model with a QIF neuron

model. Different routines for testing these behaviours were developed in the software for the embedded

processor (see appendix C for source code). Apart from the axonal output of the neuron available to

the processor through the Spike Counter, an extra dendritic signal was also routed to the edge of the

cortex that allowed dendritic packets to be monitored and used both for debugging and parameter tuning.

The sample stimuli were taken from [169]. Figure 5.13 shows the verified spike timings of the Digital

Neuron model compared with the response of Izhikevich neuron model along with the PLAQIF soma

model function curves used to achieve each behaviour. For Class I and Class II excitabilities, a ramping

up postsynaptic current from zero to 2048 during 256 update cycles was used. Note that a normal QIF

neuron model is not able to show Class II excitability [169]. However, since a PLAQIF soma model

has more degrees of freedom than Izhikevich model, it was possible to use that flexibility to produce

a behaviour somehow similar to Class II excitability and tonic spiking using unusual function curves.

Table 5.5 gives a list of the parameter settings used for generating different behaviours tested.

Table 5.5: A list of six different behaviours of a Digital Neuron model tested in the Cortex and the parameter settings used

for generating each behaviour. T1 and T2 columns show parameter values for Tap 1 and Tap 2 of the PLAQIF soma model

for small, large, positive, and negative values of membrane potential. Vreset and Vbias columns show the reset potential

and the constant bias value added to the membrane potential in each update cycle. Figure 5.13 shows the response timing

of the neuron model for these settings.

Behaviour

Parameters

ParamLUT

Negative Positive

Small Large Large Small

T1 T2 T1 T2 T1 T2 T1 T2 Vreset Vbias

Class I excitability -12 -12 -3 -3 0 0 12 12 -8000 32

Class II excitability -3 -4 -4 -4 3 3 -3 -4 -32000 2500

Tonic spiking -14 -14 -14 -14 2 2 -2 -2 -20000 5

Spike latency -4 -4 -3 -3 1 1 4 4 0 2048

Integrator -4 -3 -3 -3 1 1 4 3 0 2800

Bi-stability -4 -4 -3 -3 3 3 4 4 100 2048
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Fig. 1. Summary of the neuro-computational properties of biological spiking neurons. Shown are simulations of the same model (1) and (2), with different choices
of parameters. Each horizontal bar denotes a 20-ms time interval. The MATLAB file generating the figure and containing all the parameters, as well as interactive
matlab tutorial program can be downloaded from the author’s website. This figure is reproduced with permission from www.izhikevich.com. (Electronic version
of the figure and reproduction permissions are freely available at www.izhikevich.com).

F. Spike Frequency Adaptation

The most common type of excitatory neuron in mammalian
neocortex, namely the regular spiking (RS) cell, fires tonic
spikes with decreasing frequency, as in Fig. 1(f). That is, the
frequency is relatively high at the onset of stimulation, and then
it adapts. Low-threshold spiking (LTS) inhibitory neurons also
have this property. The interspike frequency of such cells may
encode the time elapsed since the onset of the input.

G. Class 1 Excitability

The frequency of tonic spiking of neocortical RS excitatory
neurons depends on the strength of the input, and it may span

the range from 2 Hz to 200 Hz, or even greater. The ability
to fire low-frequency spikes when the input is weak (but su-
perthreshold) is called Class 1 excitability [8], [17], [22]. Class
1 excitable neurons can encode the strength of the input into
their firing rate, as in Fig. 1(g).

H. Class 2 Excitability

Some neurons cannot fire low-frequency spike trains. That is,
they are either quiescent or fire a train of spikes with a certain
relatively large frequency, say 40 Hz, as in Fig. 1(h). Such neu-
rons are called Class 2 excitable [8], [17], [22]. Their firing rate
is a poor predictor of the strength of stimulation.
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Figure 5.14: A detailed diagram of the revised soma unit showing the bias register, serial adder and padding shift register

that were added to the soma unit. The global reset and clock signals are not shown here.

The whole verification process explained in section 5.4.7 was repeated and all the hardware and

software modules involved in the reconfiguration of the Cortex and simulation of neurons in the Cortex

were successfully verified and tested.

5.5 Practical Considerations
Practical challenges, options, and issues in the detailed design and implementation of the Cortex are

further elaborated and summarised in this section. Possible extensions and modification that were not

implemented in the Cortex are also discussed and evaluated.

Three very major practical factors impacting the bio-plausibility of the Cortex are: relocatability

of the neurons, reconfiguration method (DPR versus Virtual FPGA), and a time-multiplexed switching

for the intercellular communication network. It appears that, in practice, despite the low performance

of the plug-in method for neuron relocatability, the hardware cost (for Bus Macros) and complexity of

creating relocatable neuron modules with the current design tools and devices is still so high that may

justify using a plug-in method to achieve some level of relocatability. However, the design tools are

changing rapidly. Not only Xilinx is claiming that the very last versions of the design tool (Vivado)
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has streamlined the partial reconfiguration workflow, but also new open-source tools are introduced by

researchers that allow better verification and analysis of designs for partial reconfiguration, introduce

automatic generation of relocatable modules, and a new Bus Macro [325, 47].

A virtual FPGA method was not used in the case study due to its very high hardware cost and abun-

dance of its record in the literature. However, it can be a viable option in a large FPGA. A virtual FPGA

method is more bio-plausible than DPR method, but only if the Cortex is reconfigured by distributed

developmental processes on FPGA. In that case its detailed design and specifications depend on the lo-

cal developmental mechanisms in the hardware and how it can be bio-plausibly integrated with those

circuits. Therefore, virtual FPGA approach deserves to be revisited in the next chapter when distributed

developmental processes in hardware are discussed.

Time-multiplexed Intercellular Network

Extending the 2D intercellular network of axons to a time-multiplexed virtual 3D network can affect

the bio-plausibility of the cortex model by allowing longer and denser axonal interconnections to be

developed more efficiently on the same 2D infrastructure. To implement a time-multiplexed virtual

2D network for axons in the Cortex, each 4 × 1 multiplexer needs to be fed by switching data from a

schedule table (a 2n-bit RAM, where n is the scheduling period length). Figure 5.2 shows the general

circuit needed for time-multiplexing. All schedule tables need to be addressed by a time-slot counter. A

shift register can be used efficiently to implement the combination of a schedule table RAM and a local

time-slot counter. It is also possible to store the raw switching logic of different multiplexer states in an

LUT that is addressed by a time-slot counter.

In the case study design, a 6-input LUT is used as two 5-input LUTs to implement two axonal

switches. One of the LUT inputs is left unused. A single-bit counter connected to this input in all glial

cells gives a schedule period of 2 with minimum hardware cost. However, it only doubles the band

width of the network as it is not possible to route an axon around an obstacles by using the other time-

slot. Figure 5.15 shows two 1-dimensional (Virtual 2D) networks with schedule periods of 2 and 4, and

the links between grid cells. Grey arrows represent possible paths and blue path shows how a spike

can travel through the network from a source (s) to a destination (d) avoiding an obstacle (O). With a

schedule period of two, even with no other congestion, it is only possible to avoid half of the obstacles

and there is not much a routing process can do to go around the other ones. However, with more than two

time slots (a 4-slot schedule is shown in the figure) it is possible to turn around and avoid the obstacles

while still routing towards the destination cell. In the same way, longer schedule periods can increase the

network routing capacity super-linearly. However, the memory capacity needed for scheduling grows

linearly with the schedule period.

To be able to expand the axonal network to a schedule period of four, it would be possible to used

a 6-input LUT for each axonal multiplexer and use the extra two inputs for slot addressing. The original

glial cell design uses three 6-input LUTs for switching axons (two LUTs for external links and one for

the synapse axonal input). Adding 2 extra 6-input LUTs to the circuit is enough to provide the extra

hardware for both switches and storing the switching schedule for a 4-time-slot period. It is possible
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to avoid half of the obstacles and there is not much a routing process can do to go around the other ones. However, with

more than two time slots (a 4-slot schedule is shown in the figure) it is possible to turn around and avoid obstacles while

still routing towards the destination cell.

to allocate two global clock signals and a central counter for time-slot addressing. Also, a very simple

2-bit grey-code counter can be realised inside each glial cell using only two flip-flops if needed. If it was

intended to allocate more hardware resources to axons, it is also possible to use 32-bit shift registers as

self-counting schedule tables that feed the switching data automatically to the multiplexers and simply

increase the schedule period up to 32 bits. However, to achieve that, ten extra shift registers are needed.

In a less ambitious design it would be possible to use 32-bit SRLs as two 16-bit SRLs and with only

five extra shift registers achieve a schedule period of 16. Table 5.6 shows a summary of the estimated

hardware cost overhead compared to the current glial cell design for a few different implementations of

the time-multiplexed intercellular network.

This can be viewed as a trade-off between scalability and bio-plausibility versus hardware cost.

However, only the hardware cost of the memories grow linearly with the time-slot period, which is a

much better trend than linear growth of all hardware in a real 3D network.

Since in the above example designs, the axonal input of the synapse unit is also time-multiplexed,

a synapse can be formed for any of the axons passing through a glial cell. It will be also possible for

different axons to share the same synaptic weight with no extra hardware cost. However, in all the above

designs the soma cell must be modified slightly so that it generates the spike only in the first time-slot

or a specified slot and the axonal outputs of the soma cell on each edge deflect the incoming spikes back

to the neighbouring glial cells in all other time slots. This way it would be possible to put the incoming

axonal switches in glial cells around soma cells to a good use for changing the time-slot of the spikes
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Table 5.6: A summary of the estimated hardware cost overhead for each glial cell compared to the current glial cell design

for a few different implementations of the time-multiplexed intercellular communication network

Implementation Hardware Overhead Estimate

(Schedule period) # 6LUTs SRL32s/RAM64s DFFs Global signals

Raw encoding w/ local counter (2) 0 0 1 0

Raw encoding w/ central counter (2) 0 0 0 1

Raw encoding w/ local counter (4) 2 0 2 0

Raw encoding w/ central counter (4) 2 0 0 2

Optimised encoding w/ local counter (16) 2 5 0 0

Optimised encoding w/ local counter (32) 2 5 5 0

Optimised encoding w/ central counter (32) 2 5 0 5

Optimised encoding w/ local counter (32) 2 10 0 0

Optimised encoding w/ local counter (64) 2 10 6 0

Optimised encoding w/ central counter (64) 2 10 0 6

Optimised encoding w/ local counter (64) 2 20 0 0

right outside a soma cell. These switches were allocated but unused in the original design.

The clock frequency of the axonal network can be different from the rest of the system. This

allows scaling all the axonal delays up or down. However, this needs particular attention in the design of

the asynchronous interfaces of axonal network with soma and synapse units, which can be achieved by

using latches. Reconfigurable clock management cores available in Virtex-5 FPGAs (DCM_ADV) [409]

allow multiplication and division of the original clock signal to generate different clock frequencies for

the axonal network. Therefore, it is also possible to allow evo-devo processes to regulate the global

axonal delays by changing this frequency.

Compactness (Hardware Cost)

Apart from the trade-off between compactness and bio-plausibility in time-multiplexed design there are

other small changes that can affect the compactness of the design. For example, the internal dendritic

loop in soma cell is not necessary. This is due to the existence of possible loopback paths in the dendritic

network right outside a soma cell in the glial cells. However, having the internal loop allows a soma cell

to still work even if most of the glial cells around it are faulty, adding to the fault-tolerance and reliability

of the Cortex. Removing the internal loop frees up 6 DFFs and three 6LUTs that can be used for other

features such as upgrading the neuron to a piecewise-linear estimation of Izhikevich model.

Performance

Simulation performance can be improved by circuit optimisation and carrying out place and route steps

carefully even manually with tight speed constraints, and exploration of different synthesis and place and

route options in the design tool. The final verified implementation of the glial and soma cells achieved



5.5. Practical Considerations 178

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 910111213141516

1234 5 6 7 8 9 10 11 1213141516

Figure 5.16: Solution to wrap-around wire delays in a 16 node ring network. The top connectivity pattern involves a very

long wire between the first and last nodes while other links are very short. In the second pattern this delay is divided in half

between two wires by flipping right half of the nodes. In the third pattern a quarter of the nodes at each end of the ring are

also flipped again to cut the delays in half again.

clock frequencies of 320 and 200MHz respectively. By spending more time it was possible to improve

the the soma performance up to at least 300MHz as well. However, that was not the bottleneck of the

simulation performance. The maximum clock frequency of the final cortex implementation was 110MHz

as the design tool could not meet any better speed constraints. This was mainly due to very long wrap-

around wires connecting the top and bottom of the Cortex. While there were enough long-range wires

available to connect all the axonal and dendritic wrap-around connections, the delay of these long-range

wires are so high that for some of them a cell to cell delay of about 6.5ns was reported after place and

route.

There are a number of solutions to this problem: The first solution would be to add an extra layer

of pipeline flip-flops on the receiving end of these lines or in the middle of the FPGA. Although this will

help to some extent, finding free flip-flops in the middle of the Cortex that is already filled with glial and

soma cell hard macros is not easy. Moreover, that would disturb the homogeneity of the Cortex. The

better solution is to flip half of the Cortex upside-down. Figure 5.16 shows how this can distributes the

delays over the local connections and avoid having very long wires for wrap-around signals. However,

this will slightly complicate the reconfiguration process as the order of the rows in the Cortex will be

changed. By applying this technique a few times it is possible to remove the bottleneck from the wrap-

around wires.

There are other sources of delay in the implementation of the Cortex. The Xilinx design tool was

not able to place and route the Cortex when glial and soma cell hard macros were already routed. This

was mainly because when these hard macros were generated it was not possible to route all the local

signals through the local wires and some longer ones were going through the neighbouring CLBs. This

stopped the place and rout process when it could not use that wire in the middle of next hard macro.This

was resolved by unrouting these hard macros allowing the design tool to have more flexibility to change

the routing after placement. Although this resolved the place and route problem, it introduced another
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problem. The design tool reroutes all the internal signals of each cell ignoring the timing constraints

for those signals assuming they meet the timing requirements as they come from a hard macro. Design

tool can not perform a timing analysis on hard macros. Xilinx’s official workflow for generating a

grid of cells such as the Cortex with location constraints is using RPMs (Relatively Placed Macros)

but in case of glial cells and soma cell there was no single parameter setting that could synthesise both

RPMs successfully within the location and timing constraints. Other possible solutions involve manual

place and routing and/or direct routing. With the above problems it was very difficult to achieve a timing

closure. The final design was synthesised for much lower clock frequency of 100MHz and was manually

examined for timing violations. The software driven end-to-end verification allowed testing the whole

system including the Cortex and the embedded processor at 100MHz with success.

There are also potential solutions for improving the reconfiguration performance. One is to place

the reconfigurable elements in the glial and soma cells in an order that reduce the number of recon-

figured frames during reconfiguration and development. However, a placement, which is efficient for

reconfiguration may not be efficient for simulation performance as it may involve longer distances be-

tween elements and longer delays. However, this trade-off can be overcome by optimising both aspects

at the same time with some manual placement inside hard macros.

Another factor is the maximum speed of the HWICAP IP core. The original XPSHWICAP core

from Xilinx is not very fast and efficient. This has been already studied and some very fast IP cores

supporting up to the nominal speed of the ICAP at 400MBytes/s are suggested for Virtex-5 [31]. Also

some researchers have been over-clocking the ICAP in Virtex-5 reporting much higher speeds of up to

2200MBytes/s (5.5x) [144, 85].

With the ICAP and HWICAP being able to deliver such speeds the bottleneck will be the processor

that prepares the packets and manages the HWICAP core. The MicroBlaze is a soft processor core that

can work at a maximum frequency of 250 MHz. For simplicity and other reasons discussed in chapter

7 the MicroBlaze processor in this system was using the same clock as the Cortex. However, it is quite

acceptable that the processor and other cores connected to it run at different frequencies. It is also

possible to use an FPGA device with a hard processor core with better performance. It is also possible

to use a PC for preparing the frames and delivering them to the FPGA. Then the bottleneck will be the

datalink between PC and FPGA. These are elaborated in length in chapter 7 where integration of the

whole system is discussed.

5.6 Summary
Figure 5.17 shows a graphical representation of the investigations carried out in chapter 5. In this chapter

the significant and general impact of the cortex model design on the bio-plausibility and feasibility of

the whole system were discussed. In section 5.1, general definition of bio-plausibility and feasibility

measures from chapter 2 were translated into a set of tangible general design factors and constraints in

the specific context of the cortex model. Using those general factors, different general design options

and approaches and their trade-offs in different aspects of the cortex model design were investigated.

In section 5.2, Intracellular and intercellular communication networks, their characteristics, and
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Figure 5.17: A graph of the investigations carried out in chapter 5 regarding the cortex model.

their requirements were discussed and different possible topologies and switching techniques, along

with their limitations and trade-offs were investigated. Different reconfigurable elements available to be

used in the cortex model were reviewed, and different options for reconfiguration mechanism, and their

limitations and trade-offs were examined in section 5.2.3. Also different design options for feedback

generation from the cortex was investigated. Based on the general insight from that analysis, and to fur-

ther investigate the practical challenges, a new cortex model was designed, implemented, and verified in

section 5.4. Practical issues, limitations, and tradeoff discovered during the detailed design, implemen-

tation and testing of the case study cortex model were also highlighted and discussed in the final section

of this chapter. The Cortex model implemented here as a case study provides a basis for investigation of

the evo-devo model in the next chapter.



Chapter 6

Evo-Devo Model

Biological brains are developed, maintained, and regulated by the chemistries and interactions between

different types of molecules and atoms. These interactions and chemistries are governed by expression

of different genes that are, in turn, regulated and adapted by Darwinian evolution. The combined mech-

anisms of genetic evolution, gene expression and regulation, protein interactions and interactions with

the environment that finally produce the traits and behaviours in the phenotype are known as the evo-

devo processes [298]. In this study, the evolutionary development of neural microcircuits in FPGA also

requires similar processes that resemble biological evolution and development. Here, a combination of

these bio-inspired processes is called an evo-devo model. Since these bio-inspired evo-devo processes

control and regulate the neuron and cortex models in the system, their bio-plausibility can significantly

affect the bio-plausibility of the whole system. Researchers have conjectured, argued, and in some cases

proved that many of the desired properties such as adaptability, modularity, scalability, fault-tolerance,

robustness, and even efficiency can emerge through such bio-plausible models (see section 2.5.4). Many

of these properties have direct impact on the feasibility of the whole system. It is therefore the aim of this

section to investigate the challenges, factors, trade-offs and constraints in the design and implementation

of the bio-plausible evo-devo processes that can be feasibly used for development of neural microcircuits

in FPGAs.

As in the previous chapters, first (in section 6.1), the general definitions of bio-plausibility and fea-

sibility are translated into tangible design factors and constraints in the context of the evo-devo model.

In section 6.2, using these factors that can affect the bio-plausibility and feasibility of the system, dif-

ferent general design options and approaches are investigated, and their trade-offs and limitations are

highlighted in order to focus further investigations on the promising areas of the design space. To further

investigate the practical challenges, design, implementation and testing of an example bio-plausible evo-

devo model are presented as a case study in section 6.4. Practical limitations, challenges, and trade-off

are highlighted in section 6.5.

6.1 General Design Factors
First in this section we focus on the design factors that can affect the bio-plausibility of the evo-devo

model. Different aspects of bio-plausibility of the evo-devo model are highlighted here and their roles
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in the bio-plausibility of the whole system are discussed. Secondly, we focus on the design factors that

affect different aspects of the feasibility of the evo-devo model. These different aspects are generally the

same feasibility measures that were defined in section 2.2.

6.1.1 Bio-plausibility Related Design Factors

Biological evolutionary neurodevelopmental processes are able to generate modular and hierarchical

neural networks that show both regularity and randomness [404]. Sometimes evo-devo processes direct

a single axon from one region of the brain to the other region in order to connect to a specific neuron

[404]. More often, general connectivity of the brain regions are coded in the genome and more varia-

tions in connectivity can be seen across different individuals (even with identical genomes), and during

individual’s lifetime. Many connections are results of synaptogenesis guided by the network activity

and in response to stimuli [404], and rewards or punishments during the lifetime of an individual. De-

velopmental processes can detect redundant or faulty connections and cells and eliminate them [404].

Neurodevelopment can generate robust and intrinsically fault-tolerant neural microcircuits so that their

performance degrades gracefully when they are subjected to noise, faults and damages. Moreover, bio-

logical neurodevelopment can regenerate and repair the damaged circuits by reallocation or generating

new neurons and connections. Biological development is sensitive to environmental factors but robust to

environmental noise [351, 404].

Biological evolution also shows a high level of evolvability [196, 165]. This is due to many dif-

ferent factors. The genotype-phenotype mapping in biological development is many-to-one leading to

neutral mutations that increase evolvability. Different parts of the genome have different mutation rates

and some parts are more robust to mutations. This is something that has been evolved itself through

billion years. Biological evolution can result in new species with larger and more complex brains if the

environment is demanding. Biological genomes are variable in length and complexity of both genotypes

and phenotypes can increase gradually but significantly through generations. Modularity can be seen

not only as cells, brain regions, clusters, organs, and limbs in the phenotypes, but also as genes, gene

clusters, chromosomes, and genetic pathways in the genotypes. The effective fitness of an individual

in biological evolution is the result of very fluid and dynamic interactions of individuals with the envi-

ronment, that unfold new challenges and opportunities for species as they evolve. This can be seen, for

example in the coevolution of predator and prey species. Sometimes evolution finds a niche of resources

in the environment and a new species emerge to exploit it. In biological evolution, completely differ-

ent species, or geographically separate species, usually do not crossbreed, which brings diversity to the

ecosystem. However, sometimes symbiosis can allow different species to cooperate and probably merge

their genomes creating more complex phenotypes and genotypes.

A bio-plausible approach assumes that many of these properties and features can be achieved in

artificial evo-devo models by increasing the structural accuracies of the models meaning that the internal

mechanisms of the models to be as close as possible to the underlying mechanisms in the biology. To

be able to asses bio-plausibility of different evo-devo models, the underlying mechanisms and structures

of the biological evolution and development are briefly reviewed here [165]. Here, evo-devo processes
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are modelled in a hierarchy of systems. The boundary of a system is usually defined around a cluster

of subsystems, which appear to have more interactions between themselves and inside the boundary

compared to their interactions with entities outside the system and across the boundary.

We can start from ecosystem as the highest level system that includes all the interactions, although it

is not a closed system and is itself interacting with the rest of the universe. An ecosystem can be thought

of as a system comprising many many species that interact with each other directly or through the effects

they have on the environment. These interactions may appear as cooperative or competitive. These

species consist of many populations (usually geographically separated) that have much more interactions

inside them than with each other.

These populations consist of individuals embodied in the environment that, apart from interacting

with the environment and other species, interact with each other in many forms including competition

for shared resources, cooperation as groups and communities, and above all, sexual reproduction. Their

cooperative and competitive interactions with each other, with other species, and environment create a

selection that might be in favour of one species, population, or individual, something that is modelled

as environmental selection [165]. Reproductive selection and mating, on the other hand, can include

other factors that might be evolved as traits and preferences that can direct the evolution of a species.

These preferences can create internal subgroups inside a population that inbreed or crossbreed allowing

regulation of the diversity and fitness of the populations. This is modelled as sexual selection [165].

Reproduction with some variation is the fundamental mechanism of evolution. Reproduction is based on

the replication of individual’s genome, a number of chromosomes, that store the genetic heritage of each

individual and are replicated during reproduction, albeit with some random noise, known as mutations.

Chromosomes are DNA (or RNA) strings of a four-letter alphabet, each letter being implemented by

one of the bases represented by letters A, C, G, and T. Asexual reproduction creates an imperfect copy of

these chromosomes with some mutations in the chromosome of the offspring [165]. Sexual reproduction

not only replicates the parents‘ genome, but also randomly recombines two different copies from the

parents. This recombination, is performed by matching the similar chromosomes of the parents and

using substrings from each copy to construct the offspring’s chromosome [165]. This random process,

known as crossover, involves switching between two copies at a number of places along the length of the

chromosomes where the offspring’s chromosome switches from one parent’s copy to the other’s [165].

The matching process is always imperfect and can result in deletion, extra copies of the substrings, shifts

and so on [165].

Some parts of each chromosome that can be transcribed into RNA and proteins are known as coding

sequences. Each group of three letters in the coding sequences can transcribe into a molecule which

will integrate with other molecules constructing even larger molecules known as proteins [165]. These

proteins, depending on their sequence of atoms and environmental conditions fold into specific shapes

and can interact and integrate with other proteins and molecules resulting in structures that build the

cells and body of the individual. These structures and the interaction of the proteins with each other

and environment is the basis of the functioning of the cells and the whole organism. These proteins and
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molecules also interact with the chromosomes and get involved in the transcoding of the chromosome.

They may promote or suppress the process of transcoding depending on the neighbouring substrings in

a piece of chromosome [165]. Each piece of chromosome that is involved in the transcoding of a protein

or a piece of protein is known as a gene. Therefore, transcoding of each gene, known as gene expression,

produces a protein, and each protein can interact with genes and affect their expression. Proteins also

interact with each other and with environment inside and outside of a cell. These proteins and their

interactions form the structure and function of the cells and bodies of the individuals. The intricate gene-

protein and protein-protein interactions can form very complex networks known as Gene-Regulatory

Networks (GRNs) [165]. This mechanism brings both coding and non-coding sequences of the genome

into play. Even those segments of a chromosome that are never involved in anything in one individual,

have played a role in one of individual’s ancestors or might one day play a role in one of its descendants

due to random mutations, recombinations, and the dynamic environment.

Multicellular individuals also have interactions between their cells. Some molecules and proteins

can move from one cell to the other and interact with the proteins and genes in the other cell. This

process, known as signalling, allows cells to know their position in space and differentiate accordingly to

work together to create much more complex structures and functions [404]. Cells can stick together, push

each other, bend, or twist to form shapes, tissues, organs that work together providing the individual with

higher-level functions and structures [404]. These chemical signals not only provide positional and other

information to the cells but also can guide the neurites to grow towards their target cells [404], or signal

cells to duplicate (mitosis), or die (apoptosis). All these interactions create a complex system that allows

properties such as adaptability, fault-tolerance, robustness, regeneration, scalability and modularity to

emerge. Evo-devo processes have been shown to be responsible, directly or indirectly in all of these

properties in the biological systems [211, 404, 165].

Looking at such a complex system from bottom upwards, we can clearly see a hierarchy of modules.

Interacting atoms construct the molecules. Long and complex molecules that form genes and proteins

interact with each others inside cells. Interacting cells form tissues and organs that make individual

bodies. Individuals interact with each others and with non-living entities in an ecosystem. Interacting

individuals form groups and populations of species that also interact with each other and their environ-

ment. A bio-inspired evo-devo model needs to incorporate enough levels of this hierarchy with sufficient

detail. Ignoring some levels or extreme abstraction of interactions may deprive the model from some

emergent properties. On the other hand, including all levels and details is not feasible as it requires

massive energy, time, and computation power. Design factors related to the feasibility of the evo-devo

model are discussed in the next section.

With this biological background we can expect that a bio-plausible evo-devo model needs to have

similar counterparts for most of these functions and structures, counterparts for proteins that affect the

functioning, and construct the structure of the neural microcircuits, and gene-regulatory networks with

protein-protein and gene-protein interactions that create a dynamical system regulating the proteins,

intercellular signalling including the positional information, genes, chromosomes, genomes, individuals,
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populations and even species and their interactions.

6.1.2 Feasibility Related Design Factors

Feasibility of the whole system is affected by a number of factors that can impact the performance,

hardware cost, scalability, reliability, complexity and availability of the system. Here we focus on every

one of these groups of factors in the design and implementation of the evo-devo model and their possible

effects on different aspects of the system feasibility.

Factors Affecting the Performance

Performance of the system depends on the number of evaluations the evolutionary model needs to evolve

a solution. Each evaluation requires development of the individual before and during the neural simula-

tion. Therefore the time that the system needs to evaluate an individual is a mixture of the development

time, the cortex reconfiguration time and neural simulation time. In the simplest form an individual is

first developed, then the cortex is reconfigured accordingly, and then simulation is carried out to evaluate

the individual. In case of activity-dependent development, the individual first goes through an initial

stage of development until it is ready for the initial reconfiguration and some simulation. Then during

the simulation, developmental process needs to be executed concurrently to reconfigure the neural mi-

crocircuits every now and then. This increases the total evaluation time of each individual. It is therefore

desired to minimise both the number of evaluations needed for evolving an acceptable solution, and the

total development and reconfiguration time.

Factors Affecting the Hardware Cost

The evo-devo processes may need dedicated hardware resources for their execution or may necessitate

adding special hardware to the cortex model. These processes may also share part of the hardware

resources already available in the system or may be partially migrated to software modules running on

the embedded system processor or a PC connected to the FPGA. In either case, it is desired to minimise

the hardware overhead of the evolutionary and developmental processes to minimise the hardware cost

of the whole system.

Factors Affecting the Scalability

The evolutionary and developmental processes are required to work for smaller or larger cortex sizes that

might be implemented on a single or multiple FPGA devices. They must also allow scalability of the

problem in terms of the complexity of the problem and the size of the input/output vectors and size of

the stimuli dataset used for evaluation.

Factors Affecting the Reliability

The evo-devo processes must not only be reliable in the sense that they do not decrease the reliability of

the system but also they are expected to allow fault-tolerance, robustness, regeneration and self-repair to

emerge, which can increase the reliability of the whole system. This type of reliable neural microcircuits

can be very useful when developed in a huge cortex with large numbers of neurons and glial cells.

Fabrication of such a huge cortex in a very large VLSI chip involves low yield factors or high number

of faulty cells in the cortex. SEUs (single-event upsets) and unit failures are more common in such large



6.2. General Design Options 186

systems. A fault-tolerant and robust cortex can resolve these problems. Although evolutionary process

will be able to evolve networks that are intrinsically robust to loss of nodes and links, a bio-plausible

developmental process can also contribute to fault-tolerance and robustness of the system. This can be

achieved, for example, by regeneration or by neurites avoiding the faulty cells. Errors and faulty cells can

be detected by the activity feedback information from the cortex (as explained in chapter 5 or by rather

traditional methods such as post-fabrication test, POST (Power-On Self-Test), BIST (Built-In Self-Test),

DMR (Dual Modular Redundancy), or TMR (Triple Modular Redundancy) [313] or by more innovative

and bio-plausible methods such as artificial immune systems [365].

Factors Affecting the Complexity

There is no doubt that incorporating the evo-devo processes into the system will affect the complexity of

the design and testing of the whole system. It is always desired to minimise the time and complexity of

the system design and testing. This is particularly important as the testing of the modules related to these

processes may need running the whole system. Therefore a manageable, modular, and structural design

is required that simplifies the design and allows separate testing of each module before integration to the

rest of the system.

6.2 General Design Options
The tangible factors and constraints that can affect the feasibility and bio-plausibility of the system

analysed in the previous sections are summarised in table 6.1. Based on these factors and constraints,

now, it is possible to explore different general design approaches and options to focus on the promising

methods for further investigation. Looking at table 6.1 , it is possible to classify different functions that

the evo-devo model needs to implement as follows:

1. A dynamical system (gene-regulatory network) that organises the structure and regulates the pa-

rameters of the neural microcircuits and receives feedback from it.

2. An evolvable genetic representation of this dynamical system with an evolvable mapping from

genome to the description of the dynamical system.

3. An evolutionary algorithm including a selection mechanism that maintains a population and selects

potential parents from the population allowing speciation and population diversity, and recombi-

nation and mutation operators that can reproduce new offspring genomes with required genetic

representation.

4. An application-specific fitness function that evaluates each new individual microcircuit and passes

its fitness value to the evolutionary algorithm.

Figure 6.1 shows how these different functions work together in the evo-devo model and how they

can be divided into separate developmental and evolutionary processes. In this section, different general

approaches and options for design and implementation of the three former functions are discussed. As

fitness evaluation depends on the specific application of the whole system it is discussed in the next

chapter when system integration is investigated.
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Table 6.1: A summary of the tangible design factors and constraints in the design and implementation of the evo-devo

model that can affect the bio-plausibility and feasibility of the system.

Bio-plausibility Related Design Factors Feasibility Related Design Factors

Proteins that regulate the functioning, and construct

the structure of the neural microcircuits

Evolution speed (minimising the number

of evaluations needed for evolving an ac-

ceptable solution)

Gene-regulatory networks with protein-protein and

gene-protein interactions that create a rich and

evolvable dynamical system regulating the proteins

concentrations receiving information from environ-

ment and neural microcircuit feedback

Development time (minimising the total

development time and number of recon-

figurations needed during activity depen-

dent development)

Chemical signals providing positional information

and allowing differentiation, division, apoptosis,

and guiding neurite growth

Compactness (Minimising the hardware

overhead of the evolutionary and devel-

opmental processes)

Genes with adjustable robustness to mutations Scalable to a smaller or larger cortex,

more or less number of inputs and out-

puts, and a simpler or more complex

problem

Variable-length chromosomes, and genomes with

crossover and mutations that allow deletion, dupli-

cation, and modification of the genetic information

Emergence of fault-tolerance, robustness,

regeneration and self-repair without im-

pacting the reliability of the other parts of

the system

Population of individuals with both environmental

and sexual selection

Simple, manageable, modular and struc-

tured design

Interactions inside and between populations and

species that allow both competitive speciation and

cooperative symbiosis
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Figure 6.1: Different functions of the evo-devo model and their interactions. Evolutionary and developmental processes

are separated from each other. Both processes need to share the same genetic representation.

6.2.1 Dynamical System (Gene-Regulatory Network)

A dynamical system is needed in the heart of the developmental system that models the biological gene-

regulatory network. This dynamical system receives feedback data about the health and activity of the

soma, glial, and IO cells in the Cortex. These are local information that change through the simulation

time. The dynamical system is required to produce two types of signals. Structural signals control the

differentiation of the cells, growth, death, retraction, and trimming of the axons and dendrites, and also

formation and elimination of the synapses (synaptogenesis). Regulatory signals control the soma cell

and synapse unit parameters such as, reset potentials and synaptic weights. These are also local signals

that might change through the simulation time.

If the current state of each cell located at (x, y) at time t is represented with a vector ~Stx,y , the dy-

namical system can be formulated as a function f of the current state vector of a cell and its neighbouring

cells states (~StN(x,y), where N(x, y) is the set of cells in the geometrical neighbourhood of (x, y) in the

substrate), and local feedback (~F tx,y) with an equation of the form:

~St+∆t
x,y = f(~Stx,y, ~S

t
N(x,y),

~F tx,y) (6.1)
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.

Locality of these signals, their time dependence, and direct imitation of the biology may lead a

designer to a multicellular, distributed, iterative dynamical system as proposed in [311]. However, as ex-

amined in the following, it might be possible to have an abstracted model of multicellular time-dependent

development.

Abstracted models

As discussed in [347] comprehensively, it is possible to evolve one or a set of related functions over

a Cartesian space to produce the spatial patterns needed for organisation and regulation of a pheno-

type without having a multicellular time-dependent development with all the chemical signals and lo-

cal interactions. An example of such abstracted models of development is HyperNEAT [349] and its

extensions. In the original HyperNEAT method, the structural organisation and parametric regulation

(synaptic weights) of an ANN is specified statically by an evolvable function over a 4-dimensional space

of the connections between neurons that are located in a 2-dimensional substrate.

Instead of using local intercellular signalling to create the positional information such as the

anterior-posterior, and dorsal-ventral axes [404], a functional description starts from a predefined Carte-

sian space. This abstraction can save significant computation power that is needed both for development

of those positional information signals, and for evolution of the genes that control them. These models

abstract the dynamical system from time and local interactions into a much simpler static function of the

form:

~Sx,y = f(x, y). (6.2)

Stanley suggested, in [347], to add necessary feedback information from the development environ-

ment as inputs of this functional description to make the abstracted model respond to these factors. These

factors can be static (~Fx,y) or time-dependent (~F tx,y) that gives a static or dynamic function of the forms:

~Sx,y = f(x, y, ~Fx,y) (6.3)

and

~Stx,y = f(x, y, ~F tx,y) (6.4)

respectively. The time-dependent version of the model, requires re-evaluation of the function every time

that the feedback data is updated. In [347], Stanley also suggested to add the necessary local states to

the input of the functional description to create an adaptive system of the form:

~St+∆t
x,y = f(x, y, ~Stx,y, ~F

t
x,y). (6.5)

For example, in [304], Risi and Stanley showed that it is possible to evolve an adaptive ANN that

updates its synaptic weights (~Stx,y = wij) using an evolved function of the position of the pre and post

synaptic neurons (x, y = (xi, yi, xj , yj)) and their activities (~F tx,y = (ai, aj)).
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The only difference between this later version of the abstracted model (equation 6.5) and the original

multicellular dynamic system (equation 6.1) is the local interactions between cells. Such abstracted

models assume that these local interaction are only necessary for producing positional information that

is already directly available to the functional description in the abstracted model. However, apart from

being less bio-plausible than using local interactions, it is not clear how scalable, fault-tolerant, and

robust such abstract models can be in response to run-time changes in the size, geometry and connectivity

of the problem, substrate, inputs, or outputs. For example, a set of faulty inputs, links or nodes in the

substrate can disturb the local interactions in a multicellular model, which can automatically warp the

virtual space of the substrate around the damaged area. In contrast, the abstracted model that relies

on the fixed Cartesian coordinates, needs to evolve special mechanisms to cope with such situations.

Adding more resources and scaling up the problem size (such as adding an extra chip for the Cortex

and doubling the number of inputs) requires such abstract models to be already evolved for the larger

cortex or have special provisions to cope with a larger substrate. However, biological evidence shows

that local interactions are a very effective means for scalability of complex structures. It appears that

the use of local interactions can bring intrinsic scalability, fault-tolerance, and robustness to artificial

development that otherwise may require special regenerative mechanisms to be evolved separately in

abstracted models [78].

To regulate the placement and density of the neurons in the substrate, these abstract models need

to sample a function for every possible position in the substrate and based on the value of the function

(or its variance as shown in [305]) decide about the position of the cells and their parameters. This

requires time consuming computations (at least for one initial iteration of the development) that these

abstract models are intended to avoid. Moreover, if an adaptive placement or regeneration is desired,

these computations need to be repeated.

Such abstract models not only save the initial time and computational power that is needed for

evolving the required genetic material and developing the positional information, but also they save all

the computational power that is needed for sustained local interactions during development. As it is

discussed in the following, multicellular models are computationally more complicated and expensive

but can also use some of these tricks to save on some computations.

Multicellular Models

Multicellular models or cell chemistry models are based on two types of primary interactions: gene

expression (gene-protein interactions) and chemical signalling (protein-protein interactions). Proteins in

the cell can have effects on the expression or suppression of genes [404, 211, 165]. Also, when a gene

is expressed, its protein products are synthesised and added to the proteins in the cell, increasing the

concentration of that protein in the cell. Furthermore, these proteins can interact with each other. One of

the very important types of the protein-protein interactions is that some proteins on the surface of the cell

membrane are able to pass other specific types of proteins in or out of the cell [404, 211]. This allows

some proteins to travel longer distances outside of the cell and into other cells, interacting with their

genes and internal proteins. Proteins also decay through time, which allows these protein concentration
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to work as time dependent signals [404, 211].

If concentration of each type of protein in a cell is represented by one component of the cell state

vector, the gene-protein interactions, by their own, can be formulated as a dynamical system of the form:

~St+∆t
x,y = f(~Stx,y). (6.6)

As the concentration of some of the proteins in the cell depends on their concentrations outside of

the cell, which in turn depends on that value inside the other neighbouring cells, the above equation turns

into an equation such as:

~St+∆t
x,y = f(~Stx,y) + g(~StN(x,y)). (6.7)

Adding the effect of the local feedback (~F tx,y), arrives at an equation very similar to the equation

from the original general dynamical system (equation 6.1):

~St+∆t
x,y = f(~Stx,y, ~F

t
x,y) + g(~StN(x,y)). (6.8)

Therefore, there are two functions that are needed to be described by the genome and calculated

for each cell through evolution. One is a gene expression function f(~Stx,y, ~F
t
x,y) of the current state

and feedback in the cell, and the second one is a protein diffusion function g(~StN(x,y)) of the state of

the neighbouring cells or area. Looking at a few different models of the protein diffusion in literature

(see section 2.5.3), shows how researchers were trying to unburden the developmental model from this

repetitive computation. Some of them (in time-independent models) assume a time-independent function

of distance (equation 2.15 and 2.16) abstracting both time and discrete nature of the cells. This way

calculation of the diffusion function is of complexity order of O(NuNcNpNs) where Nu, Nc, Np and

Ns are representing the number of updates during development, number of cells, number of proteins

(that can travel beyond a cell membrane), and number of sources respectively. This will help to limit the

computation to only the source cells that produce a protein and only update their contribution when the

protein concentration has changed at the source. More bio-plausible models (for example equation 2.17)

use equal iterative contributions from each neighbouring cell (according to the connectivity topology of

the substrate) that take time into account. The computational complexity of these bio-plausible models is

O(CNtN
2
cNp) where C is the number of neighbours depending on the topology of the substrate, andNt

is the number of development cycles. These models have to perform the computations for all the cells,

all potential sources in all cells and at every development iteration. Some researchers used simplified

models such as equation 2.18 that reduces the hardware cost of calculating the function by removing

addition and division operations.

Apart from computational cost of the diffusion function, the system needs many evolutionary iter-

ations until the genetic material for producing the positional information in the substrate emerges. One

way to skip this step is to start the evolution with a seed population with pre-evolved or even hand de-

signed genomes that produce the necessary positional information in the first generation and during the

first iterations of the development. Another way is to start the development only with some maternal

factors. Maternal factors are proteins that have initial concentrations in the cells or even gradients in the
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substrate when a phenotype starts to develop [404]. This can give the developmental processes the posi-

tional information right away at the very first iteration without evolution. However, this technique allows

evolution to change the dynamics of these maternal factors through the development of the individual

rather than using static positional information as in abstract models.

Based on the local interactions between cells, multicellular models are able to use bio-plausible

methods of cell differentiation such as lateral inhibition [404] for regulating the position and density of

the neurons in a substrate. The same mechanism is able to regenerate a new neuron if the old one has

died. In contrast, in the abstract models, these functions need special attention and necessitate iterative

processing through time.

6.2.2 Genetic Representation and Mapping

The functions used in the dynamical system or gene-regulatory network of the evo-devo model need

to be encoded in a genome. This requires a representation protocol that is both evolvable and flexible

enough to represent the required functions needed to develop desired phenotypes. Here, different general

options for the genetic representation are discussed. A brief but general review of the representations

used in the field of evolutionary computing and artificial life is used here to investigate possible options.

Based on the bio-plausibility of the multicellular models, all the genetic representations are evaluated

here in the context of a multicellular developmental system.

Evolutionary algorithms used for evolving functions can be classified in two general groups. The

first group consist of those that assume a very fixed formulation for the function and only evolve the

parameters of the function. Evolving the coefficients of a degree-n polynomial, evolving a Bezier curve,

a Fourier series, or a wavelet transform are all examples of different methods in this class. All the

methods in this class use a fixed structure for the function and perform a parametric evolutionary search.

The second class is the group of methods that can evolve the structure of the function as well as the

parameters.The rich and diverse structural complexity of the biological gene-regulatory networks leads

us to investigate the second group as a promising bio-plausible option.

Two fundamental different evolutionary methods for evolving the structure of the functions are

based on tree representations and directed-graph based representations. GP (Genetic Programming -

Koza [205, 206]) and CGP (Cartesian Genetic Programming - Miller [266, 262]) are very well-known

representatives of these two approaches. GP uses a tree structure while CGP uses a directed graph for

representation of the functions. Looking at the natural and biological structures and specifically GRNs,

it is evident that using directed graph is structurally more accurate than trees. Structural accuracy is one

of the main definitions of the bio-plausibility in this study as discussed in section 2.1. A tree structure

appears to be more suitable for a mathematical symbolic representation when human understanding of

the structure is desired. Therefore, in the following sections we focus on investigation of graph-based

representations for the dynamical system in the developmental model. Figure 6.2 shows a taxonomy of

a few evolutionary algorithms used for evolving functions with emphasis on methods that use directed

graphs for genetic representation of the function. Although, there exist a spectrum of different represen-

tations, we try to capture this diversity by examining a few representatives of the genetic representations



6.2. General Design Options 193

that can be used to evolve dynamical systems.

GP

GP+ADF

CGPNEAT

CPPN-NEAT

HyperNEAT

Adaptive
HyperNEAT

HyperNEAT-LEO ES-HyperNEAT

ES-HyperNEAT-LEO
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Functions and Programs
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Figure 6.2: A taxonomy of a few evolutionary algorithms used for evolving functions with focus on methods using directed

graphs for genetic representation.

CGP

CGP is the foundation of a successful lineage of other genetic programming methods that has been used

for evolving functions, dynamical systems, gene regulatory networks, neural networks and many many

other applications [262]. It is a generic, simple, flexible, relatively bio-plausible and computationally

low-cost [265] method for genetic representation of functions as directed graphs. Even in its original

and simplest version it can evolve a set of functions with any number of inputs based on mathematical,

logical or any other type of primitive operators. It allows non-coding genes and neutral mutations that

contribute to the evolvability of this method. Although the original version is limited to fixed length

chromosomes and directed acyclic graphs, with no crossover, in its abstract form, it can support variable

length chromosomes [262], crossover [262], cyclic graphs (Cyclic CGP [262]), Modules (ECGP and

MCGP [262]) , self-modification (SMCGP [262]), and much more [262].

CGP and its more advanced forms has been used effectively in evolution of different functions and

controllers. Particularly, there were used successfully in evolving dynamical systems for developing

robust, scalable, and fault-tolerant boolean and electronic circuits, neural networks, bio-plausible neural

microcircuits, and 2D shapes (flags) [420, 192, 261, 224, 263, 223, 260]. The genetic representation of

the original version consists of integer-valued genes that describe the type of the primitive operator for
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each node in the graph and indices of the nodes connected to the inputs of this node. Same chromosome

can be used to generate many outputs if they are related. Otherwise, different chromosomes can be

used to evolve completely separate functions in the same individual. This original representation uses

only mutations and a very small elitist population. Here, when referring to CGP in comparison with

other techniques, only this original and simplest form of CGP with Boolean functions as primitives is

intended.

Using a fixed grid of gene indices poses some limitations on the original representation that makes

applying crossover operations difficult or disruptive. However, different methods and techniques has

been proposed to tackle this limitation. One of these methods is the historical marking of the genes as

used in NEAT.

NEAT

NEAT (Neuro-Evolution of Augmented Topologies) was originally used for evolution of ANNs. While

it adopts the same fundamental graph-based representation of CGP, it employs a number of techniques to

improve the evolvability of the original representation. It uses a separate chromosome for describing the

nodes and their indices to allow complexification of the neural networks with variable length genomes.

Moreover, it adds historical markings to each new node or connection that show the chronological order

of the new genes appearing in the gene pool. These historical markings allow matching related genes

easily during crossover and also measuring the similarity of the genomes for speciation. NEAT starts

from a minimal uniform seed population and progressively evolves toward increasingly more complex

solutions. Using sigmoid neurons with real-valued outputs makes NEAT a more bio-plausible option for

modelling GRNs than CGP with boolean functions. However, NEAT uses some bio-plausible and some

implausible but useful techniques for efficient crossover, speciation, and fitness sharing and has shown

great success and flexibility in tackling different problems. Although it is not usually used for evolving

dynamical systems for developmental models some works has been reported in that line [79]. A different

form of NEAT called CPPN-NEAT is much more applied to generative models.

CPPN

A Compositional Pattern Producing Network (CPPN) is a network similar to an ANN but with a more

diverse set of transfer functions. ANNs are limited to transfer functions such as sigmoid or hyperbolic

tangent, while CPPNs can use different functions such as absolute value, Gaussian, sine, cosine and

so on as the transfer function of each node in the network. CPPN-NEAT uses the NEAT evolutionary

processes and genetic representation to quickly evolve patterns that resemble the morphogens from a

developmental process [347]. Since CPPN-NEAT uses complex functions that produce symmetry or

repetition, it can quickly evolve patterns that can be used as a function for directly describing a phenotype

or as the dynamical system of a developmental model. From the bio-plausibility point of view however,

using course-grain functions such as Gaussian or Sine appears more as an efficiency trick that abstracts

a great deal of details out of biological gene-regulatory networks. It appears that CPPN-NEAT to be

highly optimised for direct generation of the morphogens in abstract models of development rather than

a general method for evolving GRNs for multicellular or iterative developmental models. CPPN-NEAT
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has been used in such generative models for evolving ANNs in HyperNEAT and its extensions (see

section 2.5.5). However, they are not immediately compatible with the requirement of a hardware-based

neural network in FPGA and specifically the Cortex model of chapter 5. This is due to the fact that

they all specify the links and corresponding synaptic weights between neurons without dealing with the

routing problem. However, it would be possible to use the general idea of using CPPNs or RNNs as

a function that generates the local properties of the phenotype or a function for the dynamical system

governing the developmental process. The basic similarity between GRNs and RNNs lead us to look at

other methods for evolving RNNs, specifically Echo State Networks.

ESN

Another method to evolve a dynamical system being used in the literature is to evolve ESNs (Echo State

Networks). ESNs are random fixed recurrent neural networks (originally of leaky integrator neurons)

with only an output layer of neurons being trained in a supervised manner (see section 2.4.4). As the

structure and weights of the recurrent part of the network is randomly generated, evolving only the output

weights is computationally less expensive. In [63] genetic representation and evolutionary algorithm

of NEAT was used to evolve ESNs themselves with supervised and reinforcement learning to tackle

complex control tasks. Studies on evolution of ESNs is still very immature, and their application for

evolving GRNs is limited to works such as [79, 80] where ESNs were used as a dynamical system for

development of 2D shapes. Compared to NEAT, ESNs showed very competitive results in evolving

robust and scalable development of 2D shapes with self-repair. However, in one of these works, only

the output weights were evolved using an evolutionary strategies method. It was shown that the decision

mechanism for termination of the development has a critical effect on the robustness and fault-tolerance

of the developmental process. ESNs use a sigmoid transfer function and leaky integrator neurons similar

to those appear in biological GRNs, which makes it slightly more bio-plausible than methods such as

NEAT. Although there are many similarities between GRNs and ESNs, the random nature of the main

part of the network, while the output weights need tuning, is somehow not very bio-plausible. Therefore

the more bio-plausible approach of evolving the whole ESNs or other RNNs currently rely on genetic

representations such as NEAT and are subject to the same bio-plausibility issue of their underlying

representations. More bio-plausible models such as Fractal Gene-Regulatory Networks exist that can

address the biologically implausible aspects of methods such as NEAT and CGP (e.g.historical markings,

fixed indices, boolean functions) and offer more richness and dynamism.

Fractal Gene-Regulatory Networks

Fractal Proteins or Fractal Gene-Regulatory Networks (FGRN) [25, 24, 27, 26] are artificial bio-inspired

models of gene regulatory networks utilising fractals to model the protein folding processes allowing

complex protein-protein and gene-protein interactions. It is based on the same fundamental represen-

tation of functions as directed graphs. But instead of using fixed or historic indices for describing the

node connections, it uses a dynamic pattern matching of the protein shapes. Protein and gene promoter

shapes are sampled subsets (n×n-pixels square windows of size z centred at x, y) of the Mandelbrot set,

that interact with each other. Both fractal proteins and gene promoters are described only by a (x, y, z)
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triplet. Each sampled pixel of the Mandelbrot set is a number between 0 and 200. Figure 6.3 shows

an example of a protein shape and the subset of Mandelbrot set it was sampled from. Existing proteins

(proteins with a non-zero concentration) interact with each other using a maximum function resulting in

a merged protein consisting of pixels with maximum values over all merging proteins [26]. This can be

expressed by:

V mi = max
j,Cj 6=0

V ji for i = 1..n2 (6.9)

where n2 is the number of pixels, V ji and V mi are value of pixel i in the shape of protein j and merged

protein shape respectively, and Cj is the concentration of protein j. Non-zero pixels of the merged

protein then interact with the non-zero pixels of promoter shape of each gene j resulting in a total

absolute difference δj [26]:

δj =

n2∑
i=1,V pji 6=0,V mi 6=0

|V mi − V pji | (6.10)

where V pji is the value of pixel i in promoter shape of gene j. The probability of expression of gene j is

then calculated using a sigmoid function of form [26]:

P (Ej |δj , T jA) =


1+tanh

(
Sc(T j

A+δj−Tc)
)

2 if T jA < 0

1+tanh
(
Sc(T j

A−δ
j−Tc)

)
2 if T jA ≥ 0

(6.11)

where T jA is the affinity threshold of the gene j (appended to the gene promoter), Sc and Tc are two

constants that control the threshold position and sharpness of the sigmoid function (normally set to 0.02

and 50 [26] ). When gene j is expressed, the concentration of the protein it is coding (Cj) is increased

(or decreased for negative values) by [26]:

σ = Ac · cj · tanh(
cj + T jC
Wc

) (6.12)

where T jC is the concentration threshold of the gene j (appended to the gene promoter), Ac and Wc

are two constants (normally set to 0.5 and 30, controlling the amplitude and sharpness of the sigmoid

function respectively [26]), and cj (total concentration seen by promoter of the gene) is calculated using

[26]:

cj =

∑n2

i=1,V pji 6=0 Cargmaxk V
k
i

N
(6.13)

where N is the number of non-zero pixels in the promoter shape of gene j. At each development step,

concentration of all proteins are updated using [26]:

C∗j = Cj −
Cj
Dc
− 0.2 for all j (6.14)

where C∗j is the updated concentration of protein j and Dc is the decay constant (normally set to 5 [26]).

The last term in equation 6.14 is to ensure that the protein concentration can drop to zero instead of

tending towards zero indefinitely.

The genome consists of a single variable-length chromosome of genes with 9 fields of the following

form:
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In this work, a biologically plausible model of gene regulatory 
networks is constructed through the use of genes that are 
expressed into fractal proteins – subsets of the Mandelbrot set that 
can interact and react according to their own fractal chemistry. 
Further motivations and discussions on fractal proteins are 
provided in [2-5]. Table 1 describes the object types in the 
representation; Figure 1 illustrates the representation. Figure 2 
provides an overview of the algorithm used to develop a 
phenotype from a genotype. Note how most of the dynamics rely 
on the interaction of fractal proteins. Evolution is used to design 
genes that are expressed into fractal proteins with specific shapes, 
which result in developmental processes with specific dynamics. 

3.1 Defining a Fractal Protein 
In more detail, a fractal protein is a finite square subset of the 
Mandelbrot set, defined by three codons (x,y,z) that form the 
coding region of a gene in the genome of a cell. Each (x, y, z) 
triplet is expressed as a protein by calculating the square fractal 
subset with centre coordinates (x,y) and sides of length z, see fig. 
3 for an example. In addition to shape, each fractal protein 
represents a certain concentration of protein (from 0 meaning 
“does not exist” to 200 meaning “saturated”), determined by 
protein production and diffusion rates. 
 

     
Figure 3. Example of a fractal protein defined by 
(x=0.132541887, y=0.698126164, z=0.468306528) 

Left: high resolution view. Right: actual sampling resolution. 
 
 

    

    
Fig. 4.  Top: two fractal proteins; Bottom left: the resulting 
merged fractal protein combination; Bottom right: the two 

protein domains making up the merged protein combination, 
illustrating that the top-left protein forms the bottom two-
thirds of the shape and the top-right protein forms the top 

third of the shape. 
 
 

3.2 Fractal Chemistry 
Cell cytoplasms and the environment usually contain more than 
one fractal protein. In an attempt to harness the complexity 
available from these fractals, multiple proteins are merged. The 
result is a product of their own “fractal chemistry” which naturally 
emerges through the fractal interactions. 

Fractal proteins are merged (for each point sampled) by 
iterating through the fractal equation of all proteins in “parallel”, 
and stopping as soon as the length of any is unbounded (i.e. 
greater than 2). Intuitively, this results in black regions being 
treated as though they are transparent, and paler regions 
“winning” over darker regions. See fig 4 for an example. Only the 
concentration values corresponding to the winning protein 
domains contribute to the overall concentration. Thus, the total 
concentration of two or more merged fractal proteins is the mean 
of the different protein concentrations in their merged product 
(e.g., in figure 4 the total concentration will be approximately one 
third of the concentration of the top-right protein plus two-thirds 
of the concentration of the top-left protein). If the value of more 
than one merged protein is identical at a sampled point, arbitration 
uses gene order. Concentrations slowly decrease over time to 
model diffusion. See table 1 and [2-5] for further details. 

3.3 Genes 
All genes contain 9 real-coded values: 

xp yp zp Affinity 
threshold 

Concentration 
threshold x y z type 

where (xp, yp, zp, Affinity threshold, Concentration 
threshold) defines the promoter (operator or precondition) for the 
gene and (x,y,z) defines the coding region of the gene. (Affinity 
threshold and type are stored as integers.) The type value defines 
which type of gene is being represented, and can be any 
combination of the following: environment, receptor, 
behavioural, or regulatory. This enables the type of genes to be 
set independently of their position in the genome, enabling 
variable-length genomes. It also enables genes to be multi-
functional, i.e. a gene might be expressed both as an 
environmental protein and a behaviour. 

When Affinity threshold is a positive value, one or more 
proteins must match the promoter shape defined by (xp,yp,zp) 
with a difference equal to or lower than Affinity threshold for the 
gene to be activated. When Affinity threshold is a negative value, 
one or more proteins must match the promoter shape defined by 
(xp,yp,zp) with a difference equal to or lower than |Affinity 
threshold| for the gene to be repressed (not activated). 

To calculate whether a gene should be activated, all fractal 
proteins in the cell cytoplasm are merged (including the masked 
environmental proteins) and the combined fractal mixture is 
compared to the promoter region of the gene. Given the similarity 
matching score between cell cytoplasm fractals and gene 
promoter, the activation probability Pa of a gene is given by: 
Pa = (1 + tanh((m – At – Ct) / Cs)) / 2 
where: 
m is the matching score, 
At is Affinity threshold (matching threshold from gene promoter) 
Ct is a threshold constant (set to 0 in the experiments) 
Cs is a sharpness constant (set to 20 in the experiments) 

The full details of this process are beyond the scope of this 
paper, interested readers should consult [2-5]. 

Domain 1 

 
Domain 2 

Figure 6.3: Left: A square subset of Mandelbrot set used for a protein shape. Right: The 15x15 protein shape sampled

from the subset.

Gene︷ ︸︸ ︷
px, py, pz TA TC︸ ︷︷ ︸

Cis-regulatory region

x, y, z Type︸ ︷︷ ︸
Coding region

The px, py, pz triplet specify the fractal promoter shape of the gene. These three, along with the

affinity threshold (TA) and concentration threshold (TC) form the cis-regulatory region of the gene. The

coding region of the gene consists of another triplet (x, y, z) coding the shape of the protein that gene

is coding, and the protein type field. The protein type is a binary string determining what combination

of roles this protein can play in the system. Four major protein types are: regulatory, behavioural,

environment, receptor. A protein can be any combination of these types. However, the cis-regulatory

region of a gene coding an environment or receptor protein is ignored and that gene is always expressed

with the highest protein concentration (200). Therefore, it cannot effectively play the role of a regulatory

or behavioural gene. Environment proteins are all merged and then masked by the zero-valued pixels

of the receptor protein (only one receptor protein is allowed) before contributing to the merged protein.

Environment proteins can be used for initialising the development (similar to maternal factors) or as

inputs to the development process. Depending on the application, behavioural proteins can be used in

different ways as outputs of the process [26].

In this work, a biologically plausible model of gene regulatory 
networks is constructed through the use of genes that are 
expressed into fractal proteins – subsets of the Mandelbrot set that 
can interact and react according to their own fractal chemistry. 
Further motivations and discussions on fractal proteins are 
provided in [2-5]. Table 1 describes the object types in the 
representation; Figure 1 illustrates the representation. Figure 2 
provides an overview of the algorithm used to develop a 
phenotype from a genotype. Note how most of the dynamics rely 
on the interaction of fractal proteins. Evolution is used to design 
genes that are expressed into fractal proteins with specific shapes, 
which result in developmental processes with specific dynamics. 

3.1 Defining a Fractal Protein 
In more detail, a fractal protein is a finite square subset of the 
Mandelbrot set, defined by three codons (x,y,z) that form the 
coding region of a gene in the genome of a cell. Each (x, y, z) 
triplet is expressed as a protein by calculating the square fractal 
subset with centre coordinates (x,y) and sides of length z, see fig. 
3 for an example. In addition to shape, each fractal protein 
represents a certain concentration of protein (from 0 meaning 
“does not exist” to 200 meaning “saturated”), determined by 
protein production and diffusion rates. 
 

     
Figure 3. Example of a fractal protein defined by 
(x=0.132541887, y=0.698126164, z=0.468306528) 

Left: high resolution view. Right: actual sampling resolution. 
 
 

    

    
Fig. 4.  Top: two fractal proteins; Bottom left: the resulting 
merged fractal protein combination; Bottom right: the two 

protein domains making up the merged protein combination, 
illustrating that the top-left protein forms the bottom two-
thirds of the shape and the top-right protein forms the top 

third of the shape. 
 
 

3.2 Fractal Chemistry 
Cell cytoplasms and the environment usually contain more than 
one fractal protein. In an attempt to harness the complexity 
available from these fractals, multiple proteins are merged. The 
result is a product of their own “fractal chemistry” which naturally 
emerges through the fractal interactions. 

Fractal proteins are merged (for each point sampled) by 
iterating through the fractal equation of all proteins in “parallel”, 
and stopping as soon as the length of any is unbounded (i.e. 
greater than 2). Intuitively, this results in black regions being 
treated as though they are transparent, and paler regions 
“winning” over darker regions. See fig 4 for an example. Only the 
concentration values corresponding to the winning protein 
domains contribute to the overall concentration. Thus, the total 
concentration of two or more merged fractal proteins is the mean 
of the different protein concentrations in their merged product 
(e.g., in figure 4 the total concentration will be approximately one 
third of the concentration of the top-right protein plus two-thirds 
of the concentration of the top-left protein). If the value of more 
than one merged protein is identical at a sampled point, arbitration 
uses gene order. Concentrations slowly decrease over time to 
model diffusion. See table 1 and [2-5] for further details. 

3.3 Genes 
All genes contain 9 real-coded values: 

xp yp zp Affinity 
threshold 

Concentration 
threshold x y z type 

where (xp, yp, zp, Affinity threshold, Concentration 
threshold) defines the promoter (operator or precondition) for the 
gene and (x,y,z) defines the coding region of the gene. (Affinity 
threshold and type are stored as integers.) The type value defines 
which type of gene is being represented, and can be any 
combination of the following: environment, receptor, 
behavioural, or regulatory. This enables the type of genes to be 
set independently of their position in the genome, enabling 
variable-length genomes. It also enables genes to be multi-
functional, i.e. a gene might be expressed both as an 
environmental protein and a behaviour. 

When Affinity threshold is a positive value, one or more 
proteins must match the promoter shape defined by (xp,yp,zp) 
with a difference equal to or lower than Affinity threshold for the 
gene to be activated. When Affinity threshold is a negative value, 
one or more proteins must match the promoter shape defined by 
(xp,yp,zp) with a difference equal to or lower than |Affinity 
threshold| for the gene to be repressed (not activated). 

To calculate whether a gene should be activated, all fractal 
proteins in the cell cytoplasm are merged (including the masked 
environmental proteins) and the combined fractal mixture is 
compared to the promoter region of the gene. Given the similarity 
matching score between cell cytoplasm fractals and gene 
promoter, the activation probability Pa of a gene is given by: 
Pa = (1 + tanh((m – At – Ct) / Cs)) / 2 
where: 
m is the matching score, 
At is Affinity threshold (matching threshold from gene promoter) 
Ct is a threshold constant (set to 0 in the experiments) 
Cs is a sharpness constant (set to 20 in the experiments) 

The full details of this process are beyond the scope of this 
paper, interested readers should consult [2-5]. 

Domain 1 

 
Domain 2 

Figure 6.4: Top: Two fractal protein shapes. Bottom left: The merged protein. Bottom right: Protein domains in the

merged protein. (From [26])

In the merged protein shape, each sampled pixel value is the maximum corresponding pixel value
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from all proteins with non-zero concentrations. This makes the merged protein shape a patchwork of

complex regions each belonging to one of the proteins present in the cytoplasm. We term the set of

pixels in the merged protein originating from one protein as the domain of that protein. Figure 6.4 shows

an example of two protein domains in the merged protein. If concentration of a protein drops to zero

during development, that protein does not exist and so cannot have a domain in the merged result; instead

other proteins may fill the region with their domains. This results in changes in the shape of those protein

domains. This is analogous to the protein-protein interactions in biology resulting in proteins shifting

their shapes.

Figure 6.5: Two sample subspaces of MPS space (Merged Protein State space) define by two promoters in a 3D (3 pixels)

space.

The value of different pixels in the merged protein at each development time step can together

represent a single point coordinate in a multidimensional state space, each dimension being the value of

one pixel. We shall refer to this state space as the MPS space (Merged Protein State space). The pixel

values of the promoter and the absolute value of the Affinity threshold collectively describe a convex

subspace in the MPS space (gene expression subspace), specifying when this gene can be expressed.

Figure 6.5 shows an example of two such subspaces defined by two promoters in a 3D (3-pixel) MPS

space.

This creates a different GRN for each combination of proteins present. Every time a protein concen-

tration drops to zero or rises from zero, it can affect the shape of the other protein domains and change

the shape of the merged protein. Each merged protein shape correspond with a point in MPS space and

therefore each new shape switches some genes on and some others off, depending on their promoter sub-

spaces. The expression of each gene is affected only by the pixel values of those protein domains that lie

under the domain of the gene promoter. This allows promoters to ignore some pixel values in the merged

protein shape, effectively stretching their expression subspaces infinitely in the corresponding directions

in the MPS space. The sign of the affinity threshold determines if this gene is expressed or repressed

when the current MPS dwells inside this subspace. The absolute value of the affinity threshold specifies
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the size of this subspace. The hyperbolic tangent function (in equation 6.11) creates a smooth transition

for probability of gene expression at the surface of this subspace. This can improve the evolvability of

the GRNs by randomisation of some parts of the fitness landscape, which smoothes out the effect of

some mutations. Using this mechanism, FGRN allows many different GRNs to be embedded in it with

genes that can be switched on or off by existence of one or a combination of proteins.

The concentrations of individual proteins at each developmental time step can together represent a

single point coordinate in a multidimensional state space, each dimension being the non-zero concentra-

tion value of one protein. We shall refer to this state space as the PCS space (Protein Concentration State

space). When a gene is expressed, the concentration of the protein encoded in the gene is increased (or

decreased) by a multiplicative sigmoid function (equation 6.12) of a linear combination of the concen-

tration of those proteins with their domains covered by the gene promoter domain (equation 6.13). This

linear combination is determined by the proportion of the areas of protein domains that lie under a gene

promoter shape.

The Fractal Proteins algorithm can also be viewed from the perspective of pattern recognition,

where the cell receptor gene performs input feature selection and scaling by masking some parts of the

environment proteins. The rest of the GRN can be seen as a reservoir or a Liquid State Machine (see

section 2.4.4). From this viewpoint, genes work as leaky integrator nodes with a multiplicative sigmoid

transfer function, interacting through protein concentrations in a recurrent network. The areas of those

protein domains that lie under a gene promoter domain define the input weights for that node (gene),

and the concentration threshold (Tc) works as a bias. The behavioural genes work as the readout map

(see section 2.4.4) translating the current multidimensional PCS into outputs. Even randomly gener-

ated reservoirs can be effectively used for pattern recognition and chaotic time-series prediction [176].

However, recent research [332] shows that bio-plausible features such as hierarchy and modularity in

the reservoir network architecture can increase the performance and robustness of the reservoirs. Statis-

tical studies also reveal such properties in biological GRNs [39]. Therefore, it is quite likely that, using

fractal protein domains, this system is able to evolve the suitable network structures for a given problem.

Existence of inactive genes and complete (or partial) dominance of one protein domain on other protein

domains result in neutral networks in the fitness landscape - another of the reasons for the evolvability

of this system observed in [24]. Neutral mutations can make the expression subspace of inactive genes

drift. The randomness at the edge of these gene expression subspaces can give evolution some clues

about the promising inactive genes that should be turned on to smoothly evolve a GRN into a fitter GRN.

Also fault-tolerance and robustness, and reliability of the FGRN has been demonstrated in [24].

6.2.3 Evolutionary Algorithm

Two major functions of the evolutionary algorithms used in evo-devo models are selection and genetic

operations. These processes are discussed here only briefly since, as it is realised later in this chapter,

the evolutionary algorithm is not the focus of this work.
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Selection

Selection is the mechanism that both maintains a diverse and relatively fit population of potential parents

and selects parents from that population to be used in reproduction of new individuals. A few different

methods for maintaining the diversity of the population are available. Speciation and explicit fitness

sharing is already implemented in NEAT and CPPN-NEAT. NEAT uses the similarity measures of the

genomes for classifying the population into different species that do not cross-breed. The original evo-

lutionary algorithm used with FGRN does not include a speciation method. However, similar and other

possible methods for maintaining and improving the diversity of the population such as deterministic

crowding [243] can be easily added to this evolutionary algorithm.

For environmental selection, different types of fitness evaluation that can improve the efficiency of

the evaluation and encourage complexification, such as using tournament selection, progressive fitness

functions, multi-stage evolution, are possible and have been applied to the above evolutionary algorithms.

Generally, methods that increase the number of evaluations without any benefit must be avoided when

neural simulation is computationally expensive. For example, methods such as tournament selection,

that require two neural microcircuits to compete, may appear to be biologically more plausible but they

may also prove to be computationally more expensive than methods that have a specific fitness measure

such as an error rate or score. The original evolutionary algorithms used with both NEAT and FGRN use

a score as the fitness function.

A progressive fitness function that allows partial evaluation of a neural microcircuit in the beginning

of the evolutionary run may prove to be helpful in reducing the computational cost of fitness evaluation.

Such methods can use only part of the training or testing or both datasets to evaluate the individuals. As

the average or the maximum fitness of the population increases the fitness can get more challenging by

using the rest of the datasets. This requires a definition of the fitness function that is not dependent on the

size of the datasets. In such methods, an inaccurate fitness evaluation can lead to stagnation of an elitist

algorithm. To avoid that, the evolutionary algorithm used for FGRN removes the old individuals from

the population, despite their high fitness, when they had a chance to pass on their inheritable genetic

material.

The computational costs of the algorithms used for speciation, diversity maintenance and improv-

ing the performance of selection and fitness evaluation are usually negligible compared to the amount

of computation savings that they are expected to offer. The complexity of the design and testing and

hardware cost (if implemented in hardware) is a more important factor to consider for these methods

than performance.

Genetic Operators

Genetic operators recombine selected parental genomes and mutate the result to produce offspring

genomes. These operators must be compatible with the genetic representation used. The original CGP

does not use recombination operators as it is generally found to be destructive on graph-based represen-

tations. NEAT and CPPN-NEAT use the historical markings to match related gene to allow constructive

crossovers between two chromosomes. FGRN also uses similarity of the genes (using a sum of differ-
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ence function and common bits in the type field) to find related genes in two chromosomes and then uses

one of them in the offspring. Between these three methods, FGRN approach appear to do what NEAT

is doing with a computationally more expensive algorithm but it is also biologically more plausible than

NEAT method of historical markings. An even more bio-plausible method would be to do uniform or

single point crossovers inside two matched genes.

Different bio-plausible mutation options based on the selected representation are available. A com-

mon mutation method is simple single-point mutations that change the value of the smallest modifiable

genetic unit such as a single integer in CGP, a connection weight in NEAT and CPPN-NEAT, or any sin-

gle real value in FGRN. Drift or creep mutations can slightly change the real values in the genes. Other

more sophisticated mutations such as duplication, and deletion of genes, or adding connections between

genes are both possible and already available in NEAT, CPPN-NEAT and FGRN. Duplicate mutation

can add an extra copy of a gene to the chromosome that adds to the length of the chromosome. Delete

removes a gene by random, decreasing the length of the chromosome. Adding a connection between

two nodes in the directed graph can be quickly realised by a single mutation in NEAT, CPPN-NEAT, and

FGRN. In FGRN a coding region of a gene must be copied to the promoter region of another gene or vice

versa. As mutation probabilities are usually low the complexity of these mutation methods usually have

an insignificant impact on the computational performance and computational complexity of the evolu-

tionary model. The bio-plausibility of the mutation operators are usually limited by the bio-plausibility

of the genetic representation and when representation allows, very bio-plausible and complex mutations

can be designed and implemented without impacting the performance of the system. However, if com-

plex algorithms are needed for mutations it may add to the hardware cost (if implemented in hardware),

and significantly increase the complexity of the design and testing.

6.2.4 Implementation Options

Apart from the type of dynamical system used in the developmental model, the genetic representation

and operators, and the selection methods used in the evolutionary model, there are other factors in the

implementation of the above functions that impact both bio-plausibility and feasibility of the evo-devo

model. Decisions such as which function to be implemented in hardware and which one in software,

distribution of the processes over different processing elements, using deterministic or stochastic com-

puting, and the choice of arithmetic methods in the hardware can all affect the final system. Here we

focus on every one of these factors separately.

Hardware versus Software Implementation

Direct implementation of different functions of the evo-devo model in the hardware instead of imple-

menting them in a piece of software running on one or more processors, on the FPGA (such as Mi-

croBlaze) or connected to the FPGA such as a host PC, can both affect the feasibility of the system and

change the scope of this study. Here implementation of the above functions of the evo-devo model in

software and hardware are compared in terms of different feasibility measures of performance, hardware

cost, scalability, reliability, and complexity.

Evaluation of the dynamical system needs to be repeated for each cell and for every iteration of the
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development, if an iterative approach is used. Moreover, if a cell-chemistry model with local interactions

is implemented, calculations for the protein diffusions need to be also repeated for each cell in each

iteration. Although at different levels of abstraction these iterations (over time and space) can be reduced,

generally, the computational complexity of the dynamical system and diffusion calculation in a bio-

plausible developmental model are of order O(NuNcNp) and O(CNuNcNp). C, Nu, Nc, and Np

are representing the number of neighbours for each cell, number of development iterations, number of

cells, and number of proteins respectively. Such a highly homogeneous and massive calculation can

surely benefit from a parallel implementation on FPGA. A parallel implementation increases both the

performance and the hardware cost but it also improves the scalability, fault-tolerance and reliability of

the system. In a sequential implementation, the development time grows linearly with number of cells

and proteins, which impact the scalability of the system. A parallel implementation of the dynamical

system is also more bio-plausible as it is structurally more similar to the parallel process of cellular

development.

Mapping of the genome to the dynamical system needs to be carried out once for each individ-

ual. Since the design of the Cortex model does not allow evaluation of more than one individual on the

FPGA at a time, fitness evaluation of different individuals need to be performed sequentially. There-

fore, it may make sense to map the genome to the dynamical system on software, particularly if it is a

complex and heterogeneous process with many exceptions. However, in case of FGRN, calculation of

Mandelbrot set with many samples from many proteins may gain some speedup from a parallel hard-

ware implementation. Nevertheless, it is not a bottleneck compared to the computational cost of the

dynamical system. Similar to the dynamical system, a parallel implementation of the mapping is more

scalable and bio-plausible than a sequential software implementation. The sequential computation time

of mapping grows linearly with the number of proteins. A parallel implementation may also improve the

performance of the system depending on other factors.

With fitness evaluation of individuals being carried out sequentially, results of all the other func-

tions in the evolutionary model (genetic operators and selection) will be used sequentially and given the

bottleneck of fitness evaluation, there is no point in parallel implementations for such heterogeneous pro-

cesses. Therefore, all those functions are better to be implemented in software running on the embedded

processor or the host PC connected to the FPGA. Since a host PC is needed for the initial configuration

of the FPGA, using that PC for some light-weight sequential computations does not impact the perfor-

mance and hardware cost of the whole system. A software implementation also provides a more flexible

environment for design and testing different evolutionary algorithms and their parameter values in an

experimental setting. This also reduces the design, implementation and testing complexity of the whole

system and adds to the observability of the evolutionary processes during experiments.

When a function is implemented in hardware it will be subjected to the limitations and trade-offs

of the hardware implementation on an FPGA and it lies inside the scope of this study. With the above

analysis, all the evolutionary (not developmental) processes are better to be implemented in software

and thus are out of the scope of this work. Moreover, a plethora of studies on bio-plausible evolutionary
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processes without respect to the limitations or benefits of a parallel implementation in an FPGA exist

in the literature that makes pursuing that tread of investigation redundant here. Therefore, in the fol-

lowing sections we focus on the investigation of the challenges in the design and implementation of the

developmental process.

Distributed Models

In both abstract and multicellular models, one or more functions need to be evaluated for each cell (or

for different positions in the substrate). These evaluations can be performed in parallel in all cells by dis-

tributing the computation power over the development substrate. Since all the input data for evaluation

of the functions is locally available (either cell state vector, neighbouring cells states or local feedback

from the Cortex), it requires the minimum communications between local processing elements (PEs).

The same operations are performed on different data. This is known as SIMD (Single Instruction Multi-

ple Data) in the field of computer architecture. Architectures such as GPUs (Graphics Processing Units)

are very efficient at such computations that involves minimum communication between processing el-

ements, local data and identical operations. Similar but custom architectures can be also designed on

FPGAs to carry out those computations very efficiently.

The hardware cost of each PE depends on the complexity of the functions and the amount of mem-

ory needed for storing the state vector of each cell. Also the time that each PE needs to update the state

vector of a cell depends on the complexity of the functions. However, the total hardware cost and perfor-

mance of the whole developmental model depends on the number of PEs. It is possible to allocate one PE

to each cell, or allow cells to time-share a PE. For example, for a cortex of size 120x12 cells it is possible

to have only 12 PEs each processing the state vectors of 120 cells, or to have 60 PEs each responsible

for 24 cells, and so forth. There is a well known trade-off between performance and hardware cost in

time-sharing of PEs. In cases, such as this, where all the data is locally available, it is theoretically pos-

sible to achieve a linear speed-up by increasing the number of PEs. The final decision about the suitable

number of PEs depends on the design constraints and criticality of the performance and hardware costs

in each design. At one extreme, the number of PEs is equal to the number of cells. This is the fastest but

hardware intensive design option. It is also the most scalable option, as the development time will not

depend on the size of the Cortex. Such a distributed design will be also very reliable and fault-tolerant

as a faulty PE can not affect more than one cell. As the number of PEs decreases, performance, scala-

bility, and reliability of the design are reduced. At the other extreme, only one PE can be responsible for

processing of all the cells. This can be considered a centralised model discussed in the following section.

Centralised Models

A centralised model with one or very few number of PEs for processing all cells, generally has the lowest

performance, scalability, and reliability, but also the minimum hardware cost. However, some techniques

exist, which can be used to improve the performance of the centralised models that are not possible or

efficient in distributed models. For example, caching data that is repeatedly computed or accessed in

different cells allow a centralised model to avoid repeating computations or memory accesses, which

increases its efficiency.
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A centralised model can also store the instructions or data that define the dynamical system func-

tions locally and access them efficiently. While a distributed model needs to either initially send the data

to all the PEs and store it locally for each PE, which increases the local memory hardware cost signifi-

cantly, or stream the instructions to all the PEs, which increases the global communication hardware cost

and requires the synchronisation of the PEs.

With relatively low clock frequency of most of the FPGAs compared to high-end PC processors,

a centralised model implemented in FPGA (in hardware or software) is not justified. Moreover, avail-

ability of GPUs on most of the PCs these days, allow much more efficient parallel implementations on a

centralised host PC than a lightly-parallelised implementation on an FPGA.

Stochastic and Deterministic Implementations

Similar to the neuron model investigated in chapter 4, the developmental model can be also implemented

using deterministic or stochastic arithmetic. As it was examined in section 4.3 and 4.4, it is possible to

use both stochastic and deterministic computing for designing a dynamical system. Generally, stochastic

computing is more bio-plausible as it better mimics the detail of the chemistry between single molecules

and their collective effects on the concentrations and interactions of different proteins. Stochastic com-

puting is also more robust to noise. However, it has an intrinsic performance-accuracy trade-off that

limited its use in the design of the neuron model. Nevertheless, performance of the evo-devo model is

not as critical as in the neuron model. This is mainly because the developmental processes are much

slower than neural processes in biology. Moreover, the activity dependent developmental processes re-

quire mean activity feedback data over many update cycles of the neural system, as explained in section

5.2.4.

Unlike a neuron with an estimated signal to noise level, the accuracy and noise of different path-

ways in biological development is different. Estimations and measurements of the steady-state noise

levels in concentrations of a few proteins show SNR values ranging from 8dB to 76dB [299]. As a

matter of fact, evolutionary processes appear to be able to tune the accuracy and reliability of different

pathways according to the needs and circumstances [404]. Therefore, the developmental model is re-

quired to be able to support a high level of accuracy in case it is needed in a critical pathway. In chapter

5 a trade-off was also observed between the compactness and accuracy of the stochastic neuron models.

This was mainly because in the stochastic neuron model it was required to convert the stochastic vari-

able into a binary representation for function generation and detection of the action potential. It must

be re-examined here if a stochastic developmental model still needs such conversions. Stochastic simu-

lation of the chemical processes and particularly biological gene-regulatory networks using FPGAs has

been already proposed and studied (see for example [323] and [267]). Synchronous and asynchronous

implementations of stochastic models are suggested in the literature. Figure 6.6 shows an example of a

biological GRN that is translated into an asynchronous stochastic logic circuit on FPGA and simulated

with 60,000 times speed up over software simulations [267]. Deterministic simulations of GRNs based

on binary arithmetic and differential equations are also implemented on FPGAs with success (see [323]

and [267] for references).
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differentiation example.  
The T cell model shown in Fig. 2 is adopted from [12], 

where the model has been determined through extensive 
literature survey and discussions with experts. In Fig. 2(a), 
we present the cell signaling network model with key 
elements and connections involved in differentiation. As it 
can be seen from the network, this model includes signaling 
from receptors (TCR, CD28, TGFβ, IL-2R), subsequent 
activation of transcription factors (AP-1, NF-AT, NFțB, 
STAT5, Smad3), gene expression (Foxp3, IL-2RĮ, IL-2), as 
well as the effect of transcribed genes on receptor signaling 
(IL-2RĮ, IL-2) and transcription (Foxp3). T cell 
subpopulation (regulatory, Treg, vs. helper, Th) ratios have 
been shown to play an important role in many immune and 
autoimmune pathologies, but the determinants of 
differentiation into these two phenotypes are not yet 
understood. It is known that a marker for Treg cells is Foxp3 
and a marker for Th cells is IL-2. It has been suggested in 
[13] that most of the cells differentiate into Th phenotype for 
high antigen dose, while a significant population of Treg 
cells results from stimulation with low antigen dose. In Fig. 
2(b), we also show the circuit model that we have developed 
in [12] and which we implemented in hardware. However, 
our hardware emulation methodology is general enough to 
allow implementation of any logical modeling of biological 
processes. 

The steps of FPGA design are presented as follows. We 
also describe how our approach can be generalized for 
different models of regulatory networks.  

A. Model definition 
In order to design a circuit that can emulate a biological 

network, one needs to consider several information sources 
or 'inputs' to the design, as shown in Fig. 1. This includes 
existing experimental data or knowledge about network 
interactions. Next, it is also necessary to identify the type of 
a model to be implemented. As described in Section I, 

previous work focused on implementing the Gillespie's 
simulation algorithm for the system of differential equations. 
We present here the implementation of a dynamic, logical 
model, but do not restrict our approach to logical models 
only. We plan to create a general-purpose framework that 
can translate rule-based and reaction-based models into 
hardware implementation. These models are usually written 
following existing software-simulation-tool templates and 
can be simulated using these tools. Finally, once the model 
is identified, one needs to define a set of inputs and outputs 
of interest.  

B. HDL framework  
Once the model is defined, the next step is the 

implementation of the model in a hardware description 
language (HDL). In this work, we use Verilog HDL [14]. 
Any network model defined as a logical model can be 
translated into an HDL description in a straightforward way. 
We translated the T cell model manually, but in the future 
we anticipate developing an automatic Logical Model ĺ 
Verilog translator.  

The framework that we developed in Verilog consists of 
several modules necessary to control the simulation of the 
network. These modules define the simulation setup (e.g., 
number of rounds of simulation, deterministic vs. stochastic 
simulation, etc.). In this work, we use an asynchronous 
scheme for simulating the network following one used by 
the BooleanNet tool [10]. Each simulation round consists of 
applying the rules for the update of each element in a 
random order. The order matters because once an element is 
updated, the new value is used by subsequent update rules.  

The HDL framework includes the top-level module, 
which can be used to run several network copies in parallel. 
Fig. 3 shows how modules are connected within the top 
module (left), as well as part of the Verilog code for a single 
module (right).  

The Verilog description of the logical model relies on 
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Fig. 2. T-cell differentiation network adopted from [12]: (a) Molecular interaction map and (b) Gate-based logic implementing the network. 

150

Figure 6.6: Example of translating a biological GRN into a stochastic asynchronous logic circuit (T-cell differentiation

network from [267]). a) Molecular interaction map of T-cell differentiation GRN. b) Gate-based logic implementation of

the same GRN.

Further investigation of suitability of these computation methods for a developmental model de-

pends also on the type of functions used for modelling the dynamical system (GRN) and the genetic

representation. Most of the bio-plausible evo-devo models are represented as differential equations and

translating them into stochastic processes adds to the complexity of the design process.

Bit-serial and Bit-parallel Binary Arithmetic Implementations

Again similar to the neuron model, serial and parallel processing of bit values in a binary arithmetic is

possible. Bit-parallel arithmetic has higher hardware cost and provides higher performance but with no

advantage in scalability, or reliability of the system. The hardware cost of a parallel implementation

grows with the number of bits used for the value representation, while the hardware cost of a bit-serial

arithmetic implementation is fixed. The performance of a bit-serial implementation degrades with the

number of bits. A parallel arithmetic design may be slightly simpler to design and test due to availability

of all the bits at the same time.

6.3 Summary and Comparison of Design Options
Different approaches to the design and implementation of the developmental model, their challenges,

important factors, constraints, and trade-offs are compared and summarised in this section. As explained

in the previous section, the evolutionary model is perfectly justified to be implemented in software and

therefore the focus of this work is on the bio-plausible developmental models. The design options,

factors, and their trends and trade-offs are outlined in table 6.2. Different design options are grouped in

three comparison sections of: dynamical system abstraction, genetic representation, and implementation

methods and then sorted based on their bio-plausibility to reveal the related trends. CPPN appear be
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be completely out of place (with all the measures at their lowest) as it is more suitable for an abstract

generative model, while the genetic representations are evaluated here in the context of a multicellular

developmental system.

Bio-plausibility

For the dynamical system of the developmental model, multicellular (cell chemistry) models have higher

levels of bio-plausibility since they take into account the local interactions between cells, cell signalling,

and time dependence of the different developmental processes. However, there is a range of different pos-

sibilities between these two extremes of abstraction and bio-accuracy. Starting from an abstract model,

depending on inclusion of time, feedback, intercellular signalling, diffusion, and physical cell interac-

tions in the space, increasingly more bio-plausible and complicated models can be achieved. However,

as we move from abstract models to more bio-plausible multicellular models with local cell interactions,

the performance, compactness and simplicity of the model decreases, but its scalability and reliability

improves.

Looking at the genetic representations, to examine the structural accuracy and bio-plausibility of

each one of the examples investigated in the previous section they can be compared with biological

models of gene-regulatory networks . As explained in [46], the whole process from gene expression to

protein synthesis is regulated by a number of different factors. One is the interaction between proteins

in the cell (transcription factors) and the cis-regulatory region of a gene. When a gene is expressed

the coding region of the gene is transcribed into a strand of nRNA. Strands of nRNA can degrade before

they go through the next step of splicing, which produces mRNA strands. Strands of mRNA also degrade

before they finally produce proteins. These proteins can also group together to create protein complexes

that may behave differently than single protein molecules. In [46], the transcription rate of the nRNA is

a non-linear function (similar to sigmoid function) of the concentration of the transcription factors (other

proteins) that need to bound to the cis-regulatory region for expression of the gene. Splicing and protein

synthesis and degradation processes are modelled as linear processes with fixed rates. As a result the rate

of protein synthesis is a non-linear function of the concentration of the transcription factors. Depending

on the number of bounding sites this non-linearity can be steeper to smoother. In the most abstract form

the concentration of the synthesised protein can be modelled as Boolean AND and OR functions of the

transcription factor concentrations.

With this knowledge from biological models, CPPN with its course-grain functions such as Gaus-

sian and Sine appear quite implausible and more suitable for abstract models based on spatial coding

of the morphogen patterns than GRNs in multicellular models. CGP, in its simplest form with Boolean

primitives, can capture the Boolean nature of the GRN nodes but not real-values of the concentrations.

Also it does not directly provide any adjustment for the steepness of the non-linearities unless used in

a stochastic system. Neural network-based models such as NEAT and ESN can capture the real-valued

nature of the protein concentrations, and by using weight adjustment may also support changes in the

non-linearities. However, the original NEAT does not model the recurrent structure of a GRN, concen-

tration integration, and protein degradation processes while ESN with leaky integrator neurons and a
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recurrent network architecture can also capture the protein concentration integration and decay. FGRN

appears as a more bio-plausible model in respect to the way it models the concentrations, nonlinearities,

protein degradation and adjustments for different aspects of the whole process. Moreover, FGRN mod-

els the one-to-many and many-to-one mapping in the biological processes of transcription, and protein

folding and assembly using a fractal mapping and protein merging. However, other investigated models

do not account for those processes.

Regarding implementation options, a hardware-based distributed and stochastic model is more bio-

plausible than other options. Bio-plausibility of a distributed software-based implementation (stochastic

or deterministic), although possible, depends on many other factors and is out of the scope of this investi-

gation. A centralised deterministic implementation is the least bio-plausible option, as distribution of the

processes over different PEs, and distribution of the protein concentrations over small chunks (stochastic

bits) adds to the structural accuracy of the model.

Performance

Abstract models can have better performances (in terms of development time) depending on what they

abstract out. However, if they need to include time-dependence and local interactions of the cells they

will be very similar to the multicellular models, which have lower performances than abstract models.

Regarding genetic representations, Boolean networks encoded by CGP are computationally cheap-

est to decode and run. NEAT and ESN are computationally more expensive compared to Boolean CGP.

CPPN needs complex computation of course-grain functions such as Gaussian and trigonometric func-

tions that are much slower to compute. FGRN also uses simple integration and sigmoid functions similar

to NEAT and ESN with more linear computations for merging proteins, promoter bounding and concen-

tration integrations that makes it one of the computationally expensive representations for the dynamical

system.

A software implementation of the developmental model on a PC can be in fact faster than a cen-

tralised implementation on FPGA due to low clock frequencies of FPGAs compared to high-end PC

processors. However, a distributed (deterministic or stochastic) implementation on FPGA with enough

number of PEs can run faster than a similar (deterministic or stochastic) implementation in software. Bit-

parallel implementations have higher performances than similar bit-serial implementations. Stochastic

implementations are always the slowest.

Compactness

Similar to performance, abstract models can be implemented in hardware quite compactly compared to

multicellular models that need extra hardware for local interactions between cells.

The compactness of the hardware needed for mapping these genetic representations is proportional

to the computational cost of the unique operations in the mapping. The compactness of the hardware

needed for the dynamical system also depends on both the homogeneity and complexity of the prim-

itive functions used in the dynamical system. Therefore, Boolean networks encoded in CGP is the

most compact form while CPPN and then FGRN are the most hardware intensive representations due to

course-grain functions of CPPN and complexity and dynamism of FGRN.
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A software implementation is the most compact option as it does not add to the FPGA hardware cost

if running on the host PC. Even using an on-chip processor (such as MicroBlaze) needs less hardware

resources than a custom hardware for complex developmental algorithms such as FGRN. Distributed

deterministic bit-parallel implementation has the highest hardware cost (depending on the number of

PEs). Stochastic and bit-serial implementations have the next places. Centralised implementations have

the same order but they are all much more compacter than distributed implementations.

Scalability

Multicellular models with their local cell signalling can better scale to the size of the substrate while

some studies suggest that abstract models may not scale well to larger cortex areas, more number of

inputs and outputs, and more complex problems as multicellular models do.

One of the major factors that affects the scalability of different genetic representations is the intrinsic

capacity of the genetic representation for evolving modules and reusability of modules. The original

forms of CGP, NEAT, and CPPN are not designed to reuse modules and did not show any sign of that.

All these methods have more advanced versions (such as ECGP, MCGP, HyperNEAT-LEO) that allow

and promote modularity to achieve better scalability. Here pure versions that are simpler to implement

and analysis are used as representatives of different approaches. ESN uses a regulated random network

generation that depending on the bio-plausibility of the network generation method (As in Liquid State

Machines) may promote modularity. FGRN, on the other hand, uses a fractal mapping for specifying

connections in GRNs. Both these methods are shown to promote modularity to some extent. Moreover,

FGRN is able to switch genes on and off in different contexts, which allows it to organise and reuse

modules particularly in different types of cells. Although an accurate and conclusive comparison of

scalability of different representations needs further investigation based on fair benchmarks, it is possible

to conclude, based on the available literature, that FGRN and then ESN are more scalable than the others

due to their intrinsic mechanisms that promote modularity in the GRN.

Regarding scalability of different implementation methods, distributed implementations are gener-

ally more scalable while a centralised and a software implementation on a hardware that is not scaled

with the cortex size is much less scalable.

Reliability

Fault-tolerance, regeneration, self-repair, and robustness, are main features and factors of the evo-devo

model affecting the reliability of the system. Fault-tolerance, regeneration capacity and robustness of the

multicellular models compared to abstract models has been shown in a few studies.

Among different genetic representations ESN and FGRNs are shown to produce fault-tolerant, ro-

bust, and reliable dynamical systems. CGP has also shown robustness and fault-tolerance when used

in developmental systems. Overall, if all these methods are used in a multicellular developmental sys-

tem that allows regeneration, there is no evidence of significant difference in the reliability of the whole

system between different genetic representation. It can be conjectured that CPPN is slightly less fault-

tolerant as it uses courser-grain functions compared to other methods. Also more evidence is available in

the literature for fault-tolerance, robustness and reliability of the developmental systems based on CGP,
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ESN and FGRN compared to NEAT.

The implementation method has a significant impact on the reliability of the whole system. Gener-

ally, distributed models have better fault-tolerance and robustness compared to centralised and software-

based implementations. Stochastic implementations are also more robust compared to deterministic ones

as been already analysed in chapter 4.

Simplicity

Abstracted models are usually simpler to design, implement and test than multicellular cell chemistry

models. Comparing the complexity of the genetic representations, CGP is the simplest and the most

straightforward method for hardware implementation. NEAT and ESN have their own complexities but

are still simpler than FGRN to design, implement and test in hardware. CPPN with its complicated

primitive functions is the most complicated method to design, implement and test in hardware.

Software implementation of the developmental system is the simplest method for design, imple-

mentation and testing, although a stochastic software implementation would be slightly more complex

to design and test. Then a centralised deterministic method (bit-serial or parallel) is next complex option.

A centralised stochastic and a distributed deterministic (serial or parallel) are equally more complex than

previous options. The most complex method for design, implementation, and testing is a distributed

stochastic implementation in hardware.

Bio-plausibility-related Trends

By sorting different design approaches from low to high bio-plausibility in table 6.2 a few general trends

related to bio-plausibility of the evo-devo models are revealed. The usual bio-plausibility-feasibility

trade-off is evident in the form of the impact that abstracting the local intercellular interactions has on the

bio-plausibility, performance, and compactness of the system. The same trade-off exists, to some extent,

in the genetic representation method and implementation. This is less emphasised in the implementation

methods, as performance and compactness cancel each others out. However, considering performance

and compactness as two multiplicative factors of efficiency, reveals the same trend. This can be presented

as a bio-plausibility-efficiency trade-off in the evo-devo model design.

Moreover, a similar trade-off is present, across the table, between bio-plausibility and simplicity

of the design and testing. More-bio-plausible approaches and methods are more complex in design,

implementation, and testing.

Scalability and Reliability Benefits

Unlike the general trend in the trade-offs between bio-plausibility and feasibility measures (suggested in

section 1.3), the scalability and reliability measures of the evo-devo model generally tend to increase with

bio-plausibility. This trend is observable in the all three comparison groups, although less pronounced

in the reliability of genetic representations. This trend can be viewed as an emergent property of the

developmental and evolutionary processes and can be presented as the main advantage of a bio-plausible

approach in the evo-devo model.
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Table 6.2: Summary and comparison of different approaches and methods in the design of the evo-devo model and their

trade-offs. Different approaches and methods in each section of the table are sorted according to their bio-plausibility

revealing its impact on the other factors. The ∼ symbol shows that a design or implementation approach can both increase

and decrease a measure depending on other factors.
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CPPN ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦◦ ◦◦ ◦ ◦ ◦

Genetic CGP (Boolean) • ◦ ◦ • • • • • • ◦◦ •• • • •

Representation NEAT • ◦ ◦ • • ◦ • • ◦ ◦◦ •◦ • • ◦

ESN • • ◦ • • ◦ • • ◦ •◦ •• • • ◦

FGRN • • • • ◦ ◦ • ◦ ◦ •• •• • ◦ ◦

Software Implementation ∼ • • ◦◦ • • •• ◦◦ • ◦ ◦ • • •

H
ar

dw
ar

e
Im

pl
em

en
ta

tio
n Centralised deterministic bit-serial • ◦ ◦ • ◦ ◦ • • •◦ ◦◦ ◦ ◦ ◦ • • ◦

Centralised deterministic bit-parallel • ◦ ◦ • • ◦ • • ◦◦ ◦◦ ◦ ◦ ◦ • • ◦

Centralised stochastic • • ◦ ◦ ◦ ◦ • • •◦ ◦◦ • ◦ ◦ • ◦ ◦

Distributed deterministic bit-serial • • ◦ • • •◦ • ◦ ◦◦ •• • ◦ ◦ • ◦ ◦

Distributed deterministic bit-parallel • • ◦ • • •• ◦ ◦ ◦◦ •• • • ◦ • ◦ ◦

Distributed stochastic • • • • • ◦◦ • ◦ ◦◦ •• • • • ◦ ◦ ◦

6.4 Case Study: Neural Evo-Devo Model
Investigation of different approaches in the previous sections showed that bio-inspired systems with bio-

plausible modelling of biological neurodevelopment are more promising in terms of emergent properties

such as fault-tolerance, robustness and scalability. In this section the design process of a new multi-

cellular neurodevelopmental model, and some experiments and results are reported as a case study.

Among different approaches, Fractal Gene-Regulatory Network was selected for a closer practi-

cal investigation as it showed a good level of evolvability in different applications [25, 24, 27, 26] and

as it seems more bio-plausible than other genetic representations. Therefore, here a multicellular ver-

sion of a similar evo-devo model is designed. From the implementation point of view, a distributed

stochastic implementation in hardware provides highest bio-plausibility for the price of complexity and

lower performance and compactness. Performance is not a critical factor here as developmental pro-

cesses are computationally less intensive than neural processes in the system. However, compactness,

and complexity of the design and testing are both very critical factors in this case study as the hardware

resources and project time are both very restricted. Since most of the hardware resources in the FPGA
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have been allocated to the computationally more intensive processes of neural simulation and communi-

cation, there are not many more resources available for implementing a useful example of a bio-plausible

distributed evo-devo model on the chip. A centralised model in hardware, while still too complex for the

time-constraints of this project, does not offer any advantages in terms of bio-plausibility, reliability, or

scalability. A software implementation, on the other hand, can offer simplicity of the implementation,

allowing to design, implement, and test a bio-plausible evo-devo model that meets both the time and

performance constraints of this project, while allowing us to explore slightly different designs. However,

as this study is focused on the hardware design and implementation and its challenges and trade-offs,

in this case study, an evo-devo model that is also suitable for distributed hardware implementation is

preferred.

As discussed in section 6.2.4 the sequential fitness evaluation of individual neural microcircuits

on the FPGA platform, makes a parallel implementation of the evolutionary processes redundant. A

serial implementation of the evolutionary processes in FPGA, apart from being slower than software

implementation on a PC (due to lower clock frequencies of the FPGAs compared to PC processors), is

very time-consuming to design, implement and, test, and it significantly reduces the flexibility of the

model for exploring different settings and approaches. With this analysis, it is decided to implement the

evolutionary processes in software running on the host PC that is connected to the FPGA. As this study

is focused on the hardware-based models investigation of the challenges and trade-offs of a software

implementation is out of the scope of this study. Moreover, a plethora of different studies is already

published on this subject. Therefore, this case study focuses on the neurodevelopmental model and

simply adopts an evolutionary algorithm from [24, 25].

6.4.1 Neurodevelopmental Model

The neural evo-devo model proposed in this work is similar to the FGRN [26] in terms of using the

same bio-plausible general genome structure and basic protein-protein and gene-protein interactions.

This is mainly motivated by the evolvability of the fractal proteins in different successful applications

[25, 24, 26, 207, 208, 209]. Adoption of these features is based on the analytical study in section 6.2.2.

The FGRN system uses a fractal protein translation and folding mapping into 2D shapes using Man-

delbrot set. Implementing the Mandelbrot set in hardware is not straightforward and requires complex

numbers and operations. Since the fractal mapping needs only to be executed once for each individual

this can be implemented in software. Nevertheless, a faster and simpler protein-folding mapping into

1D protein shapes (Called LGRN - Logistic GRN) is introduced in this study to demonstrate how other

protein folding mappings techniques are also possible to be plugged into this system. The protein fold-

ing process is a separate module and can be replaced with any other mapping (or removed altogether as

shown after this study in [209]) in order to compare the evolvability and performance of different similar

methods.

The neurodevelopmental model proposed here, fully exploits the inter-cellular signal proteins using

novel behavioural protein-protein interactions. However, these protein interactions are also examples of

different possible bio-plausible methods that can be used in the design of a neurodevelopmental model
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and can be replaced with other equally promising methods.

Definition of Proteins

Proteins are defined here as strings of real numbers in [0,1] of a certain length (L). In a hardware im-

plementation these numbers can be mapped to a range of integers or stochastic representation according

to the implementation method used. The values of the real numbers collectively define the shape of a

protein. Figure 6.8 shows two samples of protein shapes of length L = 10. These values are calculated

by the protein-folding mapping explained in this section.

Genome Structure

The genome consists of a single chromosome of a variable number of genes. The variable length chro-

mosome allows complexification of the FGRN. The number of chromosomes can be increased if needed.

Each gene consist of 15 fields:

ap, bp, rp, xp, sp TA TC a, b, r, x, s Cs Cd Type

The first five values (ap, bp, rp, xp, sp) specify the shape of the promoter using the protein-folding

mapping. These values along with TA (affinity threshold) and TC (concentration threshold) form the

cis-regulatory or promoter region of a gene. The next five values (a, b, r, x, s) specify the shape of the

protein synthesised by this gene (through protein folding again). These values along with Cs (stability

coefficient - specifying the decay rate of the protein), Cd (diffusion coefficient of the protein) and Type

(protein type) form the coding region of the gene. All values are real numbers except for Type, which

is a bit-string that can specify any combination of the protein types. In this system, proteins are of eight

different types (written in italics). Figure 6.7 depicts the classification of the different protein types in

this system. They can be classified into two major groups: transcription factors and structural proteins.

Transcription factors, which regulate the expression of the genes, include maternal factors (soma cell

maternal protein, glial cell maternal protein, IO cell maternal protein) and regulatory proteins. A group

of regulatory proteins are known as intercellular signal proteins. Structural proteins, which are virtually

part of the cell structure and influence the behaviour of the cell, include behavioural proteins (axon

growth protein, dendrite growth protein, synapse formation protein) and cell receptor proteins. Maternal

factors work as the inputs to the GRN dynamical system. Regulatory proteins are feedback signals in

the recurrent part of the GRN. Intercellular signal proteins are signals between GRNs of different cells.

Structural proteins are the outputs of the GRN. Among them, cell-receptor proteins in each cell can

control the signalling between cells (connections between GRNs in different cells). The role of each

protein type is explained further later in this section.

Logistic Protein Folding

Protein folding is the process that translates a set of a, b, r, x, s values (or ap, bp, rp, xp, sp values in case

of a gene promoter) into a protein (or promoter) shape which is a string of length L of real values. This

is performed using the logistic map [251]. The logistic map is a very simple dynamical system of the

form:

xk+1 = µxk(1− xk) (6.15)
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Figure 6.7: Classification of the different protein types used in the case study neural evo-devo model. The actual protein

types are shown in bold.
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left. Merging these proteins, results in the protein compound shape (V m
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that can create very complex time series with steady, transient, periodic, or chaotic behaviour. In this

equation xk is the value of the time series in step k, and µ is the logistic map parameter. In this system

µ is calculated based on r (or rp) from a gene using the following equation:

µ = 3 + tanh(5|r|). (6.16)

This equation allows generation of logistic map parameters in the range of [3, 4). The tanh function

allows finer tuning of the logistic parameter in the chaotic region of the system.

The x field in the gene specifies the initial value of xk in this equation. The logistic map equation

(6.15) will be first iterated for n = |bL · sc| times. Then the xk values in subsequent iterations of the

equation are scaled and offset by a and b using equation:

Vk−n = (2a− 1)xk + 2b− 1 (6.17)

to calculate all the protein shape values Vi for i = 1..L. This way, s controls the number of skipped

iterations before using the xk values. This allows the system to pass the transient part of the logistic

map or use the transient part to generate the protein shape. The ap, bp, rp, xp, sp fields are used instead

in case of promoter translation. All the protein and promoter shapes are calculated using this mapping

and stored before starting the iterative developmental processes. Figure 6.8 shows two sample protein

shapes. These shapes can be shifted horizontally by changing the value of s. Protein shapes can be

scaled and shifted vertically by changing a and b respectively. The r value in the gene specifies the

behaviour of the dynamical system, thus shape of the protein. The x value in the gene can significantly

affect the shape of the protein, particularly when the dynamical system has a chaotic behaviour and

|s| � 0. This is because of the sensitivity of a chaotic system to initial conditions. However, this

sensitivity can be smoothly controlled by evolution using both s and r values. This technique and its

related empirical equations are results of a preliminary experiments using simulation aimed at evolving

proteins and compound proteins of exact required shapes.

Protein Diffusion

For the diffusion of the proteins, a bio-plausible diffusion system that can be implemented as parallel

processes and provides protein concentration gradient is needed. Stochastic and non-deterministic dif-

fusion systems can be implemented using minimum hardware resources in parallel. For example, using

Cellular Automata with Margolus neighbourhood [15] was explored through simulations. However, the

trade-off between the noise level, speed, and hardware resources justifies the selection of a deterministic

approach resulting a fast and parallel implementation that is scalable and reliable. The following diffu-

sion model is the result of a preliminary study and related simulations to design a diffusion model that is

straightforward and efficient to implement in FPGA and also in software or GPUs (Graphics Processing

Units).

For each protein described in the genome, a real-valued concentration in the range [0, 1] is stored

for each cortex cell (thus two concentration values for two half cells of a soma cell). Similar to protein

shape values, these concentration values can be mapped to a range of integer numbers suitable for a
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compact hardware implementation. Before any protein-protein or gene-protein interactions take place,

the amount of proteins diffused into neighbouring cells should be calculated. Here, a simple weighted

average of concentration values of the cell and its neighbouring cells of form:

ct+1
0 = Cs

(
(1− Cd)ct0 +

1

4

4∑
i=1

Cd · cti
)
− 0.002 (6.18)

is used where ct0 is the concentration value in the centre cell at development step t, and cti, i = 1, 2, 3, 4

are the concentration values in four neighbouring cells. The Cs is the stability coefficient of the protein,

which is a real number in [0, 1], with 1.0 meaning no decay. The Cd is the diffusion coefficient, again

a real number in [0, 1], with 0 meaning no diffusion. Both of these values come directly from the gene.

Zero diffusion coefficients are useful for those proteins that cannot cross the cell membrane and diffuse

in the Cortex. The −0.002 offset makes sure that concentration can actually drop to zero instead of

converging to zero [26]. Concentrations outside of the [0, 1] range are clipped back to [0, 1] range.

Protein-protein Interactions

There are different types of protein-protein interactions depending on the protein types. Proteins can

merge to create a protein compound. The protein compound is also a string of real values of length L.

Each value in the protein compound string is equal to the concentration of the protein with the highest

value in that position of the string:

V mi = Cj where j = argmax
k,Ck 6=0

V ki for i = 1..L (6.19)

Figure 6.8 shows how two different sample protein shapes of length L = 10 are merged to result

in a protein compound of the same length. Note that protein compounds do not have a concentration of

their own. Protein compound values are actually the concentrations of the proteins with maximum value

over all merged proteins at each shape location. Only proteins with non-zero concentration (existing

proteins in a cell) can contribute to the shape of the protein compound. This is to create a very diverse

and dynamic set of protein compounds, shaped by the protein concentrations in different regions of the

cortex. All the proteins in the genome, which are tagged as cell receptor protein in the Type field of the

genes, are merged in each cortex cell to create a compound cell receptor shape for that cell. This string

of real values is then used as a mask to filter the shape of those proteins that are tagged as intercellular

signal protein, meaning that only those shape values with a corresponding non-zero value in the mask

are used [26]. The masked shapes of the intercellular signal proteins and all the proteins that are tagged

as a transcription factors (regulatory protein or any type of maternal factors) are then merged together

to create a protein compound in that cell. Figure 6.9 shows the above process that produces a protein

compound inside each cell.
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Figure 6.9: This diagram shows how different types of proteins interact inside a cell using two different operations of

merging and masking to produce a protein compound inside a cell.

Gene Expression (Gene-protein Interactions)

In each cell, the protein compound interacts with the shape of the promoter in each gene [26], resulting

a difference value δ, defined as:

δ =

L∑
i=1,V p

i 6=0

|V mi − V
p
i |

L∑
i=1,V p

i 6=0

1

(6.20)

where V mi and V pi are the ith values in the protein compound string and in the promoter shape string of

the gene. The probability of the gene expression is then defined as [26]:

P (E|δ, TA) =


1+tanh

(
30(2TA−1+δ)

)
2 if TA < 1

2

1+tanh
(

30(2TA−1−δ)
)

2 if TA ≥ 1
2

(6.21)

where TA is the affinity threshold of the gene promoter. In each development cycle each gene is randomly

expressed with this probability. If a gene is expressed, the concentration of the protein coded in the gene

will be increased (or decreased) by [26]:

σ = cp · tanh(cp + TC) (6.22)
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where TC is the concentration threshold of the gene promoter, and cp (total concentration seen by pro-

moter of the gene) is calculated using [26]:

cp =

L∑
i=1,V p

i 6=0

C(argmax
k,Ck 6=0

V k
i )

L∑
i=1,V p

i 6=0

(6.23)

Most of the gene expression mechanism and equations come from the original FGRN literature [26]

and is kept untouched as they are designed based on empirical results and bio-plausibility assumptions.

One of the main differences is in the calculation of the protein compound (equation 6.19) that is slightly

changed to make the GRN more dynamic and responsive to the protein concentrations. In FGRN, the

compound protein shape (merged protein) is calculated using the maximum value of each pixel over all

existing proteins (equation 6.9). Figure 6.10 demonstrates how the original FGRN method of calculating

the shape of the protein compound works. However, in this model, the value of each location in the

compound protein shape is the concentration of the protein with the highest value in that location over

all existing proteins (equation 6.19, and figure 6.8). For example, if comparing the first shape value of

all proteins, the third protein of the genome has the highest value, then the concentration level of the

third protein will be used as the first shape value of the compound protein, and so on for the second,

third and other shape values in the proteins. This modification was made since a slight change in a

protein concentration that drops it to zero could suddenly turn genes on or off in a binary manner. With

the concentrations involved in the shape of the protein compound, the evolutionary process is able to

adjust exactly at which range of protein concentrations a gene can be turned on or off. This method

results in a rather more dynamic but simpler protein compound shape compared to the original FGRN

model. It is not clear, without further investigations, if this can have any benefit to the evolvability and

other features of the developmental model. However, this dynamic protein compound shape is slightly

more bio-plausible than FGRN without adding to the complexity of the system (both values results of

the equations 6.19 and 6.9 are needed to be calculated in the original FGRN). The protein compound

model can be made even more bio-plausible for example by using the multiplication of these two values

so that it produces a complex shape controlled by the shape of the original proteins while the shape is

still dynamic and changed by the concentration of the dominant protein in each domain. Nevertheless,

this requires additional multiplication operations that is computationally more expensive specially in

hardware.

Neurite Growth and Synapse Formation

In order to model the neurite growth and guidance, a set of specific behavioural proteins are used. Cur-

rently each soma sprouts six axonal and six dendritic growth cones at the beginning of the developmental

process. However, the probability of the development of a growth cone can also be controlled by same or

separate behavioural proteins (to be added to the protein types). At each development step, the likelihood

of growth of the growth cone j towards side d of the glial cell (where routing resources are available) is
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Figure 6.10: An example of the other form of the compound protein shape calculation based on the maximum value at each

place of two (or more) proteins that is compatible with the original FGRN method.

calculated using:

Λ(Gdj ) =

L∑
i=1

V
mgj
i · V m∆d

i

L
(6.24)

where V mgji is the ith value in the growth protein compound (merging all growth proteins tagged as

axon growth protein or dendrite growth protein) in the mother cell of growth cone j, and V m∆d
i is the

ith value in the gradient compound of all proteins across side d. This gradient compound is calculated

using the following equation:

V m∆d
i = C∆d

ij where j = argmax
k,Ck 6=0

V ki for i = 1..L (6.25)

This is similar to the way that protein compounds are calculated, except that the concentration

gradientC∆d
ij (difference across side d of the glial cell in the concentration of the protein j, which has the

maximum value at location i of the protein shapes) is used instead of the maximum valuemaxk,Ck 6=0V
k
i

itself. For each side of a glial cell (processed in a clockwise order), the growth cone with the highest

positive likelihood will be routed towards that side. Figure 6.11 summarises the process of the neurite

growth in a simple example with protein shapes of length L = 3.

Clearly, the likelihood of growth into soma cells and out of the right edge of the cortex must be

zero. Moreover, dendrites cannot grow into IO cells. Each IO cell has an axonal growth cone in its

adjacent glial cell. Axons of other soma and IO cells can also grow and connect to IO cells. Currently,

no neurite branching is allowed and when a growth cone grows into a neighbouring cell, it moves to

that cell and does not duplicate. However, the Digital Neuron model, the Cortex model, and the Neural

Evo-Devo model allow that functionality just by adding more behavioural proteins to the system for

generation of growth cones, branching, or just by setting a constant threshold for growth likelihood to

detect branching.
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Figure 6.11: An example demonstrating the neurite growth in direction of the highest growth likelihood with very simple

protein shapes of length L = 3. The growth likelihood Λ(Gd
j ), shown as triangles, is calculated by the inner product of the

neurite growth protein compound in the mother soma cell V mgj and protein compound gradient V m∆d in each direction

d. Protein compound gradient in each direction is calculated by subtracting the shape of the glial compound protein V m

from the shape of the compound protein in each neighbour.

The formation of a synapse (given that a free synapse is available in a glial cell) between any pair of

dendrite and axon in a glial cell was controlled by a probability based on the interaction between synapse

formation proteins of the pre and post synaptic soma cells and the local protein compound of the glial

cell. The probability P (f |j, k, l) of a synapse formation between axon j and dendrite k in glial cell l is

calculated as:

P (f |j, k, l) =
1 + tanh (10

L∑
i=1

V aj
i V̇ dk

i V̇ml
i

L − 5)

2
(6.26)

where V aji , V dki , and V mli are values at position i of the presynaptic formation compound protein (in the

mother cell of the axon), postsynaptic formation compound protein (in the mother cell of the dendrite),

and compound protein of the glial cell respectively. The synapse formation compound proteins are cal-

culated using all the proteins that are tagged as a pre or post synaptic formation protein. The hyperbolic

tangent function allows to adjust the sensitivity of the probability in a more evolvable manner and ex-
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pand the distribution of the random values more uniformly. This is particularly needed since the result

of the multiplication of three random values in [0, 1] will be a very small number. The actual coefficients

and constants (10 and 5) can be adjusted empirically. This allows the local compound protein to inter-

act with the specific synapse formation compound proteins of the pre and post synaptic soma cells and

also depend on the locality of the glial cell giving total control of the synapse formation to the evo-devo

model. Every time that a neurite grows into another cell or a synapse is formed, the configurations of the

associated multiplexers in the Cortex can be updated to reflect the latest changes.

General algorithm

The general neurodevelopment algorithm repeats the same procedure for all the cells in all development

cycles as follows:

Initialise the cortex and arrange the soma cells

Calculate and store all protein and promoter shapes using equations 6.15 to 6.17

for all development steps do

for all cortex cells do

for all proteins do

Diffuse protein using equation 6.18

end for

end for

for all cortex cells do

for all genes in the genome do

Express the gene with prob. P (E|δ, TA) and increase (or decrease) the associated concentra-

tion using equation 6.19 to 6.23

end for

if cell type = glial then

Process glial cell:

for all dendrite or axon growth cones in the cell do

for all available growth directions do

Calculate the growth likelihood using equations 6.24 and 6.25

end for

Grow the neurite in the direction with the highest positive likelihood

if a synapse is available in the cell then

for all pair of axon and dendrite in the glial cell do

Form a synapse randomly with a probability calculated using the equation 6.26 with a

similarly developed synaptic weight (assumed fixed here)

end for

end if

end for

end if
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if cell type = soma then

Process soma cell

Calculate Soma cell parameters using behavioural protein concentrations

end if

Update the MUX configurations of the Cortex model accordingly

end for

Reconfigure the hardware platform accordingly

end for

Processing a glial cell includes synapse formation and neurite growth. Synapse formation involves

checking if a free synapse unit, at least one axon and one dendrite exist in the cell and then forming a

synapse between two neurites randomly with probability of synapse formation. If two different pairs of

neurites were racing for synapse formation in the same glial cell in the same development step, the pair

with higher probability wins. Neurite growth involves calculating the growth likelihood of all growth

cones in the cell towards each side and then growing the ones with the highest non-zero likelihood. At the

end, the corresponding multiplexers involved in the synapse formation and neurite growth are updated

(reconfigured) accordingly.

In the case study model, the behavioural proteins are limited to the very basic behaviours of neurite

growth. However, new types of proteins can be simply added to the model and the collective concentra-

tions of the proteins of the same type (by summation, merging, or other methods) can be used to set the

Cortex model parameters such as soma cell parameters. The case study provides the examples for such

behavioural proteins.

6.4.2 Implementation

The neural development algorithm was implemented in a synchronous and sequential manner in software

running on a PC. However, with some inter-thread coherence and synchronisation precautions, it is pos-

sible to have parallel threads for protein diffusion, gene expression, and neurite growth processes in each

cortex cell. The software was written in C++, interfacing with a Matlab engine for statistical analysis

and visualisation of the neural microcircuit network. For statistical analysis of the neural microcircuits,

an open-source Matlab toolbox called Brain Connectivity Toolbox (BCT) [319, 318] was used.

This algorithm lends itself to massively-parallel architectures such as GPUs (Graphics Processing

Units), and FPGAs. Here, parallel and distributed implementation of the neurodevelopmental processes

in FPGA is discussed briefly. The protein diffusion process is a rather standard and efficient function

known as Laplacian filtering and Gaussian blur in image processing and design of real-time video pro-

cessors. However, the filter matrix must be generated based on the diffusion and stability coefficients of

each protein. Hardware implementation of the protein-protein interactions needs a global lookup table

that contains sorted protein indices based on the values in their shapes. These indices can be used as

addresses to fetch the local concentration of each dominant protein for each value in the shape of the

local compound protein. A custom circuit can be also designed for masking the inter-cellular signal

proteins and calculation of the gene expression probabilities and protein synthesis speeds in each cell.
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Stochastic computing can be used for calculating these two values to reduce the hardware cost of sig-

moid functions in these computations. Similarly, custom circuits can be designed for producing neurite

growth likelihood values or other behavioural functions. These behavioural proteins control the param-

eters and connectivity of the Cortex. Different values for different proteins in each cell can be processed

sequentially as the algorithm is the same for most of them, and performance is not very critical, and

also to keep the hardware cost low. If the Cortex is using a virtual FPGA method, the output of the

neurodevelopmental model should be used to locally reconfigure the cell. However, if a dynamic par-

tial reconfiguration method is used, all these local data must be gathered by the embedded system that

reconfigures the Cortex. The complexity and hardware cost of a hardware implementation for such a

bio-plausible model is rarely acceptable unless the underlying neural processes can be executed a few

order of magnitude faster than what is possible on the current Cortex model.

6.4.3 Verification, Testing, and Debugging

A notable challenge in verification and testing such a bio-plausible model was that black-box testing

and end-to-end verifications are not very helpful if possible at all. An implementation of a bio-plausible

developmental model may contain many bugs and errors but it may still appear to work. This is partly

due to the high level of robustness in such systems and partly due to the fact that the correct expected

output of such complex bio-plausible system is not alway known. Therefore, it is required to perform

controlled unit tests by monitoring the inputs and outputs of each module in the system. For integration

test, it was found useful to disable most of the functionalities and separate modules (e.g. diffusion

or gene expression) and perform integration test by enabling each module separately, and then different

combinations of the modules, until all the modules are enabled and tested together. Applying very simple

inputs (e.g. short handcrafted genomes, protein concentrations, or maternal factors) that must result in

predictable outputs is useful in both unit and integration testing.

The correct functioning of the neurodevelopmental model was tested using visualisation of the

protein concentration and neurite growth patterns using Matlab and debugger features with very simple

handcrafted genomes. The behaviour of the protein diffusion, gene expression, neurite growth, and

synapse formation processes were tested one by one by cross checking the behaviour of the model with

the expected behaviour of the handcrafted proteins and genomes using white-box testing. First only

protein diffusion was tested using maternal factors and different initial concentration values. Then gene

expression was tested by setting the diffusion and stability coefficients to zero and one respectively

and initialising the concentrations in different cells. After verification of these modules, behavioural

processes for growth of neurites and synapse formation were tested one by one in a similar manner.

Then modules were all enabled one by one for integration testing.

Figure 6.12 shows the development of a phenotype from a single gene chromosome as an example

of the method used for verification of the protein concentrations and neurite growth. The protein was,

first, tagged as an IO cell maternal protein with protein diffusion and stability coefficients equal to 0.5

and 1.0 respectively. Other values in the gene were set to zero. Figure 6.12(a) shows the developed

microcircuit and the concentration of the single protein after five development cycles. In the second step,
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the same protein was also tagged as an axon growth factor. Although the protein concentration was the

same in the second step, the protein also worked as an axonal guidance signal and axons were grown

towards the sources of the protein, namely the IO cells (figure 6.12(b)). In the third step (Figure 6.12(c)),

the protein was also tagged as a dendrite growth factor, and their growth towards IO cells was tested in

this way.
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Figure 6.12: Example of the method used for verification of the protein concentrations and neurite growth processes: (a)

shows the developed microcircuit (left) and the concentration of an IO cell maternal protein (right) after five development

cycles, (b) shows the developed microcircuit when the same protein was also tagged as an axon growth factor, (c) shows the

same when the protein was tagged as IO cell maternal, axon growth, and dendrite growth factors.

It was noted that tuning every single parameter and setting of such complex and bio-plausible model

needs comprehensive statistical analysis requiring a large amount of computation and effort. Some

preliminary experiments were carried out to find some promising and useful ranges for the parameters of

the model. However, it appears that a separate study might help to explore the search space and suggest

better settings.

The correct implementation of the whole neurodevelopmental model in software was verified, tested

and debugged successfully before further experiments.

6.4.4 Experiments

Before adding any evolutionary processes to the model, it is always necessary to verify if the new de-

velopmental model is able to produce the desired phenotypes with the expected properties at all. Three

experiments were carried out at this stage:

• Experiment 1 - Network Characteristics: To examine the suitability of this model for development

of useful neural microcircuits based on the statistical analysis of their network characteristics.
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• Experiment 2 - Modularity and Scalability: To investigate the possibility of developing repeating

connectivity patterns and motifs that are necessary for scalability of the Cortex.

• Experiment 3 - Fault-tolerance: To examine if the developmental processes can show the very

basic signs of fault-tolerance by avoiding to use faulty cells.

The objective and setup of the experiments, and their results are reported here. The protein size (L)

and max development cycles were set to 10 and 200 respectively in all these experiments.

Experiment 1 - Network Characteristics

The aim of this experiment was to check the possibility of growing useful networks using the new

neurodevelopmental process. Brain networks and animal nervous systems show the properties of small-

world networks, that is higher clustering coefficients and shorter characteristic path lengths (average

shortest path between any two nodes) compared to random networks [39]. Three sets of 1000 networks

were developed using three different neuron placement patterns of 120 neurons in a 120×12 Cortex with

randomly generated genomes of length 16. The real values in the genes were set to random numbers in

range [0, 1] and the protein types were set to random binary strings. The characteristic path length and

clustering coefficient of the all the resulting networks were recorded.

Results

Figure 6.13 shows the distributions of the characteristic path lengths and clustering coefficients, along

with the distribution of their ratio of the developed networks with three different neuron arrangements.

All the distribution histograms are cropped at the top to show details, as peak values of the histograms

are not indicative of the desired network characteristics. All three arrangements showed almost the same

distribution of characteristic path length with a fat tail on the left side, meaning that developing networks

with short characteristic paths is possible using this system. The clustering coefficient was slightly

influenced by neuron arrangement and some networks with clustering coefficients of greater than 0.5

was recorded in case of the third arrangement. Development of networks with both a high clustering

coefficient and a short characteristic path length at the same time is captured in the distribution of the

ratio of these two, shown in the third column of figure 6.13. The right tail of the distribution of this

ratio showed that generation of such networks with this neurodevelopmental process is possible. The

characteristic path length, clustering coefficient and their ratio of some of the generated networks were

similar to statistics of the nervous system networks reported in [39], namely those of C. elegans. A

visualisation of a section of a microcircuit developed from one of the random genomes is shown in

figure 6.14.

Modularity and Scalability

A very simple genome of five genes was handcrafted to demonstrate how this genotype-phenotype map-

ping lends itself to emergence of scalability and modularity. Figure 6.15 shows a schematic of the gene

regulatory network of the designed genome. Soma and IO cells each have a maternal factor of their

own (MS and MIO), which is sustained at saturation level by positive feedback loops of gene 1 and 2

respectively. These maternal factors have a diffusion coefficient of zero, meaning that they are internal
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Figure 6.13: Distribution of the characteristic path length, clustering coefficient, and their ratio for 1000 developed net-

works using randomly generated genomes with 3 different neuron placement patterns (I, II, and III).

proteins and cannot cross the cell membrane. Each of those maternal factors exactly match and enhance

the promoters of the gene 3 and 4, which lead to synthesis and diffusion of intercellular signal proteins

(SS and SIO - with diffusion coefficients of 0.5 and 0.99). The soma cell maternal factor also exactly

matches the promoter of the gene 5, which synthesises another internal protein in soma cells (FG - with

diffusion coefficient of zero) that works both as axon growth factor and dendrite growth factor. The shape

of this growth factor can interact with the merged gradient of intercellular signal proteins diffused form

both soma and IO cells resulting in growth probably P(G). This genome was used to develop networks

using two different cortex sizes (12× 12 and 12× 24 with 9 and 18 neurons).

Results

Figure 6.16 shows the results of the second experiment for two different cortex sizes of 12 × 12 (figure

6.16(a)) and 12 × 24 (figure 6.16(b)). The same connectivity motif was repeated vertically for both

cortex sizes demonstrating a very simple but scalable mechanism using a minimal genome. Figure

6.16(c) shows the diffusion patterns of the five proteins in the Cortex at the end of the development

process.

Fault-tolerance

The aim of this experiment was to demonstrate the basic fault-tolerance capability of the neurodevel-

opmental model. For this experiment, another simple genome was designed that simply grows an axon

from one neuron to another neuron. The IO cells’ maternal factor (also an intercellular signal protein)

was used to initiate the cell differentiation of two neuron types as its concentration would be higher in the

left neuron (bottom-left concentration pattern in figure 6.17). This differentiation is clear in the top-right
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Figure 6.14: A visualisation of a section of one of the neural microcircuits developed from a random genome in experiment

1. Axons and dendrites are shown as bold blue and light black lines respectively. Red dots are representing synapses.
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protein concentration pattern in figure 6.17(a). The neural microcircuit was developed and the routing

path of the axon was recorded. In the second step, a glial cell in the axon routing path was randomly

selected and tagged as “faulty” in order to simulate the effect of a fabrication fault. It was assumed that

“faulty” cells are detected either dynamically by a health or activity signal, an error detection mecha-

nism, or by using a post-fabrication test prior to starting the developmental process. In this experiment,

a “faulty” cell simply does not involve in the protein diffusion process (setting all protein concentrations

in the cell to zero). Therefore, the likelihood of neurite growth into that cell will be always non-positive.

It was anticipated that the axon should deviate from its original path and bypass the “faulty” glial cell.

Results

Figure 6.17(a) shows the single axon grown from one neuron to the other along with the diffusion pattern

of six proteins in the cortex after normal development. The glial cell, which is selected to be the “faulty”

cell in the second step is labelled with a square in figure 6.17. In the second step (figure 6.17(b)), the

glial cell was turned off as “faulty” and development process was rerun. Concentration levels of all

proteins in the “faulty” cell were equal to zero. The effect of the “faulty” cell in the protein diffusion

pattern is notable in the diffusion pattern of the third protein (figure 6.17(b) top-right). Consequently,

the axon avoided the “faulty” glial cell, and connected to the target neuron through another path. Sim-

ilar behaviour was observed in case of a few other randomly selected glial cells in the default path of

the axon. This demonstrated that with a minimal and simple genome it is possible to produce the very

fundamental mechanisms necessary for fault-tolerance and regeneration with such a bio-plausible neu-

rodevelopmental model.

6.4.5 Evolutionary Model

The general evolutionary model and its features are explained briefly here as evolutionary model that was

implemented in the software is not the focus of this study and it was only implemented as a supporting

process for testing the neurodevelopmental model. The evolutionary model was implemented in software

running along with the neurodevelopmental model on the same PC.
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the axon routing path were tagged “faulty” in order to 
simulate the effect of fabrication faults. The possibility of 
emergence of fault-tolerance through bypassing the faulty 
cells by the developmental process was examined. It is 
assumed that “faulty” cells are detected either by a 
hardware self test or using a post-fabrication test. A 
“faulty” cell simply does not involve in the protein 
diffusion process (setting all protein concentration in the 
cell to zero). Therefore the likelihood of neurite growth 
into that cell will be always non-positive. It was 
anticipated that the axon should deviate from its original 
path and bypass the faulty glial cell. 
 

Fig.4. Distribution of the characteristic path 
length, clustering coefficient, and their ratio for 
1000 developed networks using randomly 
generated genomes with 3 different neuron 
arrangement patterns. 
 
6. Results 
 
6.1. Network characteristics  
 

Figure 4 shows the distributions of characteristic path 
length and clustering coefficient, along with the 
distribution of their ratio of the developed networks with 
three different neuron arrangements. All the distribution 
histograms are cropped at the top to show details, as peak 
values of the histograms are not indicative of anything. 
All three arrangements showed almost the same 
distribution of characteristic path length with a fat tail on 
the left side, meaning that developing networks with short 
characteristic paths is possible using this system. The 
clustering coefficient was more influenced by neuron 
arrangement and some networks with clustering 
coefficients of greater than 0.5 was recorded in case of the 
third arrangement. Development of networks with both a 

high clustering coefficient and a short characteristic path 
length at the same time is captured in the distribution of 
the ratio of these two, in the third column of Figure 4. The 
right tail of the distribution of this ratio shows that 
generation of such networks with this developmental 
process is not impossible. The characteristic path length 
and clustering coefficient of some of the generated 
networks were similar to statistics of the brain networks 
reported in [2], namely those of C. elegans. 

 

(b)  

(a)  (c)  

Fig.5.(a) The developed network using the 
designed genome in a 12x24 cortex. (b) The 
developed network using the same genome in a 
12x12 cortex. (c) The protein diffusion patterns 
of the 12x24 cortex. 
 
 6.2. Modularity and scalability 
 

Figure 5 shows the results of the second experiment 
for two different cortex sizes of 12x24 (Fig 5.a) and 
12x12 (Fig 5.b). Fig 5.c shows the diffusion patterns of 
the five proteins in the cortex at the end of the 
development process. The same connectivity motif was 
repeated vertically for all cortex sizes when the neuron 
arrangement pattern was fixed. 
 

(a)   (b)  
Fig.6.(a) The single axon routed from one 
neuron to the other along with the diffusion 
pattern of six proteins in the cortex. (b) The axon 
diverted to bypass the faulty glial cell (marked 
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(c)

Figure 6.16: (a) The developed microcircuit using the designed genome, in a 12×12 cortex. (b) The developed microcircuit

using the same genome in a 12 × 24 cortex. (c) The diffusion patterns of the five proteins in the 12 × 24 cortex at the end

of the development.

The evolutionary algorithm used here is a flexible and quite generic algorithm adopted from [24, 25]

that allows quick exploration of different evolutionary algorithms and settings. A population of adults

is maintained, with n fittest individuals being used as parents for reproducing offspring. The population

size is usually set to 1.25n. In every generation, m offspring are produced and evaluated. Any of the

offspring individuals that is fitter than the least fit individual in the population, will be added to the

population and the least fit individual will be removed. The population is always maintained sorted

based on fitness. Positive selection pressure can be achieved by smaller n values and negative selection

pressure can be adjusted by changing the m
n ratio. These parameters enable the user to implement a

wide range of different evolutionary algorithms including a canonical GA algorithm (with m = n), and

a steady-state GA (with small mn ratios) [24].

The initial population is generated randomly with random bit streams for gene type loci and random

real numbers in [0, 1] range for all other loci. Each adult has an age (set to zero when born) that is incre-

mented by one in each generation and after reaching to a certain age (a specific number of generations)

that adult will be removed from the population. This ensures that a fitter genome with a non-inheritable

advantage does not dominate the population. The population size being slightly larger than n allows

other adult individuals to replace dead ones when their lifespan is passed.

Every pair of parents are recombined using gene matching. Every single gene in one of the parents’

chromosome(s) is matched with the most similar gene in the other parent. A uniform crossover is then

used to recombine the two matched genes taking bits (for gene type locus) and real values (for all other
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the axon routing path were tagged “faulty” in order to 
simulate the effect of fabrication faults. The possibility of 
emergence of fault-tolerance through bypassing the faulty 
cells by the developmental process was examined. It is 
assumed that “faulty” cells are detected either by a 
hardware self test or using a post-fabrication test. A 
“faulty” cell simply does not involve in the protein 
diffusion process (setting all protein concentration in the 
cell to zero). Therefore the likelihood of neurite growth 
into that cell will be always non-positive. It was 
anticipated that the axon should deviate from its original 
path and bypass the faulty glial cell. 
 

Fig.4. Distribution of the characteristic path 
length, clustering coefficient, and their ratio for 
1000 developed networks using randomly 
generated genomes with 3 different neuron 
arrangement patterns. 
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length and clustering coefficient, along with the 
distribution of their ratio of the developed networks with 
three different neuron arrangements. All the distribution 
histograms are cropped at the top to show details, as peak 
values of the histograms are not indicative of anything. 
All three arrangements showed almost the same 
distribution of characteristic path length with a fat tail on 
the left side, meaning that developing networks with short 
characteristic paths is possible using this system. The 
clustering coefficient was more influenced by neuron 
arrangement and some networks with clustering 
coefficients of greater than 0.5 was recorded in case of the 
third arrangement. Development of networks with both a 

high clustering coefficient and a short characteristic path 
length at the same time is captured in the distribution of 
the ratio of these two, in the third column of Figure 4. The 
right tail of the distribution of this ratio shows that 
generation of such networks with this developmental 
process is not impossible. The characteristic path length 
and clustering coefficient of some of the generated 
networks were similar to statistics of the brain networks 
reported in [2], namely those of C. elegans. 
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Fig.5.(a) The developed network using the 
designed genome in a 12x24 cortex. (b) The 
developed network using the same genome in a 
12x12 cortex. (c) The protein diffusion patterns 
of the 12x24 cortex. 
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(b)

Figure 6.17: (a) The single axon routed from one neuron to the other along with the diffusion pattern of six proteins in the

cortex. (b) The axon diverted to bypass the “faulty” glial cell (marked with a black square) along with the affected protein

concentration pattern.

loci) randomly from one of the genes. Both genes are then ticked off as used and the next gene in the

first parent is processed in the same manner until all the genes in the second parent are used. The rest

of the unused genes in the first parent are then appended at the end. The similarity measure for the

genes is based on the sum of differences of the real-valued alleles of two genes. Moreover, if there are

no common set bits in the gene type loci of the two genes, their similarity is equal to zero. This gene

matching method allowed effective crossover of variable length chromosomes.

Four different mutation methods are used: Creep mutation, Gene duplication, Gene addition, and

Gene deletion. Creep mutation adds a uniform random real value between -0.5 and 0.5 to a real-valued

allele and then crops the result back to the [0, 1] range. For gene type alleles, one randomly selected bit is

flipped. This mutation allows small changes in the genes that may reflect as changes in the shape of the

proteins, their diffusion and stability coefficients, promoter shapes, affinity or concentration thresholds,

or the gene types.

Gene duplication mutation, selects two genes in the offspring chromosome by chance, and copies

promoter or coding region of one of the genes to promoter or coding region of the other gene. This

mutation method allows genes to produce the same protein, be triggered by the same group of proteins,

or one being triggered by the other, which promotes the modularity of the gene-regulatory network and

its evolvability.

Gene addition mutation adds a copy of a randomly selected gene from the offspring’s chromosome

to the end of the chromosome if it is shorter than maximum length allowed for the chromosomes. Gene

deletion mutation, deletes a randomly selected gene from the offspring’s chromosome. These mutations

allow for growth and shortening of the chromosomes required in a variable-length chromosome.

Here, each parent is selected with equal probability from the top n fitter individuals of the popu-
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lation. However, it is easily possible to use any other fitness-proportionate selection method (Roulette

Wheel) or other methods since the population is always maintained sorted based on fitness values. It

is also possible to use genetic similarity measures and crowding techniques similar to what is used in

NEAT or [243] for promoting speciation and maintenance of the population diversity.

Implementation, Verification and Testing

The complexity and robustness of the bio-plausible models of development and evolution makes it very

difficult to perform black-box or end-to-end integration tests. For example, at some point during testing

the evolutionary model, it was revealed that the parents were being selected from the less-fitter end of the

population sorted list. However, since the population was a selected group of adult and offspring indi-

viduals with higher fitness values, the maximum and mean fitness of the population was still increasing

consistently during evolution. It was only after detailed debugging and inspection that such a program-

ming mistake was revealed. In such cases, a bio-plausible model is so rich and robust to faults, errors,

and even programming mistakes, that it still works with a lower performance and it is very difficult to

detect the problem. Therefore, due care and proper module testing are required in the testing phase of

such bio-plausible systems.

Different functions of the evolutionary algorithm were verified and tested using a debugger with a

small population and very short initial chromosomes. Again as in verification and testing of the devel-

opmental model, white-box unit testing and integration testing was performed on each module of the

system. To test the selection and recombination, all the mutations were disabled and the result of each

recombination and selection was monitored and verified by hand using the debugger. Then mutation

methods were enabled and their functionality were verified one by one.

After careful testing and verification of all the modules in the evolutionary model, a number of

preliminary experiments were carried out to find useful ranges for parameters (e.g. population, selection

and generation sizes, mutation probabilities, etc.). A few bugs and implementation errors were found

and fixed during verification, testing, and parameter tuning process. The evolutionary model was finally

successfully verified, tested, and ready for the following experiments.

Experiments

To test the integration of the developmental and evolutionary models an experiment was designed and

carried out. The goal of the experiment was to verify if the developmental representation was evolvable

and evolutionary process was able to evolve the connectivity of the neural microcircuits towards networks

with higher clustering coefficients and shorter characteristic path lengths, similar to biological nervous

system networks. In this experiment the fitness of the individuals were calculated using the statistical

analysis of the neural microcircuits rather than results of the neural processes. The ratio of the clustering

coefficient to characteristic path length of the networks were used as the fitness of the individuals. Table

6.3 reports the parameters and settings used in this experiment. The best and average fitnesses, and

chromosome length of the best fit individual and average chromosome length of the population and total

number of evaluations were recorded at each generation. A visual representation of the best fit phenotype

in the cortex was produced every 10 generation. The experiment was repeated 32 times.
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Figure 6.18: Best and average fitness of the population during 312 generations against the number of evaluations (averaged

over 32 runs).

0 2000 4000 6000 8000 10000 12000
5

6

7

8

9

10

11

12

Number of Evaluations

Av
er

ag
e 

C
hr

om
os

om
e 

Le
ng

th

Figure 6.19: Average chromosome length of the population during 312 generations against the number of evaluations

(averaged over 32 runs).
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Figure 6.20: Best and average fitness of the population during an example run displaying a convergence and plateau at the

end suggesting a stagnation.
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Figure 6.21: Chromosome length of the best fit and population average during 312 generations in the example run showing

significant changes during the fitness plateau.
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Figure 6.22: Two example best fit microcircuit phenotypes after the fitness convergence of the example run (at about 4000

evaluations). (a) The fittest microcircuit of the population at generation 131 with eight clusters of four neurons. (b) The

fittest microcircuit of the population at generation 141 with larger and more complex clusters but with the same fitness

(mean clustering coefficient to characteristic path length) ratio as (a) equal to 1.17.
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Table 6.3: Parameters and settings used in the evolutionary model experiment.

Parameter or setting Value Unit

Cortex size 12x32 Grid cells

Number of neurons 32 Neurons

Neuron placements configuration II (in figure 6.13) -

Development length 30 Cycles

Protein length (L) 50 -

Initial chromosome length 5 Genes

Maximum chromosome length 50 Genes

Population size 40 Individuals

Selection size (n) 16 Individuals

Generation size (m) 32 Offspring per generation

Life span 25 Generations

Crossover probability 1.0 (always) Per pair of parents

Creep mutation probability 0.05 Per locus

Gene addition mutation probability 0.5 Per chromosome

Gene deletion mutation probability 0.5 Per chromosome

Gene duplication mutation probability 0.1 Per chromosome

Number of generations 312 -

Number of runs 32 -

Results

Figure 6.18 shows the best fitness and average fitness of the population during 312 generations averaged

over the 32 different runs. Figure 6.19 shows how the average chromosome length of the population

was changing on average during these 32 runs. They exhibit typical fitness curves of the evolutionary

algorithms. The population average chromosome length shows a consistent increase during evolution

that can be a sign of complexification or bloating.

Looking at a relatively successful example run (figures 6.20 and 6.21) allows us to examine the sit-

uation more closely. The average chromosome length appears to be increasing when the average fitness

is increasing, suggesting complexification and that useful inheritable genetic material is being generated.

When the average fitness is not increasing, initially, the chromosome length decreases, which suggests

that the evo-devo model is not necessarily bloating and it might be able to generate compact and modular

representations for the neural microcircuit. After the initial compacting phase the evolutionary process

appears to explore the search space through neutral mutations. This can be a sign of what is already

shown previously in FGRNs as evolution of robust and efficient GRNs [24]. During this phase evolu-

tionary process can explore the search space for more robust and fault-tolerant genomes that develop into
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a phenotype with the same fitness value. Although the fitness plateaued after 3000 evaluations and the

evolutionary process appeared stagnated, looking at the developed neural microcircuits revealed that the

neutral mutations were at work to keep the population both genotypically and phenotypically diverse.

Figures 6.22(a) and 6.22(b) show the phenotypes of the best fit individuals from two populations a few

generations apart at about 4000 evaluations. As it is clear in figure 6.22(a), evolution has reached a

completely partitioned network of eight separate but internally highly-connected clusters with a fitness

(clustering coefficient to characteristic path length ratio) of 1.17. However, a few generations later, the

best fit individual has a completely different phenotype with the same fitness but with a single-partition

network of dense and highly clustered modules. These two phenotypes have the same fitness and the

second phenotype was transiently the best solution for a few generations before the first phenotype reap-

pears as the fittest individual in the population again. This was due to the fact that the fitness function

did not care about the number of partitions and other factors of the neural microcircuit and the evo-devo

model was only satisfying the given fitness criteria. However, the neutral mutations allowed the evo-devo

model not to stagnate and explore different network architectures.

6.5 Practical Considerations
In this case study, no feedback is provided from the Cortex to the developmental processes. One type

of feedback data is activity related that requires simulation of the neural model to generate data about

health and activity of the soma and glial cells. However, a second type of feedback that can be used by the

developmental processes is feedback about available routing resources during development. This type of

feedback is very important for evolution of robust and efficient routing since it provides local information

to each cell about available routing resources around it. Without such clues, development has to route an

axon or dendrite all the way to an obstacle when it hits the obstacle and since no routing resources are

available in that direction, the next promising available direction will be used for growth. This results

in wasting a lot of resources that can be otherwise used for other signals. This condition can be seen

in some example phenotypes (see crooked axons in figure 6.22(b) for example). To resolve this issue,

the diffusion process can be modified so that some intercellular signal proteins can be only diffused

when a routing resource (for dendrite or axon) is available. This way the Cortex model can provide

feedback data to the the evo-devo model about available routing resources to evolve routing strategies

along with the neural connectivity patterns. This is simple to add (both in hardware and software) by

setting the diffusion of the some specific type of signal proteins, to zero in the direction of the routed

signals (unavailable routing resources) in each cell during the protein diffusion phase of the algorithm.

This way these signal proteins will only diffuse against the direction of available routing resources giving

directional clues to the growth cones.

Another issue in the phenotypes is allocation of many synapses and routing resources for repeated

connections between two neurons. This can be partly resolved by controlling the synapse formation

with a behavioural protein that can be associated with the proteins in the pre and post-synaptic neurons

as already discussed in the previous sections. Another bio-plausible mechanism is what is known as

lateral inhibition that prevents repeated connections between two neurons after the first is connection
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established or causes elimination and retraction of the redundant synapses and neurites [404]. This

requires the formation of a synapse to also produce a feedback to the neurodevelopmental processes

both at the site of the synapse (glial cell) and in the pre and post-synaptic soma cells. Then evolution can

produce genes that will be suppressed in a soma cell when its connection with a specific other neuron is

established and it will prevent more growth toward that cell or further synapse formation with that cell.

The evolutionary model can also produce genes that will synthesise proteins to eliminate other synapses

and retract their neurites.

A feature that can help with the efficient use of the routing resources is regulating the growth cone

formation by developmental processes. In the case study model, each soma cell has 6 axonal and 6

dendritic growth cones. These growth cones, rather than being regulated by developmental processes,

are already formed prior to the first development cycle. One solution is to form growth cones only

when the gradient of a dedicated behavioural protein is higher than a threshold. Also branching neurites

and retracting them, apart from being bio-plausible, might improve the efficiency of the system as well.

This can be implemented using a threshold or more complex protein-protein interactions involved in the

process of neurite growth as discussed in the previous sections.

Another improvement is to code the constants related to protein diffusion in the gene using the

protein folding mechanism instead of storing them in the gene directly. This allows the evolution to use

more robust or very volatile representations for these values that make them more sensitive or resilient to

mutations. Similarly affinity and concentration threshold values can be also coded using protein folding

instead of direct encoding in the genes. Devising a similar method for coding the gene type might also

prove useful in the same way.

Setting the soma parameters and synaptic weights (and their signs, for excitatory and inhibitory

synapses) using behavioural proteins can also significantly improve the efficiency and accuracy of the

developmental model in generating useful neural microcircuits that can actually work. Otherwise, evo-

lution has to use the number of synapses between two neurons to adjust the synaptic weight between

them.

To increase the overall performance of the evo-devo model, it is also possible to adopt some of the

techniques that are used in the abstract models. Abstract models use Cartesian positional information

as two static inputs to the dynamical system, which allows the developmental mechanism quickly use

that information to produce morphogens. The same trick will help a multicellular model to speed up

the evolution. The simplest way is to add two static maternal factors that have gradients in the x and y

directions of the Cortex. The GRN will be free to quickly build upon that fixed positional information

but this will not be responsive to the dynamic changes in the substrate such as faults as discussed in

section 6.2.1. A more robust option would be to have initial gradients assigned to the concentration of

these two maternal factors but allow them to dynamically reflect the condition of the Cortex (such as

faults, etc.). This will slightly add to the computational cost of the system as these maternal factors

need to be processed for diffusion and synthesis with the other proteins while in the former method they

would be exempt from these processes. An even more bio-plausible, flexible and evolvable option would
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be to only initialise these maternal factors in the edges of the Cortex and allow diffusion process to

take care of producing the gradient. It is also possible to add handcrafted genes to the initial population

(seeded population), which maintain these maternal factors. Similarly, handcrafted genes that already

differentiate neurons in different positions in the Cortex may help to speed up the evolution. A more

bio-plausible option would be to evolve robust GRNs that do such differentiation and use the evolved

population (or other useful genetic material) as the seed population for other complex problems. These

tricks all allow us to save some computation that will be needed to create these basic genetic material at

the beginning of an evolutionary run. This is something that was successfully applied to FGRNs in [25].

In practice, the trade-off between bio-plausibility and simplicity appeared to be very significant

in verification and testing. Comparing and benchmarking of the performance, scalability, evolvability,

fault-tolerance and other features of such complex bio-plausible models with slightly different designs or

parameter settings also appeared to require much more effort than what is needed for less bio-plausible

models.

6.6 Summary
Figure 6.23 shows a graphical representation of the investigations carried out in this chapter. First, the

general impact of the evo-devo model design on the bio-plausibility and feasibility of the whole system

and its significance were discussed and highlighted. In section 6.1, general definition of bio-plausibility

and feasibility measures from chapter 2 were translated into a set of tangible general design factors and

constraints in the specific context of the evo-devo model. Using those general factors, different general

design options and approaches and their trade-offs in different aspects of the evo-devo model design

were investigated in section 6.2. Different major functions of the evo-devo model were categorised as

a dynamical system for gene-regulatory network, a genetic representation and mapping, genetic opera-

tors evolving the genome, and selection mechanisms. Abstract models of the dynamical system, their

bio-plausibility, and feasibility were compared with the multi-cellular (cell-chemistry) models with lo-

cal interactions. Focusing on more bio-plausible multi-cellular models, a few representatives from the

literature of the genetic representations were examined and their bio-plausibilities and feasibilities were

compared. As the implementation of the evolutionary part of the model in FPGA proved to be ineffi-

cient (compared to implementation in software) and thus out of the scope of this study, it was briefly

discussed with a quick review of a few bio-plausible genetic operations and selection methods. Different

implementation methods of different parts of the model in software and hardware were investigated and

compared in terms of feasibility and bio-plausibility. In the summary of the challenges and trade-offs of

different design options and approaches, it was confirmed that the general trend of the bio-plausibility-

efficiency and bio-plausibility-simplicity trade-offs exist in the design of the evo-devo model. However,

unlike the general trend, the scalability and reliability measures of feasibility appeared to increase with

the bio-plausibility of the evo-devo model.

Based on the insight gained from this analysis, a neural evo-devo model was designed as a case

study. The trade-offs highlighted in this analysis showed that, with the time and hardware resource

constraints of this project, it would be more beneficial to design and implement a bio-plausible model
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in software (having hardware compatibility in mind) than implement a much less bio-plausible model

in hardware. A multi-cellular version of the FGRN was designed as the case study neurodevelopmen-

tal model and implemented, verified, and tested to demonstrate its fundamental bio-plausible network

characteristics, scalability, modularity, and fault-tolerance capabilities using randomly-generated and

hand-crafted genomes. A generic evolutionary model that was already used with FGRN was adopted

as the case study evolutionary model, and was implemented, verified and tested to demonstrate that the

whole integrated evo-devo model is able to evolve neural microcircuits towards some bio-plausible net-

work characteristics. Practical challenges and possibilities in the design, implementation, and testing

of the model was discussed at the end. Verification and testing of bio-plausible evo-devo models, and

comparing and benchmarking different designs and parameter settings were highlighted as one of the

major practical challenges in the design and implementation of such models.

Now that all the three main models of the whole evo-devo neural microcircuit system are investi-

gated and case study models are designed, implemented, and tested, it is time to investigate the integra-

tion of these models. The next chapter is dedicated to investigation of the challenges and trade-offs in

integration of the neuron, cortex, and evo-devo models into a single evo-devo system that can solve a

problem.
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Chapter 7

System Integration

In the previous chapters, first, challenges and trade-offs in the selection of a hardware platform, and then

challenges and trade-offs in the design, implementation, and testing of neuron, cortex, and evo-devo

models were investigated one by one. Example designs for each one of these models were carried out,

implemented, and tested separately. Here, the challenges and trade-offs in the integration of such models

into a bio-plausible system of evo-devo neural microcircuits in FPGA are investigated and discussed.

In the integration step, a designer needs to decide about processes and submodules of the system

that glue bio-plausible models together; decisions such as how a fitness value must be generated from

the neuron model activity and passed to the evolutionary model, how the reconfiguration commands or

activity data must be passed between developmental model and the cortex model, or how to distribute

different processes of different models over available computing resources (CPUs, GPUs, FPGA). Some

of these decisions mainly depend on the application and each specific scenario in practice. However,

some of the design options have significant impacts on the feasibility measures of the whole system

(such as performance or scalability). In some cases these options may also affect the bio-plausibility of

the system.

In the following section, the general feasibility and bio-plausibility measures defined in chapter 2

are translated into tangible design factors in the context of the system integration design. Then, in section

7.2, different options and approaches in the integration of the system are investigated and discussed and

their general trends, trade-offs, and constraints are highlighted. Based on that analysis and constraints of

this project, integration of the models that were designed and implemented in previous chapters is pre-

sented here as a case study in section 7.3. A final experiment is reported and the practical considerations

are discussed at the end.

7.1 General Design Factors
Most of the design factors are investigated and covered in the previous chapters in the context of each

one of the neuron, cortex, and evo-devo models. The only design factors that are left to be discussed

in the context of the system integration are related to where these models interact with each other, or

those factors that depend on the system application. For example the fitness function selection, fitness

evaluation process and its partitioning between software and hardware are questions that arise in the
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system integration step. Figure 7.1 illustrates an abstract data flow diagram of the system, showing

the interactions between different models and how both the developmental model and fitness function

evaluation module can be implemented in any mixture of hardware and software. The integration of

the cortex and neuron models, which are both implemented in hardware, is already covered in chapter

5. Similarly, the evolutionary and developmental models were investigated as an integrated evo-devo

model in chapter 6. All the rest of the factors in the design and implementation of the fitness evaluation

and interaction of the models that are partitioned between hardware and software can impact both the

bio-plausibility and feasibility of the whole system. In the following, both bio-plausibility and feasibility

related factors and constraints are highlighted in turn.
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Reconfiguration
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and Activity
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Response
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Genome Developmental
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Figure 7.1: An abstract data flow diagram showing the interactions between different models in the system and demon-

strating the hardware-software partitioning problem.

7.1.1 Bio-plausibility Related Design Factors

Both the bio-plausibility of the means of interactions between system models and modules and the bio-

plausibility of the fitness evaluation process can affect the bio-plausibility of the whole system. In

general, it is desirable to imitate the same structure of the biological systems in the interactions of the

models. However, this can lead to a structurally very complex system in case of fitness evaluation

module.

The fitness is not an explicit measure in biology. Many processes are involved in the interactions of

an organism with the environment and other organisms that affect its chance of reproducing offspring that

can transfer its genetic heritage to the future generations. The structural accuracy of the fitness evaluation

mechanism and its compatibility with the biological models available [165] are desired. However the

focus here is on the factors in the design of that part of the fitness evaluation processes that must be
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implemented in hardware. The other factors lie in the domain of an evolutionary model that is not

constrained by the limits of hardware implementation, which has been the subject of research for a long

time with a plethora of literature already available [165, 180, 302].

7.1.2 Feasibility Related Design Factors

Factors Affecting the Performance

The general performance of the whole system depends on the evolvability of the model and how many

evaluations are needed to find an acceptable solution for the application problem. But the time that each

fitness evaluation takes apart from the development and simulation times, also depends on the time for

communication between different models. Data transfer delays, overheads, and bottlenecks are major

factors in the total performance of the system as evo-devo systems usually need many many evaluations

to evolve something useful.

Factors Affecting the Hardware Cost

The interfaces between different models and modules of the system and also the hardware needed for

implementing the fitness evaluation module can all add to the hardware resources needed on the FPGA.

Hardware resources are limited and it is always desired to minimise the total hardware cost and specifi-

cally minimise the FPGA hardware resources need for the interfacing and fitness evaluation.

Factors Affecting the Reliability

Single points of failure, inaccuracies and errors in data communication can impact the reliability, robust-

ness and fault-tolerance of the whole system. Moreover, all different aspects of the reliability must be

considered in the design and implementation of the fitness evaluation module so that it not only impair

the reliability of the system, but also adds to its robustness. Insensitivity of the system to the noise in

the training data used for the fitness evaluation is a good example of the reliability factors related to the

system integration.

Factors Affecting the Complexity

The integration and the design of the fitness evaluation module need to follow a modular design approach

that produces a manageable and testable system. As already shown in previous chapters, testing bio-

plausible systems turns into a major issue as their complexity grows. A modular design allows us not

only to test and verify the modules separately, but also perform integration tests and verifications for any

two of the integrated modules separately.

Factors Affecting the Scalability

Anything in the integration of the system that causes the performance, hardware cost, complexity, or

reliability of the system to be significantly impacted by growing the size of the cortex or the complexity

of the problem must be avoided.

7.2 General Design Options
Figure7.2 shows a flowchart of the system processes in its abstract and general form. Although these

steps are not necessarily executed sequentially as shown in this flowchart, it helps to analyse how the
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whole system can work. Each one of the main processes in this flowchart and some very general options

are briefly discussed before focusing on the details.

Initial Configuration

At the system start-up, the FPGA chip needs to be configured using the initial configuration bitstream.

This bitstream can be stored in the PC storage or in a non-volatile (e.g. EPROM or flash memory on the

FPGA board or on the FPGA chip. In case of using a host PC for initial configuration, it can be carried

out simply by running a standard console application (usually provided by FPGA manufacturer) on the

PC. During this process, the FPGA will be programmed to create the hardware of the cortex and any

embedded soft processors or IO circuitry needed in the FPGA. After this stage, the FPGA will be ready

for evolution. The speed of this initial configuration is not critical as this is only performed once in an

evolutionary run.

Evolutionary Process

The evolutionary algorithm starts either with a population of random genomes or is seeded using a set of

pre-evolved (or hand-crafted) genomes. Each individual solution is initially developed for a number of

development cycles (see Initial Developmental Process below). The resulting developed neural micro-

circuit will be translated into reconfiguration data (see Reconfiguration Process below) sent to the FPGA

chip to route the neural microcircuit and set the cell parameters. Then, the neural microcircuit that is

configured in the cortex is simulated inside the FPGA. During simulation phase the stimuli (input vec-

tors to its inputs) is fed into the cortex and responses (output vectors) and activity data are received from

it (see Neural Simulation Process below). Optionally, the activity data can be used in the next activity-

dependent development (see Activity-dependent Development Process below) cycle followed by another

cycle of reconfiguration and neural simulation. These cycles of development, reconfiguration and simu-

lation can repeat for a number of times. Finally, the cortex responses are used to calculate the fitness of

the microcircuit (see Fitness Evaluation Process below). Each new individual in the population will be

developed, reconfigured, simulated and evaluated in this way, and the next generation of microcircuits is

reproduced based on the fittest individuals as explained in the previous chapter.

Initial Developmental Process

Each individual can be developed initially for a number of development cycles. This is similar to initial

development in biology before any activity-dependent development and plasticity takes place in the

nervous system. The number of initial development cycles can be fixed or evolved (for example using

the global concentration of a specific protein, or directly encoded into the genome). Developmental

process generates cortex reconfiguration data that set the cell parameters, and routing resources in the

cortex.

Reconfiguration Process

The configuration data from the developmental process is sent to the reconfiguration process. This

process comprises putting the FPGA in reconfiguration mode, translating the cortex reconfiguration data

from developmental process into FPGA reconfiguration commands, and reconfiguring the FPGA.
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Figure 7.2: Flowchart of the evo-devo neural microcircuits system
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Neural Simulation Process

The neural simulation process comprises initialising (for example resetting if needed) the cortex and

putting it in neural simulation mode and feeding the stimuli to the cortex and reading back the responses

and activity data. The stimuli can be generated dynamically or be stored in a memory (on a PC, the

FPGA board, or the FPGA chip itself). The response can be similarly stored in a memory or directly

sent to the fitness evaluation process. Depending on the neuron model design that may include an

unsupervised learning processes (such as Hebbian) in the synapse model, this simulation process can

perform unsupervised learning concurrent with the neural simulation. However, one type of activity

data that can be gathered from each synapse and sent to the developmental model during simulation is

statistics of the relative timing of the pre and postsynaptic action potentials. This data can be used by an

activity-dependent evo-devo model to evolve effective unsupervised learning strategies for adapting the

synaptic weights and network architectures.

Activity-dependent Developmental Process

Very similar to the initial development process, the activity-dependent developmental process can also

use the activity data from the cortex to control the local concentrations of few proteins during a number

of developing cycles. This process can be optionally used in the system where simulation and devel-

opment processes are concurrently (or alternatively) executed. This is similar to the activity-dependent

development in biological organism reported as in phenomena such as ocular dominance plasticity and

spontaneous neural activities in mammalian visual cortex [187]. This may be particularly effective in

efficient use of the limited resources in the cortex, for instance where only some of the IO cells are

carrying information in a specific application.

Fitness Evaluation Process

This process comprises analysing the cortex response to calculate a fitness value that based on the sys-

tem application shows how well the evaluated microcircuit can tackle the application problem. This

process might also use a supervised learning method for transforming the cortex response to a set of

outputs required for solving a classification or regression problem. The fitness can be also affected by

the simulation time or development time if needed. This process is discussed in detail in section 7.2.2.

Most of the above processes are discussed separately in previous chapters when each one of the

system models are investigated. Figure 7.1 shows an abstract data flow diagram of the models in the

system and how they need to interact with each other. To integrate the system, apart from designing

and implementing these means of interactions, the fitness evaluation module must be also designed

and implemented. As it is shown in figure 7.1, interactions between the fitness evaluation module,

evolutionary model, and developmental model that is already covered in the previous chapter and are

implemented in software is not the focus here. Similarly, the interactions between the cortex and neuron

models, which are both implemented in hardware, are already discussed in chapter 5. The following two

functions are left to be investigated and different approaches towards design and implementation of each

one are explored in detail in the following sections:
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1. a. Interactions between two partitions of the developmental model that can be implemented in

hardware and software, and

b. The interactions between the developmental model and the cortex model including sending the

reconfiguration data to the cortex and receiving the activity and health information from the cortex.

2. Fitness evaluation module and its interactions with the cortex that include sending stimuli to the

cortex and receiving the response from it.

7.2.1 Developmental Model Partitioning

As discussed in section 6.2.4, the evolutionary model should be implemented in software. However,

depending on many factors discussed in that chapter, some of the processes in the developmental model

might be better implemented in the same FPGA as the cortex model. The developmental model receives

a single genome for each individual. This genome will be then translated (mapped) into a dynamical sys-

tem (GRN) that iteratively changes the state of different cells, producing different cortex configurations.

At one or many stages, the cortex model needs to be reconfigured according to these configurations.

Two different parts of the developmental model (mapping and GRN) can be both implemented in hard-

ware, both implemented in software, or only the mapping implemented in software. Integration of the

developmental model internal modules is discussed here in every one of these situations.

Hardware-based Developmental Model

In this case, both mapping and GRN modules of the developmental model are implemented in hard-

ware. The developmental model residing in the FPGA needs to receive a genome from the evolutionary

model, which is implemented in software. A genome is a relatively short string of numbers in its very

compact form. Bandwidth between the software and hardware in this case is not a critical factor in the

performance of the whole system and therefore it does not require a very high-speed data link between

the software running on the PC and the hardware in the FPGA. However, as discussed in the previous

chapter, depending on the complexity of the mapping algorithm, implementing the mapping in hardware

may significantly add to the hardware cost on the FPGA while it may have marginal or no performance

benefits for the whole system.

When both modules of the developmental model are implemented in hardware, the interactions

between the developmental and cortex models also take place in hardware. This will be most benefi-

cial when the dynamical system (GRN) module is distributed and replicated for each cortex cell and

the reconfiguration and activity data can be locally communicated between developmental and cortical

parts of each cell using a virtual FPGA method as discussed in chapters 5 and 6. However, when the

GRN is implemented in a single or in a few PEs, they may use a single reconfiguration port using a

dynamic partial reconfiguration method or a few separate custom reconfiguration ports using a virtual

FPGA method. In either case, the number and bandwidth of the reconfiguration ports can limit the re-

configuration speed. When using the dynamic partial reconfiguration method, employing lookup tables

and precompiled pieces of the reconfiguration bitstream stored in a small memory can help to speed up

the translation of the cortex reconfiguration data into FPGA reconfiguration data.
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Software-based Developmental Model

When all parts of the developmental model are implemented in software, the evolutionary model can

simply communicate with the developmental model inside the software partition. The only issue will be

the interactions between the developmental model, which resides in the software partition, and the cortex

model in the hardware partition. One side of this interaction is sending the reconfiguration data, which

also includes translation of the cortex reconfiguration data into FPGA reconfiguration data. Depending

on the partitioning and mapping if this translation process, there are a few options:

One option is that the translation is performed in software running on the same PC as the rest

of the developmental model is running. In this case the efficient general-purpose processor of the PC

can quickly translated the cortex reconfiguration data into an FPGA reconfiguration bitstream and send

it directly to one of the FPGA external reconfiguration ports. This limits the reconfiguration speed

by the external reconfiguration port bandwidth and the speed of the datalink between the PC and the

reconfiguration port. This can significantly impact the performance of the system as reconfiguration

bitstreams can be quite large and apart from the FPGA reconfiguration port limitations, a moderate

datalink such as a USB (Universal Serial Bus) can result in significant transmission time overheads.

This can be aggravated when FPGA configuration memory frames are needed to be read, modified, and

written back depending on the FPGA architecture and its reconfiguration bitstream format.

The other option is to implement the translation process in software, but map it to an embedded

processor in the FPGA. This processor can have direct access to the internal FPGA reconfiguration ports

on the chip that usually offer higher bandwidth than external off-chip reconfiguration ports. Although

an embedded processor (either a hard or soft IP core processor) is usually not faster than the high-end

PC processors in translating the data, since the cortex reconfiguration data is a much more compact

representation of the FPGA configuration than FPGA bitstream, less transmission overhead and latency

is expected. However, the actual trade-off between the translation and transmission times may vary

depending on different available FPGAs, embedded processors, and data links.

The third option is to translate the reconfiguration data in FPGA hardware. This is probably the

fastest method as only compact cortex reconfiguration data is being transferred and the translation is per-

formed by custom hardware in FPGA with direct access to the FPGA fabric and internal reconfiguration

ports. However, this requires more hardware resources than former methods due to the complexity of

the FPGA configuration bitstream formats. Again, employing lookup tables and precompiled pieces of

the reconfiguration bitstream stored in a small memory can speed up the translation processes in FPGA.

The health and activity data from the cortex model can also be transferred from FPGA to the PC

running the developmental model using the same datalink that is used for sending reconfiguration data.

For both FPGA reconfiguration and activity data, the size of the data that needs to be communicated over

the link between the PC and the FPGA is proportional to the area of the cortex and the solution will not

scale very well as the datalink bandwidth becomes a bottleneck when cortex size and number of FPGAs

are increased.
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Partitioned Developmental Model

A partitioned developmental model can allow a balance between scalability and efficiency. For example

the genome to GRN mapping can be implemented in software running on a PC while the GRN can be

implemented in hardware on FPGA. This can be a much faster approach as discussed in the previous

chapter. This, however, requires that only dynamical system (GRN) description to be transferred from

software partition to the FPGA. The interactions between the dynamical system and the cortex model can

be very efficient and local at the cell level inside the FPGA, particularly if a distributed dynamical system

is implemented with local reconfigurations using a virtual FPGA method. Partitioning the developmental

model at a point closer to the genome adds to the complexity and hardware cost of the developmental

model but allows more processes to be implemented in a distributed and parallel architecture that im-

proves scalability and performance as discussed in previous chapter. On the other hand, partitioning it

closer to the cortex model decreases the hardware cost by migrating more processes to software up to

the point that even the translation of the cortex reconfiguration data to FPGA reconfiguration data can be

done in software, although this could be on a PC or an embedded processor on the FPGA chip.

If the developmental model is partitioned so that the dynamical system is running in FPGA, the

size of the data communicated between the PC and the FPGA is fixed as only one copy of the dynamical

system (GRN) description needs to be send to the FPGA and used for all the cells and no activity or health

data is needed to be feedback to the PC since dynamical system use that data on FPGA itself. This allows

much more scalable solutions compared to a software-based developmental model or partitioning it at

the boundary of the dynamical system and reconfiguration data translation. Figure 7.3 depicts the trade-

offs in the partitioning of the developmental model and how different factors grow with the selection of

the partitioning boundary.

7.2.2 Fitness Evaluation Module

This module is responsible for generation and feeding the stimuli to the cortex model during simulation

of the neural processes and also receiving and analysing the responses of the cortex to the stimuli. The

fitness evaluation module produces a fitness value (or a set of values in case that the evolutionary model

supports constraints or multiple objectives). If activity-dependent development is used, this module must

also generate the stimuli during the simulation sessions needed for the activity-dependent development

iterations. The cortex response during these simulation sessions may or may not be used towards calcu-

lation of the fitness value. Fitness value calculation and its processes are highly dependent on the specific

application of the system. Here the focus is on those parts of the fitness evaluation module that may be

implemented in hardware. Therefore it is best to tackle the partitioning problem of the module first.

Hardware-software Partitioning

Two parts of the fitness evaluation that need to keep up with the neural simulation process are: send-

ing stimuli to the cortex, and receiving the responses from it. Although generation of input spikes and

detection of the cortex output spikes are normally carried out at a lower resolution than low-level neu-

ral processes (internal soma and synapse computations), large number of input and output signals can

significantly increase the required bandwidth. For example, a cortex that simulates equivalent of each
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millisecond of biological neuron activity in one microsecond (1000 times real-time speed), with 100 in-

put and 100 output signals with resolution of one sample per millisecond of activity, needs a bandwidth

of at least 100 mega bits per second in each direction. This bandwidth is proportional to the number of

signals and any bottleneck in these communications can impact the performance of the system. There-

fore, custom hardware encoder and decoder units (similar to IO cells in case study of chapter 5) that

can translate sparse spike trains into more compact representations (e.g. real or integer numbers) must

be used that scale with the number of cortex input-output signals. Such encoder/decoder units can sig-

nificantly reduce the require bandwidth and allow a general-purpose processor to generate and analyse

them. The stimuli can be generated dynamically at simulation time. It is also possible to store static

stimuli (such as input vectors from a dataset) in the memory and feed them to the cortex. This can be

done using hardware-based methods, such as DMA (Direct Memory Access), or using software running

on a processor on a PC, on the FPGA board, or on the FPGA chip itself. The cortex response can be

also analysed dynamically or simply stored in a memory and analysed at a later time or in a pipeline of

processes. In either way the bandwidth needed for communicating the data between the hardware parti-

tion and the software that analyses the data is a major factor that can impact the scalability, performance,

and hardware cost of the system. However, high-speed data transmission between digital devices is a

well-studied subject. Moreover, since FPGAs are heavily used in the telecommunication industry, they

usually feature the state-of-the-art high-speed interfaces as on-chip hard IP cores. In either way using

those interfaces add to the hardware cost. It is therefore preferable to analyse the cortex responses with

minimum communication between devices when possible. This depends on the complexity of the fitness

function that is highly dependent on the specific application. In the following, a few possible scenarios

and options are investigated focusing on the partitioning of this module.

The evo-devo neural microcircuit system can be applied to intelligent control, classification, or

regression problems, using a supervised, semi-supervised, or reinforcement learning method. In a su-

pervised learning approach, the evo-devo system can be responsible for evolving the initial weights but

then a traditional supervised RNN method be used for adjusting the weights during the simulation. This

requires a training dataset for learning and a testing dataset for evaluating the error rate. The testing error

can be used as a measure of fitness.

Another option is to take a Reservoir Computing approach. In this method, the evo-devo system

evolves the microcircuit and all its internal synaptic weights but a readout map (see section 2.4.4) is then

trained using a training set to obtain the desired outputs for a classification or regression problem. A

linear readout map of the form:

y = X · w (7.1)

(for regression or classification, based on the application) can be trained for every system output using

the training set to minimise the training error (||y − X · w||2). Here, X is a matrix constructed from

the cortex output vectors for different input vectors in the training set, y is the vector of labels (or

desired readout map output, in case of regression) and w is the vector of readout map weights. This is a

linear least-squares problem that can be solved by obtaining the pseudo-inverse of the matrix (X+) and
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calculating the right side of the equation:

w = X+y. (7.2)

This process can be deployed on a PC. However, as this solution must be repeated for all readout map

outputs and involves similar operations on potentially very large matrices, a GPU can also be used to

speed up the process. The testing dataset can be fed into the cortex and its output vectors processed

using this trained readout map. The output of the readout map can be then compared to the desired

output vectors of the testing dataset using the same least square error measure to calculate total testing

error. Then the fitness of the individual can be evaluated base of this testing error.

Both aforementioned methods require simulation of the microcircuit on both training and a testing

datasets. An alternative approach is to measure the separability of the cortex outputs on a single testing

set without any need for training the readout map. Since readout maps in RC approach are linear, a linear

separability measure can be used as the fitness measure. In a semi-supervised learning setting, optional

unsupervised learning processes (such as Hebbian) in the neural model (see chapter 4) can be used to

adjust some or all of the synaptic weights when the neural microcircuit is simulated on an unlabelled

training dataset and then evaluate its separability measure on a labelled testing dataset. In reinforcement

learning setting, there is no label for each input vector but responses of the cortex on a specify task can

be evaluated by award or punishment signals that can contribute to the fitness of the individual. This

setting may require the system to be embodied in the problem environment or the environment to be

simulated in sync with the cortex, which can be a problem given the high speed of the cortex. However,

the later method appears to be the most bio-plausible option as its structure is highly related to the

interactions of the individual organisms with their environment in biological systems. Again optional

unsupervised learning processes inside the neural model can be similarly used in the reinforcement

learning approach. In all the above methods and approaches, the spike encoding and decoding modules

are better to be implemented in the hardware and the matrix operations are better to be implemented in

software deployed to a PC with a suitable GPU.

7.2.3 Bio-plausible Methods to Reduce Evaluation Time

A bio-plausible method to reduce the evaluation time, is to have a variable number of development

cycles that can be adapted by the evo-devo system. The number of the development cycles or the actual

development processing time can contribute to the fitness of the individuals as a negative factor. This

allows the system to quickly evolve simple individuals in the beginning of the evolutionary run and then

increase the number of development cycles as the system needs to complexify the phenotypes to achieve

higher total fitness values. The development time can be encoded directly in the genome or be controlled

by developmental processes using a specific protein concentration or implicitly using energy methods as

in [80]. This method, apart from its performance benefits and being highly bio-plausible, is shown to

be able to improve the robustness and scalability of the individuals and their capacity to regenerate and

self-repair [80].

Similarly, the simulation time and size of the datasets used to evaluate individuals can be variable
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and increased using a progressive fitness function as in [337]. This method, apart from its bio-plausibility

and performance benefits, is also shown to be effective in improving the evolvability of evolutionary

methods for inference of Finite State Machines [337, 161] and neuro-controllers [104]. This method can

be particularly effective if it is possible to sort the testing dataset entries (or challenges in a reinforcement

learning approach) based on their difficulty. Most of these approaches and options, can have significant

impacts on the performance, and bio-plausibility of the system. However, they mostly belong to the

domain of evolutionary model and are not bounded by the limits of the hardware implementation in

FPGAs that is the focus of this thesis.

7.3 Case Study: System Integration
Given the results of the general investigation of the design factors, options, and approaches in the pre-

vious sections, here, a simple example of integrating the neuron, cortex, and evo-devo models (from

previous chapters) is presented as a case study for further investigation of the practical challenges, trade-

offs, and constraints of the integration of such bio-plausible systems.

7.3.1 Application Problem

A very simple problem is selected for this case study to reduce the time needed for design, verification,

and testing of the integrated system. The application chosen for this study is the temporal version of

the XOR problem previously used in studies on spiking neural networks [41]. The XOR problem is a

linearly-non-separable problem that requires hidden units to produce the correct outputs. Three inputs to

the Cortex are used in this problem. One input is used as the reference spike for measuring the timing of

the other spikes. It always fires once at time tr = 0. The firing time of the two other inputs (ta and tb)

can vary between 0 to 6ms. Only one of the Cortex outputs are used. The first firing time of this output

to is desired to be between 10 to 16ms governed by the following equation [41]:

to(ta, tb) = 10 +
6

1 + e−2(|ta−tb|−3)
(7.3)

Figure 7.4 shows a 3D plot of this function. This is an interpolated version of the XOR function

sampled at 1ms intervals of ta and tb. This interpolated XOR function is more complicated to evolve

than the binary version that only allows two different timings (e.g. t = 0 and t = 6) for each input spike.

Bohte in [41] trained a network of six neurons to generate this function.

7.3.2 System Overview

Figure 7.5 depicts the block diagram of the whole integrated system of this case study. The whole sys-

tem consists of two major hardware components: A PC and a Xilinx ML505 FPGA prototyping board.

Selection of this prototyping board and FPGA is already covered in chapter 3. These two main hardware

components are connected using a USB to JTAG adapter (Xilinx USB Platform Cable) that allows the

PC to configure the FPGA. The PC is also connected to the FPGA using a serial link that allows PC to

communicate with an embedded processor (MicroBlazeTM) on the FPGA chip for consecutive reconfig-

urations and response data transfer. Using a PC for the reconfiguration of the FPGA and running the
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Figure 7.4: A 3D plot of the desired output timing (to) as an interpolated XOR function of two input spike timings (ta and

tb).

evo-devo model processes is already discussed in chapters 5 and 6. In the following, different processes

of the system are explained step by step.

Overview of an Evolutionary Run

At the beginning of the system start-up, the FPGA chip needs to be configured using the initial config-

uration bitstream stored in the PC storage. During this process, the FPGA is programmed to create the

hardware of the Cortex, an embedded soft processor (MicroBlaze TM), and the needed IO circuitry (e.g.

UART- Universal Asynchronous Receiver/Transmitter) in the FPGA. After this stage, the FPGA starts

to work. The embedded system starts running its own program, which after performing self tests for its

peripheral devices, reports back to the PC using the serial link, signalling that it is ready for the Cortex

reconfiguration data.

After initialisation of the FPGA, the evolutionary algorithm starts. The details of the evolutionary

and developmental models are reported in the case study of chapter 6. The evolutionary process, which

was entirely implemented in software running on the PC, starts with an initial population of random

chromosomes. To evaluate the fitness of each individual solution, first it is developed for a fixed number

of development cycles with no activity-dependent development for simplicity. The resulting developed

neural microcircuit is then translated into a set of Cortex reconfiguration commands, ending with a simu-

lation command, sent to the embedded processor on the FPGA through the serial link. These commands

determine the routing information, synaptic weights for glial cells, and parameters for soma cells in a

compact format.

The embedded processor receives the Cortex reconfiguration commands, translates them into FPGA

reconfiguration commands, resets the cortex, and reconfigures the Cortex through ICAP using the dy-

namic partial reconfiguration method. Then the embedded processor enables the Cortex clock signal
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Figure 7.5: A block diagram of the integrated system of the case study showing the connectivity of the main components

(PC and FPGA) and mapping of the modules and processes to these components.

and starts to generate input spikes (stimuli) as the neural simulation process is running on the Cortex.

The embedded processor generates all the possible combinations of the ta and tb timings from 0 to 6ms

with 1ms steps (49 different combinations). The time-reference input and two inputs for XOR function

are fed into the Cortex through more than three inputs giving a wider range of neurons in the Cortex

access to these input signals. These three input signals were fed into IO cell numbers (2,3,4), (6,7,8),

(10,11,12), (14,15,16), (18,19,20), (22,23,24), (26,27,28), (30,31,32). The output was received from the

IO cell number 4. To help the evo-devo model to locate these input and output cells, a maternal factor

protein was added to the developmental model and its concentration was set to 1.0 in IO cell number 4

at the beginning of the development. This allows the developmental process to generate non-symmetric

positional morphogens in the vertical direction of the Cortex. All IO cells have their own maternal fac-

tors as explained in chapter 6. The embedded system feeds the input spikes to the IO cells and reads the

spike counter register of the 4th output every 40 clock cycles, which is assumed to be equal to 1ms of a

biological neurons activity. The embedded processor records the timing of the first spike in the output

(with 1ms resolution) during 255 × 40 clock cycles for every combination of input spike timings (49

combinations). These 49 timing values are sent back to the PC through the serial link. If a microcircuit

does not generate any spikes in the output for a timing combination, the maximum output timing (255)

is assumed. The rest of the fitness evaluation module, implemented in the software running on the PC,

receives these timings from the Cortex (tc) and compares them with the desired timings (to) of equation

7.3 using a root mean squared error of the form:

Error =

√√√√ ∑
ta,tb∈{0..6}

(tc − to(ta, tb))2

49
(7.4)

The individual’s fitness is then calculated as:

Fitness = 255− Error (7.5)
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This fitness value is then used by the evolutionary algorithm for that individual. This evaluation

process is repeated for fitness evaluation of each individual in the evolutionary algorithm. The same

evolutionary algorithm of previous chapter is used here.

7.3.3 Detailed Design

Detailed design steps of different parts and processes of the system are reported here. First the details

of the initial reconfiguration of the FPGA and the serial link between the PC and FPGA are discussed.

The minimum required changes in the developmental model to tackle the case study application problem

and its partitioning is explained next. The Cortex reconfiguration process, neural simulation and fitness

evaluation processes are covered at the end before discussing the details of the implementation in the

next section.

Initial FPGA Configuration

This initial configuration is simply carried out by running the standard console application (IMPACT -

provided by Xilinx as part of their ISE FPGA Design Suite) on the PC. The communication is through

the USB-to-JTAG adaptor (USB Platform Cable - provided by Xilinx). The program for the embedded

processor is written to the block RAMs used by the embedded system available in the FPGA fabric. This

is done by adding the program binary to the bitstream file using Xilinx tools before reconfiguration. The

USB-to-JTAG adapter provided by Xilinx, is capable of programming FPGAs through a JTAG interface

with a maximum clock frequency of 24MHz, resulting roughly a band width of 24Mbps. However,

the JTAG boundary scan chain (a series of devices connected serially to be programmed using a single

JTAG port) in the ML505 board does not support speeds higher than 6MHz. This appears to be due to

the existence of a peripheral chip with that limitation in the chain. Although this effectively degrades

the reconfiguration speed through PC by a factor of four, since this initial configuration is performed

once at the beginning, it is not a critical performance factor. This JTAG link is also used for debugging

the software and hardware of the embedded system using Xilinx tools. It is also possible to program

the flash memory available on the FPGA prototyping board once and then every time that the FPGA is

powered up, it will automatically reconfigures itself. However, as the embedded system program needs

to be modified and debugged repeatedly during the study, this option is not used.

Serial Link

Apart from the USB-to-JTAG connection between the PC and the FPGA board, there is also a data link

needed for communicating the Cortex reconfiguration and simulation commands and Cortex activity and

response data. Although the ML505 sports a number of very high speed interfaces such as PCI Express

and 1Gbps Ethernet, for simplicity in the design and saving in implementation and testing time, a UART

(Universal Asynchronous Receiver/Transmitter) is used. This IO module is already available as an op-

tional peripheral for the MicroBlazeTMembedded system in the FPGA. It can work at up to 9600000bps.

Design and implementation of a high-speed PC-FPGA link is a usual engineering task that is not the sub-

ject of this study. As the system is supposed to be robust to a small amount of communication noises and

bad timings, a simple hand-shaking and checksum error detection protocol is used for communication
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between two devices.

Developmental Process

Each individual is only initially developed for a fixed number of development cycles to obtain active mi-

crocircuits and no activity-dependent development is used to keep the system simpler and faster. More-

over, the Cortex and Digital Neuron designed in the previous chapters lack any activity feedback mech-

anism that could send data to the developmental model. The number of initial development cycles are

fixed for simplicity. The developmental model is same as the one explained in chapter 6, implemented

in software, running on the PC.

The developmental model of the previous chapter lacks a mechanism for developing the synaptic

weights. Fixed values are used in that model. This feature is included in the developmental model

by adding a pair of synapse weight factor protein types (pre and post synaptic weight factors) to the

developmental model. The synaptic weight Wjkl in each glial cell l between axon j and dendrite k is

calculated using the equation:

Wjkl = tanh (100

L∑
i=1

V aji · V dki · V mli

L
) (7.6)

where V aji , V dki , and V mli are representing the ith value in the pre and post synaptic weight compound

proteins (of the axon and dendrite mother cells) and compound protein (in the glial cell) shapes. This is

very similar to the way that synapse formation probability is calculated but the coefficient and constants

are selected in a way that the weight is in range [−1, 1] instead of the range [0, 1]. These synaptic weight

values are then multiplied by 32767 to expand them to the full range of the possible synaptic weights

in the Cortex. The hyperbolic tangent function allows the weight values to be distributed suitably while

also smoothly cropped over the required range.

Also, for simplicity, the soma cell parameters are not evolved and set to fixed values for all the

neurons in the cortex. However, a group of protein types and protein interactions similar to the mech-

anism used for synaptic weights can be added to the developmental model to allow these parameters to

be controlled by the evo-devo model.

At the end of the developmental process, the results are translated into simple Cortex reconfiguration

commands. These commands are formatted based on Cortex columns so that one single command

is followed with the routing data, synaptic weights, and soma parameters for all the cells in a single

column of the Cortex. This allows to reduce the data transfer overhead by using large packets of data.

Also, instead of translating the Cortex reconfiguration commands to FPGA reconfiguration commands

on the PC, it is performed on the embedded system due to the relatively low speed of the serial link.

Reconfiguration Process

The Cortex reconfiguration (and simulation) commands from the PC are received by the embedded

MicroBlazeTMprocessor in the FPGA. This process is responsible for disabling the Cortex clock and

reseting the Cortex cells (as explained in chapter 5) and putting the FPGA in partial reconfiguration

mode, translating the commands into configuration memory frames (using lookup tables) and partial
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reconfiguration of the FPGA through the ICAP (Internal Configuration Access Port) available in the

FPGA. To speed up this process all the Cortex cells in a column are reconfigured by one command with

all the data included in a single packet. This allows the embedded system to reconfigure FPGA frames

in an efficient manner (as explained in chapter 5).

Neural Simulation and Fitness Evaluation Process

A simulation command can follow a Cortex reconfiguration command. It initiates the simulation process

that consists of enabling the Cortex clock, which effectively starts the neural simulation. Then after a

short time the embedded processor starts writing the stimuli spikes to the spike generator registers and

reading from spike counter of the output (once every 40 clock cycles). The timing of the program can

be adjusted by adding NOP commands to the loop in the embedded system program. However, no NOP

instructions were necessary for a timing of 40 clock cycles. For every one of the 49 combinations of

the input timings the time of the first output spike is stored in the embedded processor memory. If the

microcircuit does not generate any spike in the output, a maximum delay (255ms) is assumed. These 49

timings are then sent to the PC in a single packet in response to the simulation command. The neural

simulation process includes realtime stimuli generation, and encoding and decoding of the spikes to/from

spike timing that reduces the amount of transferred data between the FPGA and PC as the serial link is

fairly slow. With some small changes in the design of the spike counters and spike generators in the IO

cells of the Cortex it would be possible to perform the spike time decoding and encoding in the hardware.

However, in this case, the embedded processor is able to keep up with the Cortex simulation speed.

The rest of the fitness evaluation process is performed on the PC in software. The output timings

of the neural microcircuit, received by the PC are used to calculate the fitness of each individual using

equations 7.4 and 7.5.

7.3.4 Implementation

The hardware is mostly the same hardware implemented, tested and used in the previous chapter com-

prising of the following IP cores from Xilinx:

• MicroBlaze processor core

• Processor Local Bus (PLB) 4.6

• two Local Memory Buses (LMB) 1.0

• Block RAM (BRAM) memory unit

• two LMB BRAM Controllers

• XPS UART (Lite)

• Clock Generator

• MicroBlaze Debug Module (MDM)

• Processor System Reset Module
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• FPGA Internal Configuration Access Port

plus the Cortex IP core that was implemented and tested in chapter 5. Using Block RAMs for the data and

program storage of the embedded processor allows the MicroBlaze to run at high speed without using a

cache. The spike generators and counters of the Cortex IO cells are connected to the processor using the

processor local bus that allows maximum speed in writing and reading to/from the Cortex input/outputs.

Eight of the cortex input/output spike signals, clock, reset, and eight of the dendritic signals at the left

edge are also connected to the ML505 edge connector for debugging purposes.

The majority of the software is already implemented in case studies of the previous chapters for

testing and verification of the Digital Neuron, Cortex, and the Evo-devo model. The major addition is

the fitness evaluation process that is added as a small routine running on the embedded processor in a

loop that receives the reconfiguration and simulation commands and a small function in the PC software

that calculates the fitness and assigns it to each individual in the evolutionary algorithm. As explained

in the previous sections, some limitations in the simple developmental model of chapter 6 called for

small modifications in the proteins such as adding an extra maternal factor for vertical asymmetry in

the Cortex, and adding a synaptic weight protein and its interaction with other proteins. The program

for the embedded system and for the PC are written in C and C++ respectively. The C++ program is

also linked with a Matlab engine that allowed for easy visualisation of the results and statistical analysis

during design, verification and experiments. The visualisation functions are able to visual a microcircuit

in the Cortex, the synaptic weights of the different glial cells, protein concentrations, the progress of

the population fitness during evolution and the output timing of the evolved microcircuit agains its input

timings among other model variables. Every time that a better solution is found or every few generations

the best neural microcircuit found so far and its evolved XOR function are visualised. To be able to

measure the performance of each process in the software, it is implemented in a sequential fashion on

the CPU rather than using multi-treaded or GPU implementations.

7.3.5 Verification and Testing

Although most of the system modules were already verified and tested they needed to be tested after

integration. First the neural simulation process and fitness evaluation were tested using a single neuron

reconfigured with parameters with known behaviours. This single neuron was supposed to determin-

istically and consistently behave as a regular excitatory neuron in consecutive simulation runs. It was

revealed that after the first simulation run the result of the successive runs were depending on the timing

of the simulation commands and sensitive to the workload of the PC. This could lead to a large amount of

randomness in the fitness evaluations. To avoid this problem after a reconfiguration command that resets

the Cortex to its initial state and receiving a simulation command, the embedded system were running

through a complete set of simulation runs (49 timing combinations) in a deterministic manner and inde-

pendent of the PC. The consistent timing responses and fitness values in repetitive reconfiguration and

fitness evaluations of the same phenotype was tested and verified at different stages on a single neuron

and completely developed and evolved microcircuits.

There were also confusions about the Cortex input/output signals numbering and their memory
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mapping in the embedded system causing inconstant timing and fitness results that were resolved and

verified with low level signal monitoring and crosschecking the results on the PC and hardware. The

expected output timing of the simple phenotypes, which directly connected an input to the output was

also verified to insure the correct input and outputs of the Cortex are used in the evaluation process.

The use of PC to FPGA connection for configuration of the Cortex was already tested and verified

in chapter 5 through comprehensive test cases. A set of self tests for the embedded system, the UART,

the Cortex configuration and fitness evaluation modules were added to the programs on the embedded

system and the PC to make sure everything was working as expected at the beginning of each experiment.

It was again noticed that the richness and complexity of the system allows it to appear to work

although it may need parameter tuning and corrections. Therefore each model, module and process was

separately examined and checked using debugging and visualisation tools available in the Visual Studio

IDE and Matlab engine. For example, although in the preliminary tests the system appeared to evolve

towards desired microcircuits, further investigation of the synaptic weights showed that the system is

barely able to produce any large positive synaptic weights. This was then corrected by changing the

constants to their current values in equation 7.6 and visualising the distribution of the synaptic weights

given randomly generated compound protein shapes (V aji , V dki , and V mli ). The functionality of the

integrated system was verified and tested as far as the time constraint of the project allowed before

starting the final experiments.

Preliminary experiments showed that, in the beginning of the evolutionary run, the randomness in

the developmental process was high. This led to very fit individuals with unfit offspring. This was con-

firmed by developing the fittest individual of the population a few times and observing highly different

fitnesses. This was due to the stochastic nature of the gene expression in the developmental model that

can be regulated by evolutionary model when robust pathways are needed. However, a population dom-

inated by such highly fit but unstable individuals can stagnate the evolution as they can not produce any

really fit and stable offspring to replace them. The evolutionary algorithm used here (and in previous

chapter) has a lifespan for each individual to deal with such a randomness in fitness evaluation (including

randomness in development). To deal with this randomness, the lifespan parameter of the evolutionary

model was reduced to 5 generations to make the evolutionary algorithm less elitist. The positive effect

of this change on the speed of evolution was quickly observed in the preliminary experiments. However,

it was noted that the parameter tuning of such a system requires a long and thorough statistical analysis.

Also, it was revealed during the preliminary experiments that the evolution tended to quickly con-

nect one of the inputs to the output and achieve a fairly high (but not perfect) fitness value that was

independent of developing any neural microcircuit, effectively decoupling the fitness value from the

properties of the developed microcircuit. This caused a very rugged fitness landscape and crippled the

evolution. This was overcome by adding a constraint to the fitness function that required causality rela-

tions between the input and output spikes and avoided such shortcuts to be evaluated incorrectly. This

was accomplished by setting the timing of the output spike to 255ms (maximum) every time the output

fired before 10ms.
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7.3.6 Experiment

The aim of this experiment is both to demonstrate that the integrated case study system is relevant as it

can evolve neural microcircuits on FPGA towards a desirable functionality and to investigate some of the

challenges, trade-offs, and limitations in running such a bio-plausible system in applied or experimental

settings.

In this experiment the integrated system was set up to evolve an interpolated temporal XOR function

as explained in section 7.3.1. All the soma parameters were fixed at a set of parameters for regular spiking

neuron (the same that was used in the Cortex selftest routine). These parameters and all the other system

parameters used in this experiment are reported in table 7.1.

Table 7.1: Parameters and settings used in the experiment.

Parameter or setting Value Unit

Cortex size 12x120 Grid cells

Number of neurons 120 Neurons

Neuron placements configuration II (in figure 6.13) -

Soma tap parameters -4,-4,-3,-3,1,1,4,4 -

Soma Vreset parameter -16000 -

Soma Vstart parameter 0 -

Soma Vbias parameter 2030 -

Development length 20 Cycles

Protein length (L) 50 -

Initial chromosome length 10 Genes

Maximum chromosome length 50 Genes

Population size 40 Individuals

Selection size (n) 16 Individuals

Generation size (m) 32 Offspring per generation

Life span 5 Generations

Crossover probability 1.0 (always) Per pair of parents

Creep mutation probability 0.05 Per locus

Gene addition mutation probability 0.5 Per chromosome

Gene deletion mutation probability 0.5 Per chromosome

Gene duplication mutation probability 0.1 Per chromosome

Number of generations 500 -

Number of runs 1 -

An evolutionary run of 500 generations (16008 evaluations) was carried out and best and average

fitness of the population, the population average chromosome length, and the chromosome length of the
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best individual were recorded in each generation. Moreover the neural microcircuit of the best individual

and its output spike timing against the input spike timing were visualised.

Results

Figure 7.6(top) shows the best and average fitness of the population during 500 generations of the evo-

lutionary run. Figure 7.6(bottom) shows how the chromosome length of the best individual and its pop-

ulation average were changing during the evolutionary run. The effect of the randomness in the fitness

evaluation causing a highly fit but not evolvable individual in the beginning of the run and its deletion

after few generations is evident in the fitness curve. The convergence of the average fitness to the best

fitness shows how evolution was able to produce robust pathways for development of the microcircuits

that not only are robust to the randomness of the developmental process, but also robust to the mutations

in the genome. The population average chromosome length shows a consistent increase during evolution

that can be a sign of complexification. It appears that when system reaches the point at which it can not

evolve any fitter microcircuits, it starts to reduce the chromosome length. This reduction can also reduce

the total number of mutations in a genome.

After 500 generations the input-output spike timing diagram of the the fittest individual (shown in

figure 7.7), although not perfect, clearly resembles the target timing (figure 7.4). Figure 7.8 presents a

visualisation of the connectivity and synaptic weights of the fittest individual after 500 generations along

with a close-up of the top and bottom parts of the Cortex that are involved in the active part of the evolved

neural microcircuit. Closer examination of the evolved microcircuit revealed that only six neurons are

involved in the generation of the output signal (highlighted with a green rectangle). Slightly different

synaptic weight patterns are evident in this area of the Cortex. It shows how, the number of synapses,

their weights, and length of the dendrites and axons are used by evolution to achieve the desired effect.

Experiment results demonstrated successfully that the integrated system is able to evolve micro-

circuits towards the desired behaviour and that the case study system is relevant as an example of bio-

plausible evo-devo neural microcircuits on FPGA for investigation of the challenges.

7.4 Practical Considerations
The processing time of different processes in the system were measured during the evolutionary run.

Figure 7.9 shows the breakdown of the total evaluation time for each evo-devo neural microcircuit. Each

evaluation takes between 600 to 700ms depending on the complexity of the development task using a

2.4GHz i5 Intel PC. About 222ms was spent for the Cortex reconfiguration. Only about 5ms of the

evaluation time was spent for neural simulation. This is due to the fact that the application problem to

be solved here is very simple and the data set is very small. This application problem can be tackled

with few neurons, while the size of the Cortex used is 10 to 30 times larger than what is required. This

issue can be addressed in a few different ways. One is to limit the developmental processes to the used

cells of the Cortex. This can effectively reduce the development time. However, a similar change in the

reconfiguration process requires modifying the Cortex reconfiguration command formats that are based

on Cortex columns. A more bio-plausible approach would be to allow the size of the available cortex to
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Figure 7.6: Top: Fitness of the best and population average during an evolutionary run against the number of evaluations.

Bottom: Chromosome length of the best individual and population average against the number of evaluations during the

same evolutionary run.
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Figure 7.7: The input-output spike timing of the fittest evolved neural microcircuit, which clearly resembles the target

timing (figure 7.4).

grow through evolution, controlled by a protein concentration or a separate protein interaction designed

for this purpose. However, there must be an evolutionary pressure for smaller Cortex sizes.

The Reconfiguration of one individual and development of the next individual can be processed in

parallel on two different PC cores. In this case study design, such a multithread programming can reduce

the evaluation time significantly. The reconfiguration time can be also reduced by using a faster datalink

between the PC and FPGA, a faster embedded processor, and a faster HWICAP core. About half of

the reconfiguration time is spent for communication between the PC and FPGA and the rest is spent

for translating the reconfiguration commands and communications with the FPGA ICAP port. Using a

faster HWICAP IP core is already discussed in chapter 5. Here, possible quick changes in the system

integration that can lead to faster reconfiguration are discussed briefly.

With spending more time it may be possible to use the same 6Mbps USB-to-JTAG interface to em-

ulate a serial link for the embedded processor using the debugging tools provided by Xilinx that might

improve the communication speed. The nominal speed of the USB-to-JTAG (6Mbps) could be also im-

proved to a nominal 24Mbps by bypassing the limiting device using a short wire soldered between two

pins on the board. These two modifications can effectively improve the Cortex configuration time by a

factor of 20 or more. After these changes, experiments may reveal that moving the whole reconfiguration

process to the PC (using the JTAG interface at 24Mbps) is faster than the current design since the embed-

ded processor is much slower than the PC processor in translating the Cortex reconfiguration commands.

This decision obviously depends on the speed of the PC, embedded processor, datalink between the PC

and FPGA, and the ICAP reconfiguration port of the FPGA.

Although the MicroBlazeTMembedded processor could run at a maximum speed of 250MHz it was

sharing the same clock signal of the Cortex at a frequency of 104.5MHz. This frequency was selected to
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Figure 7.8: The best evolved neural microcircuit after 500 generations. The whole Cortex is shown in the middle, the

synaptic weights on the right, and the details of the top and bottom part of the cortex are shown on the left. A, B, R, and

O, represent the three input signals with timings ta, tb, and tr = 0, and the output signal of the microcircuit respectively.

The evolved microcircuit uses the wraparound signals that connect top and bottom of the Cortex. The top and bottom part

of the Cortex are magnified and put back together to show the active parts of the microcircuit (highlighted with the green

rectangle).
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Figure 7.9: The breakdown of the average 652ms total evaluation time of the evo-devo neural microcircuits with 20 devel-

opment cycles.

reduce the communication error rate of the UART. However, it would be possible to use separate clock

signals for the Cortex, embedded processor, and the UART or any other communication device that is

used to communicate with the PC. This allows to focus on the bottlenecks in the system and speed them

up even if the other parts are limited by their own constraints.

It also appeared that a large number of generations in an evolutionary run are spent only for evolv-

ing robust, stable, and useful pathways and modules in the GRN that can support the development of the

required microcircuits. There are a few ways to mitigate this problem. One is to use a seed population

that already contains some useful GRN modules and pathways that can be reused in evolving micro-

circuits. Another way is to reduce the number of development cycles. As a shorter development time

exposes development to less randomness, generally it is expected to result in a more stable development

than longer development times. However, this reduces the ability of the system to develop complex phe-

notypes that need longer development times. A bio-plausible solution to tackle this problem is to allow

the number of development cycles to be evolved and to add an evolutionary pressure towards shorter

development cycles. This can be achieved by direct or indirect coding of the number of development

cycles in the genome or by implicitly controlling it through the developmental process itself as in [80].

An evolutionary pressures towards shorter development and smaller cortex sizes is bio-plausible as both

of them require time, energy, and materials in a physical environment. One simple and bio-plausible way

to implement this pressure is to use the development processing time of each individual (on the realtime

clock) as a measure to delay the introduction of the individual to the population. However, such methods

are part of the evolutionary model running in the software and are not the focus of this study. Another

parameter of the evolutionary system that can be left to evolution to tune is the lifespan, which was fixed

to five generations in the above experiment.

To improve the ability of the system to evolve perfect solutions, one may consider removing the

limitations imposed on the system by fixing the soma parameters and keeping the number of Cortex

clock cycles for equivalent of 1ms neural activity at a bare minimum of 40. As explained in chapter 4

and 5, the neuron model needs 18 clock cycles plus the number of pipeline flip-flops in its dendritic loop

to complete one update cycle. With the extra 10-bit shift register and six internal pipeline flip-flops of
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the soma cell added in chapter 5 to insure the minimum dendritic loop length, this value increases to 38

clock cycles with no dendritic growth. Every dendrite growing one cell away from the soma adds one

clock cycle to this value. Therefore, it appears that a larger number of about 70 cycles and ability to

evolve soma parameters can give the required accuracy to the neurons to generate spikes at the right time

and evolving perfect neural microcircuits. With a clock frequency of 104.5MHz and 70 clock cycles for

simulation of 1ms of biological neuron activity, this system will be still able to achieve a speed 1500

time faster than realtime simulation of biological neurons with 1ms resolution.

One of the practical challenges in the design and testing of bio-plausible evo-devo models is the

effect of the richness of the model on its response to bugs and errors. Such models are so rich and robust

that making small mistakes in the design or coding does not totally cripple the system. Although the

model might not perform as well as it can, it still works and it is very difficult to do end-to-end tests on

them. Moreover, tuning the parameters of such systems requires long and tedious evolutionary runs and

carefully designed statistical analysis. The modular design of the system allowed to test and tune some

of the parameter and constants at the lower levels (e.g. synaptic weight behavioural protein interaction

constants) but tuning higher level parameters (such as evolutionary model parameters) remained to be

tuned through statistical analysis.

7.5 Summary
Figure 7.10 shows a graphical representation of the investigations carried out in this chapter. First in

this chapter the general impacts of the integration of the different system models and modules on the

bio-plausibility and feasibility of the whole system were highlighted. Then the general design factors

and constraints that can affect the bio-plausibility, performance, hardware cost, scalability, reliability,

and complexity of the system were discussed in the context of the system integration. Different mod-

ules, processes, and functions of the system and their interactions were reviewed. Partitioning of the

fitness evaluation and developmental processes between hardware and software, and the mapping of the

partitions to the PC and FPGA were discussed and different approaches and their challenges, trade-offs,

and limitations were discussed.

As a case study, all the models designed, implemented and tested in the previous chapters, along

with a simple fitness evaluation module were integrated into a complete system to solve an interpolated

temporal XOR problem with three inputs and one output. Design, implementation and testing of the

case study system and their challenges were reported. A final experiment was successfully carried out

to validate its relevance and to further investigate the practical challenges in the integration and applying

the system to an experimental problem.

Effects of the PC, embedded processor, datalink, and reconfiguration port speeds on the reconfigu-

ration and evaluation speeds, and performance of the whole system were discussed. Limitations of the

case study design and implementation were investigated and highlighted. Also some bio-plausible op-

tions to resolve the limitations and to improve the evaluation speed and total performance of the system

were suggested. It was noted that the complexity of such bio-plausible systems complicates the system

verification and makes parameter tuning very time consuming. The modular design of the case study sys-
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tem reduced the testing complexity and allowed to find some useful parameter settings quickly in case

of lower level processes. It was also suggested in the final practical considerations that bio-plausible

approaches may help to reduce the need for tuning some of the evo-devo model parameters such as

individual lifespan, development time, simulation time, or the cortex size.

The successful experiment on the integrated system showed its ability of evolving microcircuits

towards the desired behaviour and validated its relevance for practical investigation of the challenges as

an example of bio-plausible evo-devo neural microcircuits on FPGAs.



7.5. Summary 268

System Integration

Analysis of Bio-plausibility
Related Factors

Analysis of Feasibility
Related Factors

Analysis of General
Design Options

Developmental
Model Partitioning

Software-based
Developmental

Model

Hardware-based
Developmental

Model

Partitioned
Developmental

Model

Fitness Evaluation
Module

Bio-plausible Methods
to Reduce

Evaluation Time

System Integration
Case Study

Application
Problem

System
Overview

Detailed
Design Implementation

Verification
&

Testing
Experiment

Practical
Considerations

Figure 7.10: A graph of the investigations carried out in chapter 7 regarding the system integration.



Chapter 8

Conclusions

In this final chapter, the study is summarised, evaluated and concluded. First, the thesis objectives

are revisited and the research outcomes towards the objectives are summarised. Then based on the

outcomes, a set of suggestions, recommendations, and implications for researchers, designer and FPGA

manufacturers is presented. The methods of the research are criticised and evaluated and future work

for further investigations and developments are proposed. The chapter is concluded with a list of the

contributions of this thesis.

8.1 Objectives Revisited
Chapter 1 starts with the importance of bio-inspired engineering in the technology and the role that tech-

nological constraints and trade-offs play in it. The potentials and challenges of bio-plausible approaches

to intelligent systems and artificial brains in silicon are highlighted and that how an investigation of the

challenges, trade-offs and constraints of achieving bio-plausibility in evo-devo neural microcircuits in

FPGAs can pave the way and provide insight for the future designers of such systems. The research

problem, aim, scope, and objectives of the research are also clarified. Chapter 1 ends with a list of

publications based on this study.

At the beginning of chapter 2, bio-plausibility and feasibility, as two main themes of the study, were

defined in the context of this research using the existing definitions from the artificial life and robotics

literature, and the field of digital electronics (objective 1). Bio-plausibility was defined and measured

qualitatively throughout this study by structural accuracy of the models and their consistency with the

current biological models. Feasibility was defined and measured throughout the study based on different

feasibility measures of cost, performance, scalability, design and testing time and complexity, availabil-

ity, and reliability. These measures of feasibility and bio-plausibility were the basis for comparison of

competing models in different contexts during the study.

The state of the art in the FPGA-related technologies and methods, and bio-plausible neural net-

works, evolutionary, and neurodevelopmental models in the literature were reviewed and assessed, later

in chapter 2 (objective 2). Bio-plausible approaches to spiking neural networks such as LSM and HTM

were found to be on the rise in popularity and success. However, lack of systematic approach in their

design and adaptation called for new methods such as evolutionary approaches that had already shown
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some promising results. Very bio-plausible, and at the same time computationally expensive neuron

models were available. Computationally cheaper but bio-plausible models such as Izhikevich model

were recently introduced but most of the FPGA implementations were based on simplistic models. Very

few bio-plausible neuron and STDP unsupervised learning models existed for FPGA implementation.

Some bio-plausible neurodevelopmental systems were found to be used for evolution of neural networks

but they were usually very simple and not modelling the details of the gene-protein and protein-protein

interactions. Detailed and complex systems were slow and computationally expensive. It was not quite

clear which details and complexities of the bio-plausible models should be incorporated in a bio-inspired

design in order to achieve desired emergent properties such as evolvability, scalability, fault-tolerance,

and robustness. Only very simplistic developmental models were found to be implemented in hardware.

Although general trends pointed to promising results from direct implementation of bio-plausible mod-

els in hardware, very few attempts, only with custom chips, were found, which appeared to be limited

by their cost, scale, and availability. Chapter 2 was concluded with the motivation of this thesis to inves-

tigate the challenges of realising these bio-plausible models in ever-increasingly ubiquitous, large and

powerful FPGAs.

Chapter 3 examines the challenges, constraints and trade-offs in the selection of an FPGA hard-

ware platform suitable for a bio-plausible evo-devo neural microcircuit system (objective 3). Based on

available literature and experience, fourteen different features and factors of the FPGA platform were

highlighted and analysed: cost, popularity and prevalence, performance, size and scalability, power

consumption, partial reconfiguration, reconfiguration speed, communication bandwidth, interfacing, in-

destructibility and validity checking, embedded processing, observability, reliability, and ease of use.

The general trade-offs between the FPGA cost, its popularity, and its technical specifications were high-

lighted. The foreseeable impacts of each one of the above features and factors on the bio-plausibility and

feasibility measures of the whole system were analysed and evaluated to obtain a selection criteria. The

FPGA manufacturers, their focus, market share, and products at the time were studied and assessed. The

study showed that very few partially and dynamically reconfigurable and large devices were available at

the time. Based on the above criteria, market status, and the available budget, the ML505 prototyping

board with a Xilinx Virtex-5 FPGA was selected for use in the case studies as a representative of the

state-of-the-art technology at the time of the selection.

Chapter 4 focused on the challenges, options, trade-offs, and constraints involved in the design,

implementation, testing and, evaluation of a bio-plausible neuron model suitable for an evo-devo system

on an FPGA (objective 4). Bio-plausibility and feasibility of the neuron model and factors affecting

them were discussed and examined from different aspects in section 4.1. Based on these factors the rest

of the chapter was focused on a general flexible neuron model architecture with a connected network

of processing elements that provided the infrastructure for bio-plausible simulation of neuron dynam-

ics with the minimum use of routing resources of the FPGA. Stochastic and deterministic, distributed

and centralised approaches to the design of the neuron model were investigated and their feasibility and

bio-plausibility were assessed through analysis and simulation. Analysis of the design options revealed
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performance-reliability and compactness-reliability trade-offs, and accuracy constraints. Different de-

sign options and their trade-offs were summarised in section 4.5 and table 4.2. Based on the analysis

of the design options and constraints of this project, a novel digital neuron model with a new Piecewise

Linear Approximation of Quadratic Integrate and Fire (PLAQIF) soma model were designed as case

study for further investigation of challenges. The new neuron model also served as a simple example of

possible compact bio-plausible designs and as a basis for case studies in the later chapters. Detailed de-

sign, implementation, and testing of the digital neuron model and the practical challenges and limitations

were reported.

The challenges, options, trade-offs, and constraints involved in the design, implementation, testing

and, evaluation of a bio-plausible reconfigurable structure on FPGA suitable for evo-devo neural micro-

circuits (called a cortex model) comprised the focus of chapter 5 (objective 5). The factors impacting the

bio-plausibility and feasibility of the cortex model were highlighted and different approaches towards

inter and intra-cellular communication, reconfiguration, and feedback were examined and compared

closely. The analysis revealed a set of trade-offs between bio-plausibility and performance, compact-

ness, and efficiency of the cortex model. Based on the analysis of the design options and the constraints

of the project, a new bio-plausible cortex model (called the Cortex Model) was designed, implemented

and tested as a case study that can work with the digital neuron model of the chapter 4. The practical

challenges, trade-off, limitations, and possible solutions were discussed at the end of chapter 5.

Chapter 6 examined the challenges, options, trade-offs, and constraints of the design, implemen-

tation, testing, and evaluation of a bio-plausible evo-devo model for growing neural microcircuits in

FPGAs (objective 6). Factors in the design of the evo-devo model that affects the bio-plausibility and

feasibility of the system were highlighted in section 6.1 and then different options and design approaches

were closely examined and compared. The analysis confirmed the general bio-plausibility-efficiency and

and bio-plausibility-simplicity trade-offs, but also revealed a positive correlation of bio-plausibility of the

evo-devo model with the scalability and reliability of the system. It also showed that it is more efficient to

implement the evolutionary model in software. Based on the analysis and the constraints of the project,

a new bio-plausible multicellular evo-devo model (called the LGRN - Logistic GRN) capable of demon-

strating fundamental properties was designed, implemented and tested as a case study. The practical

challenges, trade-offs, constraints and possible improvements were discussed at the end of the chapter.

The challenges, options, trade-offs, and constraints involved in the integration, end-to-end testing,

and evaluation of a bio-plausible evo-devo neural microcircuit system were assessed in chapter 7 (ob-

jective 7). Integration design factors affecting the bio-plausibility and feasibility of the system were

highlighted in section 7.1. Different approaches towards system integration and partitioning of the de-

velopmental model and fitness evaluation module were discussed and evaluated confirming the usual

performance-compactness trade-off and also revealing how hardware-software partitioning can impact

the feasibility measures. All the case study models of chapters 4 to 6 were successfully completed, inte-

grated, and tested as a final case study demonstrating the relevance of the case studies and challenges in

integration and application of such bio-plausible systems.
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8.2 Implications and Suggestions
The investigations carried out through this study revealed many different challenges, constraints, trade-

offs, and options. Here we summarise these results as some general trends, recommendations for similar

studies, and suggestions for FPGA manufacturers.

8.2.1 General Trends

Analysis of the different options in the design of the neuron, cortex and evo-devo models in chapters 4 to

6 confirmed that performance, and compactness are impacted as bio-plausibility (and thus computational

complexity) grows. This is in agreement with the general expected trade-off between bio-plausibility and

feasibility, predicted in the first chapter. However, bio-plausible models and FPGAs appeared to lend

themselves to distributed and massively parallel architectures, which allows designers of bio-plausible

systems to utilise the inherent performance-compactness trade-off to maximise the efficiency, reliability,

scalability or other desired factors. Figure 8.1 depicts this relation in a conceptual way. Although

the increase in bio-plausibility makes the performance-compactness tighter, it gives more flexibility to

play with the trade-off. However, this flexibility of the bio-plausible models can be constrained by the

limitations of the hardware platform.
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Figure 8.1: A schematic illustration of the relation between bio-plausibility and the performance-compactness trade-off.

The continuity of the curves represent the increase in design flexibility to play with the trade-off.

In contrast with the general expected trade-off between bio-plausibility and feasibility, two of the

feasibility measures can actually show a different trend in bio-plausible systems. Analysis of different

options in the design of the neuron, cortex, and evo-devo models showed that, in general, the scalability

and reliability (as fault-tolerance and robustness) of the system grow with bio-plausibility. This can be

viewed as one of the main motivations of using bio-plausible approaches in the design of such systems.
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The design time and complexity almost always increased with bio-plausibility. A repeating theme

in practical challenges at all stages, although more pronounced in the later stages, was the increasing

complexity in system verification and testing, and parameter tuning due to the complexity and richness of

such bio-plausible system. A modular system design, which allows unit testing and adding or removing

different features easily, was the only solution proposed and examined to tackle this problem as it has

been proven to be effective in traditional hardware and software design. In the following section more

detailed suggestions are offered to tackle this problem in future.

8.2.2 Suggestions and Recommendations for Designers

The scalability and reliability benefits of the bio-plausibility combined with the distributed and parallel

nature of bio-plausible systems are promising trends that can allow very large wafer-scale bio-plausible

chips. Large silicon chips are not feasible mainly due to low fabrication yields over large areas of silicon.

The built-in fault-tolerance, robustness, and adaptability of a bio-plausible evo-devo system can resolve

the yield problem. The increased scalability allows leveraging the massive computational power of such

a large multi-core chip efficiently.

A modular design approach seems to be the most effective way to mitigate the increasing complex-

ity of the design, testing and parameter tuning in bio-plausible systems. Using random number gener-

ators instead of higher level models is also an effective method for testing and tuning the lower level

models. This was used, for example, in the testing and parameter tuning of the developmental model

before adding the evolutionary model to the system and in testing and improving the neuron model be-

fore designing the cortex and evo-devo models. Both hardware and software engineers use a series of

tools, standards, procedures, and practices to tackle the increasing complexity of hardware and software

systems. It appears very beneficial to follow a similar approach by developing standards, tools, software

modules and libraries, hardware IP cores, procedures, metrics, benchmarks and codes of practice for the

design and testing of bio-plausible digital systems that allow researchers and designers of bio-plausible

digital systems to share, reuse, replace, and compare bio-plausible modules, and cope with the com-

plexity of the design, verification, testing, and tuning of bio-plausible digital systems. Although some

libraries, benchmarks, and metrics have been developed by the research communities through recent

decades, they are not comparable with the coordinated efforts of the hardware and software engineer-

ing communities and the resources available to them. In author’s opinion, it is the time to start such

coordinated efforts in the evolvable hardware and evolutionary computing research communities.

It appears that the bio-plausibility of lower level-models can significantly improve the bio-

plausibility at higher levels of the system. It is important to think of the bio-plausibility of a lower

level model not only in itself but also in relation with higher level models. For example, although it is

important to have a bio-plausible neuron model that behaves as a biological neuron, it is also important

that it behaves in a bio-plausible manner in relation with the cortex and evo-devo models. The possibility

of evolving the structure and parameters of a neuron beyond biological norms can result a higher level

bio-plausibility than a blind and static simulation of the current biological neurons.
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8.2.3 Suggestions for FPGA Manufacturers

Currently, FPGA manufacturers do not appear to be concerned about the fine-grain, local, and distributed

reconfigurability of their devices and other features that are crucial for bio-plausible reconfigurable de-

vices. Current FPGA devices are more optimised for telecommunication and traditional parallel signal

processing than bio-inspired systems. In the following, few suggestions are put forward for FPGA

manufacturers, which can relax some of the constraints and limitations of the FPGAs as a platform for

bio-plausible systems and evo-devo neural microcircuits in particular.

• Shortening the length of the reconfiguration frame as the smallest reconfigurable unit in FPGA

• Allowing smaller units of the devices to be separately, locally, and concurrently reconfigured by

the FPGA fabric itself as well as through a central global reconfiguration port.

• Uniformity of the fabric and reconfiguration format

• An open reconfiguration frame format including the low-level PIPs

• A Hardwired Network-on-Chip (such as [126] or reconfigurable time-multiplexed switched net-

works similar to Tabula’s space-time technology [3]

8.3 Critical Evaluation

Hardware Platform

This work is focused on the Xilinx Virtex-5 family of FPGAs and dynamic partial reconfiguration

method, which does not represent all the possibilities. Xilinx Virtex-5 was the best representative of

the available technologies at the beginning of this study and as is explained in chapter 3 it was the

largest, fastest and the most feature rich family of FPGAs at that time. Apart from the size, performance

and power improvements in the new FPGAs during these years, the main reconfigurability features that

are useful for bio-plausible systems remained the same. Although the practical investigations in the

case studies are limited to dynamic partial reconfiguration method, the virtual FPGA method was also

analysed and evaluated.

Bio-plausibility Measures

This study does not necessarily use the latest and most accurate biological models and knowledge in the

fields of neuroscience, neurodevelopment, and genetics as the reference for bio-plausibility of the bio-

inspired models. There are definitely more recent findings, technically more accurate biological models

than models used here as sources of inspiration or references. However, there is still a large gap between

the existing hardware models and the biological knowledge from two decades ago. Given the relative

implausibility of the current hardware models in FPGAs, aiming for very high biological accuracy would

involve significantly more time and effort, and close collaboration with biologists, limiting the breadth

of the study. Therefore, this study uses slightly more accurate and more detailed biological models than

is the norm in hardware-based systems to investigate the challenges in improving the bio-plausibility of

the hardware-based models.
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Feasibility Measures

In this study, the power consumption, one of the important feasibility factors that also impacts the scal-

ability of the system, is not investigated. Energy efficiency and consumption are two important limiting

factors in scaling up brain simulators or using them in mobile systems. Heat dissipation is another re-

lated issue that limits the miniaturisation of electronic devices. None of these important constraints are

included in the list of feasibility measures in this thesis. The peak power consumption, energy efficiency,

and miniaturisation of an evo-devo neural microcircuit in FPGA are more than anything related to the

technology of the FPGA, and still far from the acceptable range for mobile or very large-scale brain

simulators such as SpiNNaker. Bio-plausible evo-devo neural systems in FPGAs are still in their infancy

and it is too early to think of their large-scale or mobile applications. The focus here is the feasibility of

such systems in research and experimental settings. However, the study of the energy efficiency of bio-

plausible models and the role that an evo-devo model can play to improve it are interesting and important

subjects for future work.

Similar Studies

There are other studies on bio-plausible evolutionary spiking neural networks in FPGAs that also report

the challenges (reviewed in section 2.5.6). Most of these studies have a limited view of bio-plausibility

as only using an evolutionary or spiking neuron model. Very few studies examine a wide evo-devo view,

and none of those few studies are focused on FPGAs as a platform. On the other hand, this study focuses

on FPGAs and examines a wide range of different aspects of bio-plausibility. Moreover, here, the factors

that promote or limit the bio-plausibility and their relation with different feasibility measures are also

analysed.

Case Studies and Experiments

Analysis of the design options in chapters 4 to 6 highlighted very bio-plausible, feasible, and interesting

approaches that are not applied to the case studies. For example, the promising time-multiplexed switch-

ing method is not used in the case study of the Cortex model in chapter 5. Similarly, in the consecutive

case study designs many detailed bio-plausible features are included, which are not used in the final case

study of the integrated system. For example a parametric flexible digital neuron model is designed, im-

plemented, and tested in chapter 4 but those parameters are fixed and not evolved in the final integration

case study. The main goals of the case studies are to provide an empirical context for investigation of the

challenges in practice, and to present the reader simple examples of how such bio-plausible features can

be achieved in hardware models. Applying all these available features to a final integrated bio-plausible

evo-devo neural microcircuit system or conducting further experiments are separate tasks, which require

more time tackling each one of the many challenges highlighted in this work.

Depth and Breadth of the Investigation

Many aspects of bio-plausibility and feasibility of the evolutionary model, fitness evaluation process and

interfacing of the neural microcircuits with the environment (such as the coding/decoding methods of

the input/outputs) are not addressed in this study. As explained in chapter 6 the evolutionary model
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can be implemented much more efficiently in software and therefore is not bound to the limitations of

the hardware implementation in FPGA. It is therefore out of the scope of this study. Fitness evaluation

and interfacing are both application dependent subjects, that if not studied in the context of a specific

application, can be hardly covered by a single thesis. However, both of these matters are discussed briefly

in general and in more depth for the specific application of the case study. Study of the bio-plausible and

feasible evolutionary models, fitness evaluation and interfacing in conjunction with such a bio-plausible

evo-devo system is definitely an interesting and significant subject worth pursuing.

8.4 Future Work
It is interesting and promising to extend the work here in different directions. The work here was fo-

cussed on investigations of constraints and trade-offs between bio-plausibility and feasibility. Future

work may be motivated by different aims, for example to evaluate relative performance of different bio-

plausible models. One avenue is experimental study of the effects of specific bio-plausible features on

emergent properties of the system. Reducing the bio-plausibility of each model by replacing the neuron,

cortex, or evo-devo models (or their submodules) with simpler models and investigating its effect on the

feasibility measures and emergent properties (such as evolvability and scalability) of the whole system

can give us a better understanding of the importance of different bio-plausible features. For example,

it is very interesting to investigate the effect of reducing the neuron model to a LIF neuron model or to

compare different protein folding mappings (such as Fractal Proteins, Logistic Proteins, or no protein

folding).

Another direction is to apply a revised version of the case study system to a real problem. Many

possible interesting design options are proposed in this thesis that are not implemented in the successive

case studies. Most of these promising options are highlighted in the summary of the design options and

practical considerations sections and discussed throughout chapters 4 to 7. A non-exhaustive list of some

of these revisions follows:

• Hardware Platform

– Using newer generations of Xilinx FPGAs with faster embedded processors (section 3.2 )

– Using new Altera Stratix V FPGA devices (section 3.2 )

• Neuron Model

– Adding unsupervised learning to the synapse unit (sections 4.6.1 and 4.7)

– Adding a synapse model (section 4.7)

– Adding non-linear interactions to distal synapses (section 4.7)

– Adding facilitation and depression dynamics to the synapse unit (section 4.7)

– Upgrading the soma model to a piecewise linear approximation of Izhikevich model (section

4.7)

• Cortex Model
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– Using a time-multiplexed virtual 3D intercellular communication network (section 5.5)

– Reverse engineering the configuration frame format for PIPs and utilising them as routing

resources in the Cortex model (section 5.2.3)

– Using one of the available high speed HWICAP custom IP cores (section 5.5)

– Using a virtual FPGA method for reconfiguration of the Cortex (sections 5.2.3 and 5.5)

– Adding relocatability to soma cells (sections 5.2.3 and 5.5)

– Adding activity and health feedback circuitry to the Cortex (sections 5.2.4 and 5.5)

– Performance improvements by wrap-around delay distribution (section 5.5)

• Evo-devo Model

– Evolving soma parameters (sections 6.5 and7.3.3)

– Adding branching and retraction to neurite development (section 6.5)

– Adding activity dependent development (sections 6.5 and 7.2)

– Adding routing resource availability feedback (section 6.5)

– Using indirect mapping for all the loci in the genome (section 6.5)

– Evolving development time (section 7.4)

– Evolving cortex size (section 7.4)

– Using Fractal Proteins (section 6.2.2)

– Parallel implementation in GPU (section 6.4.1 and chapter 7)

– Distributed implementation in FPGA (section 6.2.4)

• Integration

– Using Reservoir Computing approach (section 7.2.2)

– Applying to pattern recognition and classification tasks (section 7.2.2)

– Using an incremental fitness function (section 7.2.3)

– Evolving lifespan, development and evaluation time (sections 7.2.3 and 7.4)

– Using parallel, pipelined and multithreaded development, reconfiguration and evaluation

processes (section 7.4)

– Using a higher speed datalink (section 7.4)

– Separating the clock signals of the datalink, Cortex, and embedded processor (section 7.4)
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8.5 Thesis Contributions
The research described in this thesis has resulted in a number of contributions, which for clarity are

highlighted below:

• Evaluation and analysis of the challenges, factors, constraints, trade-offs, and options in achiev-

ing bio-plausibility and feasibility in the design, implementation, and testing of evo-devo neural

microcircuit in FPGAs

• Introducing a new bio-plausible Digital Neuron Model with structural flexibility

• Introducing a new soma model called PLAQIF (Piecewise-Linear Approximation Quadratic Inte-

grate and Fire) with parametric flexibility

• Presenting of an efficient implementation of Digital Neuron, PLAQIF, and Cortex models in

Virtex-5 FPGAs

• Proposing time-multiplexed switched networks for intercellular communication of spiking neurons

on FPGAs

• Introducing a new bio-plausible reconfigurable cortex model for growth of the Digital Neuron

model on an FPGA device

• Reverse engineering of the Virtex-5 reconfiguration frame format for LUTs and SRLs and de-

velopment of a C library for their fast reconfiguration using the MicroBlaze embedded processor

(Appendix A and B).

• In-depth analysis of the Fractal Proteins and FGRNs

• Introducing a new bio-plausible multicellular Logistic GRN evo-devo model with structural and

behavioural protein and interactions for neurodevelopment on the Cortex model

• Presenting the design, implementation, and testing of a complete integrated bio-plausible evo-devo

neural microcircuit system using a commercial FPGA

• Demonstrating the value of statistical analysis of random genomes in the verification, testing and

tuning of neurodevelopmental models

• Suggestions and recommendation for designer and FPGA manufacturers for achieving bio-

plausibility in bio-inspired systems in FPGAs

• Providing potential solutions to usual challenges in the design of bio-plausible evo-devo neural

systems in FPGAs that, in many cases, can be reused in other bio-plausible designs
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8.5.1 Summary

Evolving bio-plausible artificial brains in commercial FPGAs is a daunting task. With the swift advances

in reconfigurable technologies and the promising emergent properties of bio-plausible systems, it is

challenge worth every effort. A better understanding of the challenges is the first step towards tackling

them. This research was aimed at practical investigation of the challenges, factors, constraints, trade-offs,

and options in achieving bio-plausibility in the design, implementation and testing of evo-devo neural

microcircuits feasible in FPGAs. It achieved this aim with a broad but deep and practical investigation

of different aspects of bio-plausibility and feasibility of evo-devo neural microcircuits in FPGAs. This

thesis is a stepping stone towards future bio-plausible designs: artificial brains in silicon that evolve,

grow, adapt and learn.
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Appendix A

Virtex-5 Reconfiguration Frame Format

The high-level reconfiguration bitstream format of the Virtex-5 is well explained in Virtex-5 FPGA

Configuration User Guide from Xilinx [411] (Frame Addressing pp. 131). The smallest reconfigurable

unit in the configuration memory is a frame of 1312 bits = 41 x 32 bit = 20 (rows of CLBs) x 64 (bits

per CLB row) + 32 bits for ECC and HCLK bits. These frames span vertically over a HCLKROW

(big blocks of CLBS sharing same global clock signals). Based on the device size, number of these

HCLKROWs is different. There are 6 HCLKROWs in XC5VLX50T. These rows and how they are

addressed is explained clearly in pp. 133 of [411]. The major address can be simply calculated using

the layout of the device knowing which column is containing which resource (CLB, IOB, DSP, DRAM)

(Figure 6.12 in [411]).

In each major address (a column) there are minor addresses. For CLB columns there are 36 minor

addresses (frames). Frames 0 to 25 are used for interconnection (except for the clock column). For all

columns except for CLB and clock columns, frames 26 and 27 are used for interface to the block. From

this point on it is not explained anywhere and is considered proprietary.

A LUT6 data (64 bits) is distributed over 4 frames: 26 to 29 for the left slices in a CLB (evenXslice),

and frames 31 to 34 for the right slice in a CLB (odd Xslice). That is 4x64 bits for 4 LUT6s in a slice.

But the data for each LUT is allocated in a peculiar order. Table A.1 shows how content of the LUTs

are distributed over four different frames with different minor frame addresses. Word number n can be

calculated based on the Y location of the slice in a frame (Yslice) as: n = 2Yslice + (Yslice > 9). Table

A.2 gives the detailed internal addresses of each of 64 bits of LUT contents in the data blocks dedicated

to each LUT (shown in table A.1) based on the type of the slice (SLICEM or SLICEL). Library functions

that use this information to reconfigure Virtex-5 LUT and SRL/RAM contents are presented in appendix

B.

Different methods and tools are now available for reverse engineering the format of the rest of the

frames and columns [83, 28, 279].
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Table A.1: Distribution of the LUTs contents over four different frames. Minor addresses of the frames for even and odd

slices are also given.

Slice Word n Word n+1

Even Odd Bits Bits Bits Bits

Xslice mod 2 = 0 Xslice mod 2 = 1 31 - 16 15 - 0 31 - 16 15 - 0

M
in

or
A

dd
re

ss 32 26

33 27 B LUT A LUT D LUT C LUT

34 28 Data Data Data Data

35 29
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Appendix B

Library Functions for Faster Reconfiguration

through MicroBlaze

/*****************************************************************************

* Filename: editlut.h

* Version: 2.19.a

* Description: Header File for LUT reconfiguration functions

* Author: Hooman Shayani

*****************************************************************************/

#ifndef EDITLUT_H_

#define EDITLUT_H_

#include "xbasic_types.h"

#include "xstatus.h"

#include "xhwicap.h"

#include "hwicap_header.h"

#include "cortexip.h"

#define N 1

#define E 2

#define S 3

#define W 4

#define D 5

#define LUTA 0

#define LUTB 1

#define LUTC 2

#define LUTD 3

void Translate(u32 * Bits);

XStatus SetLUT(XHwIcap * InstancePtr, int X, int Y,int LUT, Xuint32 *LUTBits);

XStatus SetSRR16(XHwIcap * InstancePtr, int X, int Y,int LUT, Xuint16 LUTBits);

XStatus SetSRR32(XHwIcap * InstancePtr, int X, int Y,int LUT, Xuint32 LUTBits);

void DecodeSRR16(Xuint32 * Bits, Xuint16 SHRBits);

void DecodeSRR32(Xuint32 * Bits, Xuint32 SHRBits);

#endif /*EDITLUT_H_*/

/*****************************************************************************

* Filename: editlut.c

* Version: 2.73.a

* Description: Source File for LUT reconfiguration functions

* Author: Hooman Shayani

*****************************************************************************/

#include <stdio.h>

#include "xbasic_types.h"

#include "xstatus.h"

#include "xparameters.h"

#include "xhwicap.h"

#include "xhwicap_clb_lut.h"

#include "xhwicap_i.h"
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#define V5_ROWS_PER_HCLKROW 20

#define SDP_SLICE_M_COL 10 //this is only for XCVLX50T

#define READ_FRAME_SIZE 20

#define printf xil_printf

Xuint32 Buffer[250];//extern

extern XHwIcap *icapptr; /* The instance of the HWICAP device */

#if (XHI_FAMILY == XHI_DEV_FAMILY_V5)

/****************************************************************************/

/**

*

* Writes four frame from the specified buffer and puts it in the device

* (ICAP).

*

* @param InstancePtr is a pointer to the XHwIcap instance.

* @param Top - top (0) or bottom (1) half of device

* @param Block - Block Address (XHI_FAR_CLB_BLOCK,

* XHI_FAR_BRAM_BLOCK, XHI_FAR_BRAM_INT_BLOCK)

* @param HClkRow - selects the HClk Row

* @param MajorFrame - selects the column

* @param MinorFrame - selects frame inside column

* @param FrameData is a pointer to the first frame that is to be written

* to the device.

*

* @return XST_SUCCESS else XST_FAILURE.

*

* @note This is a blocking function.

* This function is used in conjunction with the function

* XHwIcap_DeviceRead2Frames. This function is used to write back

* the frames of data read using the XHwIcap_DeviceRead2Frames.

*

*****************************************************************************/

int XHwIcap_DeviceWrite4Frames(XHwIcap *InstancePtr, long Top, long Block,

long HClkRow, long MajorFrame, long MinorFrame,

u32 *FrameData)

{

u32 HeaderWords;

u32 Packet;

u32 Data;

u32 TotalWords;

int Status;

u32 WriteBuffer[READ_FRAME_SIZE];

u32 Index =0;

Xil_AssertNonvoid(InstancePtr != NULL);

Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);

Xil_AssertNonvoid(FrameData != NULL);

/*

* DUMMY and SYNC

*/

WriteBuffer[Index++] = XHI_DUMMY_PACKET;

WriteBuffer[Index++] = XHI_SYNC_PACKET;

WriteBuffer[Index++] = XHI_NOOP_PACKET;

WriteBuffer[Index++] = XHI_NOOP_PACKET;

/*

* Reset CRC

*/

Packet = XHwIcap_Type1Write(XHI_CMD) | 1;

Data = XHI_CMD_RCRC;

WriteBuffer[Index++] = Packet;

WriteBuffer[Index++] = Data;

WriteBuffer[Index++] = XHI_NOOP_PACKET;

WriteBuffer[Index++] = XHI_NOOP_PACKET;

/*

* Bypass CRC
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*/

Packet = XHwIcap_Type1Write(XHI_COR) | 1;

Data = 0x10042FDD;

WriteBuffer[Index++] = Packet;

WriteBuffer[Index++] = Data;

/*

* ID register

*/

Packet = XHwIcap_Type1Write(XHI_IDCODE) | 1;

Data = InstancePtr->DeviceIdCode;

WriteBuffer[Index++] = Packet;

WriteBuffer[Index++] = Data;

/*

* Setup FAR

*/

Packet = XHwIcap_Type1Write(XHI_FAR) | 1;

#if XHI_FAMILY == XHI_DEV_FAMILY_V4 /* Virtex 4 */

Data = XHwIcap_SetupFarV4(Top, Block, HClkRow, MajorFrame, MinorFrame);

#elif XHI_FAMILY == XHI_DEV_FAMILY_V5 /* Virtex 5 */

Data = XHwIcap_SetupFarV5(Top, Block, HClkRow, MajorFrame, MinorFrame);

#endif

WriteBuffer[Index++] = Packet;

WriteBuffer[Index++] = Data;

/*

* Setup CMD register - write configuration

*/

Packet = XHwIcap_Type1Write(XHI_CMD) | 1;

Data = XHI_CMD_WCFG;

WriteBuffer[Index++] = Packet;

WriteBuffer[Index++] = Data;

WriteBuffer[Index++] = XHI_NOOP_PACKET;

/*

* Setup Packet header.

*/

TotalWords = InstancePtr->WordsPerFrame + (InstancePtr->WordsPerFrame << 2);

if (TotalWords < XHI_TYPE_1_PACKET_MAX_WORDS) {

/*

* Create Type 1 Packet.

*/

Packet = XHwIcap_Type1Write(XHI_FDRI) | TotalWords;

WriteBuffer[Index++] = Packet;

HeaderWords = 18;

}

else {

/*

* Create Type 2 Packet.

*/

Packet = XHwIcap_Type1Write(XHI_FDRI);

WriteBuffer[Index++] = Packet;

Packet = XHI_TYPE_2_WRITE | TotalWords;

WriteBuffer[Index++] = Packet;

HeaderWords = 19;

}

/*

* Write the Header data into the FIFO and intiate the transfer of

* data present in the FIFO to the ICAP device

*/

Status = XHwIcap_DeviceWrite(InstancePtr, (u32 *)&WriteBuffer[0], HeaderWords);

if (Status != XST_SUCCESS) {

return XST_FAILURE;

}

/*

* Write the modified frame data.

*/
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Status = XHwIcap_DeviceWrite(InstancePtr,

(u32 *) &FrameData[InstancePtr->WordsPerFrame + 1],

InstancePtr->WordsPerFrame<<2);

if (Status != XST_SUCCESS) {

return XST_FAILURE;

}

/*

* Check if the ICAP device is Busy with the last Write/Read

*/

while (XHwIcap_IsDeviceBusy(InstancePtr) == TRUE) {

;

}

//xil_printf("totwrds:%ld",TotalWords);

/*

* Write out the pad frame. The pad frame was read from the device before

* the data frame.

*/

Status = XHwIcap_DeviceWrite(InstancePtr, (u32 *) &FrameData[1],

InstancePtr->WordsPerFrame);

if (Status != XST_SUCCESS) {

return XST_FAILURE;

}

/* Add CRC */

Index = 0;

Packet = XHwIcap_Type1Write(XHI_CRC) | 1;

WriteBuffer[Index++] = Packet;

WriteBuffer[Index++] = XHI_DISABLED_AUTO_CRC;

/* Park the FAR */

Packet = XHwIcap_Type1Write(XHI_FAR) | 1;

#if XHI_FAMILY == XHI_DEV_FAMILY_V4 /* Virtex 4 */

Data = XHwIcap_SetupFarV4(0, 0, 3, 33, 0);

#elif XHI_FAMILY == XHI_DEV_FAMILY_V5 /* Virtex 5 */

Data = XHwIcap_SetupFarV5(0, 0, 3, 33, 0);

#endif

WriteBuffer[Index++] = Packet;

WriteBuffer[Index++] = Data;

/* Add CRC */

Packet = XHwIcap_Type1Write(XHI_CRC) | 1;

WriteBuffer[Index++] = Packet;

WriteBuffer[Index++] = XHI_DISABLED_AUTO_CRC;

/*

* Intiate the transfer of data present in the FIFO to

* the ICAP device

*/

Status = XHwIcap_DeviceWrite(InstancePtr, &WriteBuffer[0], Index);

if (Status != XST_SUCCESS) {

return XST_FAILURE;

}

/*

* Send DESYNC command

*/

Status = XHwIcap_CommandDesync(InstancePtr);

if (Status != XST_SUCCESS) {

return XST_FAILURE;

}

return XST_SUCCESS;

};

/****************************************************************************/

/**

*

* Reads two frames from the device and puts it in memory specified by the user.

*

* @param InstancePtr - a pointer to the XHwIcap instance to be worked on.

* @param Top - top (0) or bottom (1) half of device
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* @param Block - Block Address (XHI_FAR_CLB_BLOCK,

* XHI_FAR_BRAM_BLOCK, XHI_FAR_BRAM_INT_BLOCK)

* @param HClkRow - selects the HClk Row

* @param MajorFrame - selects the column

* @param MinorFrame - selects frame inside column

* @param FrameBuffer is a pointer to the memory where the frames read

* from the device are stored

*

* @return XST_SUCCESS else XST_FAILURE.

*

* @note This is a blocking call.

*

*****************************************************************************/

int XHwIcap_DeviceRead2Frames(XHwIcap *InstancePtr, long Top, long Block,

long HClkRow, long MajorFrame, long MinorFrame,

u32 *FrameBuffer)

{

u32 Packet;

u32 Data;

u32 TotalWords;

int Status;

u32 WriteBuffer[READ_FRAME_SIZE];

u32 Index = 0;

Xil_AssertNonvoid(InstancePtr != NULL);

Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);

Xil_AssertNonvoid(FrameBuffer != NULL);

/*

* DUMMY and SYNC

*/

WriteBuffer[Index++] = XHI_DUMMY_PACKET;

WriteBuffer[Index++] = XHI_SYNC_PACKET;

WriteBuffer[Index++] = XHI_NOOP_PACKET;

WriteBuffer[Index++] = XHI_NOOP_PACKET;

/*

* Reset CRC

*/

Packet = XHwIcap_Type1Write(XHI_CMD) | 1;

WriteBuffer[Index++] = Packet;

WriteBuffer[Index++] = XHI_CMD_RCRC;

WriteBuffer[Index++] = XHI_NOOP_PACKET;

WriteBuffer[Index++] = XHI_NOOP_PACKET;

/*

* Setup CMD register to read configuration

*/

Packet = XHwIcap_Type1Write(XHI_CMD) | 1;

WriteBuffer[Index++] = Packet;

WriteBuffer[Index++] = XHI_CMD_RCFG;

WriteBuffer[Index++] = XHI_NOOP_PACKET;

WriteBuffer[Index++] = XHI_NOOP_PACKET;

WriteBuffer[Index++] = XHI_NOOP_PACKET;

/*

* Setup FAR register.

*/

Packet = XHwIcap_Type1Write(XHI_FAR) | 1;

#if XHI_FAMILY == XHI_DEV_FAMILY_V4 /* Virtex 4 */

Data = XHwIcap_SetupFarV4(Top, Block, HClkRow, MajorFrame, MinorFrame);

#elif XHI_FAMILY == XHI_DEV_FAMILY_V5 /* Virtex 5 */

Data = XHwIcap_SetupFarV5(Top, Block, HClkRow, MajorFrame, MinorFrame);

#endif

WriteBuffer[Index++] = Packet;

WriteBuffer[Index++] = Data;

/*

* Setup read data packet header.

* The frame will be preceeded by a dummy frame, and we need to read one

* extra word - see Configuration Guide Chapter 8

*/

TotalWords = InstancePtr->WordsPerFrame+(InstancePtr->WordsPerFrame << 1) + 1;

/*

* Create Type one packet
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*/

Packet = XHwIcap_Type1Read(XHI_FDRO);

WriteBuffer[Index++] = Packet;

Packet = XHI_TYPE_2_READ | TotalWords;

WriteBuffer[Index++] = Packet;

WriteBuffer[Index++] = XHI_NOOP_PACKET;

WriteBuffer[Index++] = XHI_NOOP_PACKET;

/*

* Write the data to the FIFO and initiate the transfer of data

* present in the FIFO to the ICAP device

*/

Status = XHwIcap_DeviceWrite(InstancePtr, (u32 *)&WriteBuffer[0], Index);

if (Status != XST_SUCCESS) {

return XST_FAILURE;

}

/*

* Wait till the write is done.

*/

while (XHwIcap_IsDeviceBusy(InstancePtr) != FALSE);

/*

* Read the frame of the data including the NULL frame.

*/

Status = XHwIcap_DeviceRead(InstancePtr, FrameBuffer, TotalWords);

if (Status != XST_SUCCESS) {

return XST_FAILURE;

}

/*

* Send DESYNC command

*/

Status = XHwIcap_CommandDesync(InstancePtr);

if (Status != XST_SUCCESS) {

return XST_FAILURE;

}

return XST_SUCCESS;

};

//this array says bit i in the LUT addressing space should be in the bit LUT_Mapping[i] of the Bits[2] in SetLUT(...,Bits)

int LUT_Mapping[64]={

31,15,63,47,14,30,46,62,

29,13,61,45,12,28,44,60,

27,11,59,43,10,26,42,58,

25,9,57,41,8,24,40,56,

23,7,55,39,6,22,38,54,

21,5,53,37,4,20,36,52,

19,3,51,35,2,18,34,50,

17,1,49,33,0,16,32,48};

//translates a 64 bits to the reconfigurable format that can be used by SetLUT()

void Translate(u32 * Bits)

{

int i,j,k;

u32 Data[2]={0,0};

for(i=0; i<2;i++)

{

for(j=0; j<32;j++)

{

if((Bits[i]>>j)&0x01) //if bit i,j is input (LUT address space) is one

{

k=LUT_Mapping[i*32+j];

Data[k>>5]|= (0x01<<(k & 0x1f));

}

}

}

Bits[0]=Data[0];

Bits[1]=Data[1];

}
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XStatus SetLUT(XHwIcap *InstancePtr, int X, int Y,int LUT, Xuint32 *LUTBits)

{

long Bottom = (Y<(InstancePtr->Rows>>1))? 1 : 0;; //

int ClkZone=Y/20;

long HClkRow = ClkZone+ (Bottom?(InstancePtr->HClkRows-1)-(ClkZone<<1): 0) - (InstancePtr->HClkRows>>1);//

int YinFrame = Y%20;

long MajorAddr =0;

long MinorAddr ;

int Col = (X>>1)+1;

u16 * Skips = InstancePtr->SkipCols;

int Word;

XStatus Status;

u32 Data32;

Xuint32 Bits[2];

Bits[0]=LUTBits[0]; Bits[1]=LUTBits[1];

Translate(Bits);

MajorAddr=0;

while(Col > *(Skips++))

MajorAddr++;

MajorAddr += Col;

MinorAddr = (X & 0x01) ? 26 : 32 ;

Word = 42 + (LUT>>1) + ((YinFrame>9)?1:0) + (YinFrame<<1);

// +1 extra word because for the transmission buffer to flush

// +1 extra frame (+41) because it is read so for the frame buffer to flush

// +1 word if it is LUT C or D

// +1 word if it is above the clock line

//and 2 word for every slice in the frame

//if (X==19) printf("\n\rX=%d Y=%d LUT=%d Bottom=%d, Block=%d, HClkRo=%d, MajorAddr=%d, MinorAddr=%d Word=%d\n\r",X,Y,LUT,Bottom, XHI_FAR_CLB_BLOCK,HClkRow, MajorAddr, MinorAddr,Word-42);

Status = XHwIcap_DeviceRead2Frames(InstancePtr, Bottom, XHI_FAR_CLB_BLOCK,HClkRow, MajorAddr, MinorAddr+2, &Buffer[82]);

if (Status != XST_SUCCESS) {

printf("DeviceReadFrame failed:%d\n\r",Status);

return XST_FAILURE;

}

Status = XHwIcap_DeviceRead2Frames(InstancePtr, Bottom, XHI_FAR_CLB_BLOCK,HClkRow, MajorAddr, MinorAddr, Buffer);

if (Status != XST_SUCCESS) {

printf("DeviceReadFrame failed:%d\n\r",Status);

return XST_FAILURE;

}

if( ((X & 0x03) == 0) || (X==SDP_SLICE_M_COL) ) //if a SLICE_M

{

if (LUT & 0x01)//B or D

{

Data32 = Buffer[Word];

Data32 = (Data32 & 0xffff) | (Bits[0] << 16);

Buffer[Word]=Data32;

Word+=41;

Data32 = Buffer[Word];

Data32 = (Data32 & 0xffff) | (Bits[0] & 0xffff0000);

Buffer[Word]=Data32;

Word+=41;

Data32 = Buffer[Word];

Data32 = (Data32 & 0xffff) | (Bits[1] << 16);

Buffer[Word]=Data32;

Word+=41;

Data32 = Buffer[Word];

Data32 = (Data32 & 0xffff) | (Bits[1] & 0xffff0000);

Buffer[Word]=Data32;

}

else // A or C

{

Data32 = Buffer[Word];

Data32 = (Data32 & 0xffff0000) | (Bits[0] & 0xffff);

Buffer[Word]=Data32;

Word+=41;

Data32 = Buffer[Word];

Data32 = (Data32 & 0xffff0000) | (Bits[0] >> 16);

Buffer[Word]=Data32;

Word+=41;

Data32 = Buffer[Word];
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Data32 = (Data32 & 0xffff0000) | (Bits[1] & 0xffff);

Buffer[Word]=Data32;

Word+=41;

Data32 = Buffer[Word];

Data32 = (Data32 & 0xffff0000) | (Bits[1] >> 16);

Buffer[Word]=Data32;

}

}

else //if a SLICE_L

{

if (LUT & 0x01) //B or D

{

Data32 = Buffer[Word];

Data32 = (Data32 & 0xffff) | (Bits[1] & 0xffff0000);

Buffer[Word]=Data32;

Word+=41;

Data32 = Buffer[Word];

Data32 = (Data32 & 0xffff) | (Bits[1] << 16);

Buffer[Word]=Data32;

Word+=41;

Data32 = Buffer[Word];

Data32 = (Data32 & 0xffff) | (Bits[0] << 16);

Buffer[Word]=Data32;

Word+=41;

Data32 = Buffer[Word];

Data32 = (Data32 & 0xffff) | (Bits[0] & 0xffff0000);

Buffer[Word]=Data32;

}

else // A or C

{

Data32 = Buffer[Word];

Data32 = (Data32 & 0xffff0000) | (Bits[1] >> 16);

Buffer[Word]=Data32;

Word+=41;

Data32 = Buffer[Word];

Data32 = (Data32 & 0xffff0000) | (Bits[1] & 0xffff);

Buffer[Word]=Data32;

Word+=41;

Data32 = Buffer[Word];

Data32 = (Data32 & 0xffff0000) | (Bits[0] & 0xffff);

Buffer[Word]=Data32;

Word+=41;

Data32 = Buffer[Word];

Data32 = (Data32 & 0xffff0000) | (Bits[0] >> 16);

Buffer[Word]=Data32;

}

}

Status = XHwIcap_DeviceWrite4Frames(InstancePtr, Bottom, XHI_FAR_CLB_BLOCK,HClkRow, MajorAddr, MinorAddr, Buffer);

if (Status != XST_SUCCESS) {

printf("DeviceWrite4Frame failed:%d\n\r",Status);

return XST_FAILURE;

}

return XST_SUCCESS;

}

#endif

XStatus SetSRR16(XHwIcap *InstancePtr, int X, int Y,int LUT, Xuint16 SHRBits)

{

Xuint32 lutbits[2];

Xuint32 bits=0;

int i;

for(i=0; i<16 ;i++)

{

bits = (bits<<2) | ((SHRBits &(0x01<<i))>>i)<<1;

}

lutbits[0]=0;

lutbits[1]=bits;

return SetLUT(InstancePtr,X,Y,LUT,lutbits);

}

void DecodeSRR16(Xuint32 * Bits, Xuint16 SHRBits)

{

Xuint32 lutbits[2];
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Xuint32 bits=0;

int i;

for(i=0; i<16 ;i++)

{

bits = (bits<<2) | ((SHRBits &(0x01<<i))>>i)<<1;

}

Bits[0]=0;

Bits[1]=bits;

}

XStatus SetSRR32(XHwIcap *InstancePtr, int X, int Y,int LUT, Xuint32 SHRBits)

{

Xuint32 lutbits[2];

Xuint32 bits0=0;

Xuint32 bits1=0;

int i;

for(i=0; i<16 ;i++)

{

bits1 = (bits1<<2) | ((SHRBits &(0x01<<i))>>i)<<1;

//bits1 = (bits1<<2) | ((SHRBits>>i)&0x01)<<1;

}

for(i=16; i<32 ;i++)

{

bits0 = (bits0<<2) | ((SHRBits &(0x01<<i))>>i)<<1;

//bits0 = (bits0<<2) | ((SHRBits>>i)&0x01)<<1;

}

lutbits[0]=bits0;

lutbits[1]=bits1;

return SetLUT(InstancePtr,X,Y,LUT,lutbits);

}

void DecodeSRR32(Xuint32 * Bits, Xuint32 SHRBits)

{

Xuint32 lutbits[2];

Xuint32 bits0=0;

Xuint32 bits1=0;

int i;

for(i=0; i<16 ;i++)

{

bits1 = (bits1<<2) | ((SHRBits &(0x01<<i))>>i)<<1;

//bits1 = (bits1<<2) | ((SHRBits>>i)&0x01)<<1;

}

for(i=16; i<32 ;i++)

{

bits0 = (bits0<<2) | ((SHRBits &(0x01<<i))>>i)<<1;

//bits0 = (bits0<<2) | ((SHRBits>>i)&0x01)<<1;

}

Bits[0]=bits0;

Bits[1]=bits1;

}



Appendix C

Embedded System Source Code

This C program that runs on a MicroBlaze was used for testing the Cortex reconfigurability, different

Digital Neuron behaviours, and receiving and execution of reconfiguration commands from PC. It is

using the functions in appendix B
/*****************************************************************************

* Filename: configtest.c

* Version: 2.13.a

* Description: Source File for testing reconfiguration of the Cortex

* Author: Hooman Shayani

*****************************************************************************/

#define EN_UART_SELFTEST

#define EN_COL_CONFIG

//#define EN_FROMPC

//#define EN_CODE_SECTION_1

//#define EN_CODE_SECTION_2

#define EN_CODE_SECTION_3

//#define EN_CODE_SECTION_4

#include <stdio.h>

#include "xparameters.h"

#include "xenv_standalone.h"

#include "uartlite_header.h"

#include "xhwicap.h"

#include "hwicap_header.h"

#include "editlut.h"

#include "cortex.h"

#include "xuartlite.h"

#include "xuartlite_l.h"

static XHwIcap HwIcap;

XHwIcap *icapptr = &HwIcap;

Xuint16 CortexColBuff[3*120];

extern XUartLite UartLite;

extern int Xil_AssertWait;

void mydelay(int period);

void ConfigTestAxonalRouting(int i, int j);

inline void WriteSpikeOutWord(int SpikeInIndex, Xuint32 SpikeOutWord);

void ResetSpikeCounter(int SpikeInIndex);

int TestSomaResponse(int SpikeInIndex);

int GetSomaResponse(int SpikeInIndex);

void ProcessPCLink();

int main()

{

XCACHE_ENABLE_ICACHE();

XCACHE_ENABLE_DCACHE();

print("---Entering main---\n\r");
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Xil_AssertWait = FALSE;

/*

* Peripheral SelfTest will not be run for RS232_Uart_1

* because it has been selected as the STDOUT device

*/

// UART lite self test

#ifdef EN_UART_SELFTEST

{

XStatus status;

print("\r\nRunning UartLiteSelfTestExample() for mdm_0...\r\n");

status = UartLiteSelfTestExample(XPAR_MDM_0_DEVICE_ID);

if (status == 0) {

print("UartLiteSelfTestExample PASSED\r\n");

}

else {

print("UartLiteSelfTestExample FAILED\r\n");

}

/*

char Input;

int iii=0;

u8 testbuffer[20];

for(iii=0;iii<12;)

{

Input = //getchar();

XUartLite_RecvByte(STDIN_BASEADDRESS);

if (Input != EOF)

{

//xil_printf("%d\n\r", (int)Input);

testbuffer[iii++]=(char)Input;

}

}

xil_printf("hello world!");

xil_printf("done");*/

}

#endif

{

XStatus status;

print("\r\n Runnning HwIcapTestAppExample() for xps_hwicap_0...\r\n");

status = HwIcapTestAppExample(XPAR_XPS_HWICAP_0_DEVICE_ID);

if (status == 0) {

print("HwIcapTestAppExample PASSED\r\n");

}

else {

print("HwIcapTestAppExample FAILED\r\n");

}

}

//*********************************** FROM PC *************************************************

//the next section will get the config and sim commands from PC and returns the results to PC

//*********************************************************************************************

#ifdef EN_FROMPC

// ProcessPCLink();

#endif

//*********************************** CODE SECTION 1 *************************************************

// the following code configures the left most edge of the cortex as axon loop backs and tests the

// spike counters for all the 120 spike outs of the cortex. uncomment it and comment the other code sections

// that may be incompatible in order to use it.

#ifdef EN_CODE_SECTION_1 // code section 1 begins here. switch this to comment/uncomment the code section
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{

print("\n\rStarting Code section 1: testing spike counters and spike generation...\n\r");

ResetAndDisableCortexClock();

int j;

#ifdef EN_COL_CONFIG

ClearColBuff(CortexColBuff);

for(j=0; j<120 ; j++)

SetGlialColBuff(CortexColBuff,j,N,E,S,W,0,N,E,S,W,0,0);

ConfigCortexCol(0,CortexColBuff);

#else

for(j=0; j<120 ; j++)

{

ConfigGlialAxon(0,j,N,E,S,W);

ConfigGlialDend(0,j,N,E,S,W); //loopback both axons and dendrite signals on the leftmost edge of the cortex

}

#endif

EnableCortexClock();

int SpikeInIndex,b;

int n=36;

Xuint32 a;

for (SpikeInIndex=0; SpikeInIndex<120; SpikeInIndex++) //for each spike in

{

for(n=0; n<64;n++)

{

a=CORTEXIP_mReadSlaveReg0(XPAR_CORTEXIP_0_BASEADDR, 8*(SpikeInIndex/8)); //reset the counter

for (b=0; b<n;b++) //generate n pulses in that spike in

{

CORTEXIP_mWriteSlaveReg0(XPAR_CORTEXIP_0_BASEADDR,4*(SpikeInIndex/30),0x00000001<<(SpikeInIndex%30));

}

a=CORTEXIP_mReadSlaveReg0(XPAR_CORTEXIP_0_BASEADDR, 8*(SpikeInIndex/8)); //read and lock the rest

if((SpikeInIndex/4)%2==1) //if it is in the second half

a=CORTEXIP_mReadSlaveReg0(XPAR_CORTEXIP_0_BASEADDR, 4+8*(SpikeInIndex/8)); //read and lock the rest

a = (a>>(6*(SpikeInIndex%4))) & 0x3f;

if (a==n)

xil_printf("SpikeIn %d with %d pulses is OK \r",SpikeInIndex,n);

else{

xil_printf("\n\rSpikeIn %d is not working with %d pulses.********\r\n",SpikeInIndex,n);

return 1;

}

}

}

print("\rCode section 1 finished successfully: Spike counters and spike generation OK. \n\r");

}

#endif // code section 1 ends here

//************************ CODE SECTION 2 *******************************

//The following code configures the cortex to test synapses and different routings in the glial cells

#ifdef EN_CODE_SECTION_2 // code section 2 begins here, switch this to comment/uncomment

{

print("\n\rStarting Code section 2: testing axonal routing...\n\r");

int i,j,vectorindex,ii,jj;

int SpikeInIndex,b;

int n=36;

Xuint32 a;

char Params[8] = {-4,-4,-3,-3,3,3,4,4};

ResetAndDisableCortexClock();

//i=3; j=0;

for(i=0; i<10 ; i+=3)

for(j=0; j<CORTEXROWS ; j+=4)

{

ConfigTestAxonalRouting(i,j);

EnableCortexClock();

SpikeInIndex = j;
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for(n=0; n<64;n++) //testing axonal routing around the soma cell

{

a=CORTEXIP_mReadSlaveReg0(XPAR_CORTEXIP_0_BASEADDR, 8*(SpikeInIndex/8)); //reset the counter

for (b=0; b<n;b++) //generate n pulses in that spike in

{

CORTEXIP_mWriteSlaveReg0(XPAR_CORTEXIP_0_BASEADDR,4*(SpikeInIndex/30),0x00000001<<(SpikeInIndex%30));

}

int waitcounter;

for(waitcounter=0; waitcounter<10; waitcounter++) //kill some time to make sure that all pulses are received

;

a=CORTEXIP_mReadSlaveReg0(XPAR_CORTEXIP_0_BASEADDR, 8*(SpikeInIndex/8)); //read and lock the rest

if((SpikeInIndex/4)%2==1) //if it is in the second half

a=CORTEXIP_mReadSlaveReg0(XPAR_CORTEXIP_0_BASEADDR, 4+8*(SpikeInIndex/8)); //read and lock the rest

a = (a>>(6*(SpikeInIndex%4))) & 0x3f;

if (a==n)

xil_printf("Axonal rout around soma cell @(%d,%d) with %d pulses is OK \r",i+1,j,n);

else

{

xil_printf("\n\rAxonal route around soma cell at @(%d,%d) is not working with %d pulses.********\r\n",i+1,j,n);

return 1;

}

}

//testing dendritic routing and synapses around the soma cell

ResetAndDisableCortexClock();

ConfigGlialDend(i,j,S,D,N,W); //1

ConfigGlialSynapse(i,j,S,E,0);

ConfigGlialDend(i,(j+1)%CORTEXROWS,N,W,D,E); //2

if(i>0) ConfigGlialDend(i-1,(j+1)%CORTEXROWS,0,E,0,0);

ConfigGlialSynapse(i,(j+1)%CORTEXROWS,S,S,0);

ConfigGlialDend(i,(j+2)%CORTEXROWS,N,D,E,W); //3

ConfigGlialSynapse(i,(j+2)%CORTEXROWS,S,S,0);

ConfigGlialDend(i+1,(j+2)%CORTEXROWS,N,S,W,D); //4

ConfigGlialSynapse(i+1,(j+2)%CORTEXROWS,W,E,0);

ConfigGlialDend(i+2,(j+2)%CORTEXROWS,N,E,D,S); //5

ConfigGlialSynapse(i+2,(j+2)%CORTEXROWS,W,W,0);

ConfigGlialDend(i+2,(j+1)%CORTEXROWS,D,E,S,W); //6

ConfigGlialSynapse(i+2,(j+1)%CORTEXROWS,N,N,0);

ConfigGlialDend(i+2,(j)%CORTEXROWS,W,E,S,D); //7

ConfigGlialSynapse(i+2,(j)%CORTEXROWS,N,N,0);

ConfigGlialDend(i+2,(j-1+CORTEXROWS)%CORTEXROWS,D,E,S,N); //8

ConfigGlialSynapse(i+2,(j-1+CORTEXROWS)%CORTEXROWS,N,W,0);

ConfigGlialDend(i+1,(j-1+CORTEXROWS)%CORTEXROWS,W,N,S,D); //9

ConfigGlialSynapse(i+1,(j-1+CORTEXROWS)%CORTEXROWS,E,E,0);

ConfigGlialDend(i,(j-1+CORTEXROWS)%CORTEXROWS,E,D,S,W); //10

ConfigGlialSynapse(i,(j-1+CORTEXROWS)%CORTEXROWS,E,N,0);

if(i==0)

ConfigGlialAxon(i,j,W,0,0,E); //get the axonal output from the soma axon and keep the presynaptic axon connected to axonal input of the cortex

else

ConfigGlialAxon(i,(j-1+CORTEXROWS)%CORTEXROWS,E,0,0,N);

ConfigSomaParam(i+1,j,-16384,-1,0x0001,Params);//config the soma for a basic functionality

EnableCortexClock();

int TestVector[10][2]={{0,0},{0,1},{0,2},{1,2},{2,2},{2,1},{2,0},{2,-1},{1,-1},{0,-1}};

if((a=TestSomaResponse(j))!=0)

{

xil_printf("\n\rSoma cell at @(%d,%d) is not working with no synapse.********\r\n",i+1,j);

return 1;

}

ResetAndDisableCortexClock();

for(vectorindex=0; vectorindex<10; vectorindex++)
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{

ii=i+TestVector[vectorindex][0];

jj=(j+TestVector[vectorindex][1]+CORTEXROWS)%CORTEXROWS;

#ifdef EN_COL_CONFIG

ClearColBuff(CortexColBuff);

SetGlialColBuff(CortexColBuff,j+2, N,S,W,D,E,0,W,0,0,W, (ii==i+1) && (jj==j+2)? 0x7ff0 : 0);

SetSomaColBuff (CortexColBuff,j,-16384,-1,0x0001,Params,1,1,1,1,1,1);

SetGlialColBuff(CortexColBuff,(j-1+CORTEXROWS)%CORTEXROWS, W,N,S,D,E,0,0,0,E,E, (ii==i+1) && (jj==((j-1+CORTEXROWS)%CORTEXROWS))? 0x7ff0 : 0 );

ConfigCortexCol(i+1,CortexColBuff);

if(ii!=i+1)

ConfigGlialSynapseWeight(ii,jj,0x7ff0);

#else

ConfigSomaParam(i+1,j,-16384,-1,0x0001,Params);//config the soma for a basic functionality

ConfigGlialSynapseWeight(ii,jj,0x7ff0);

#endif

EnableCortexClock();

mydelay(100);

if((a=TestSomaResponse(j))!=1)

{

xil_printf("\n\rSoma @(%d,%d) with a synapse @(%d,%d). Sending %d spikes in it axon.********\r\n",i+1,j,ii,jj,a);

return 1;

}

ResetAndDisableCortexClock();

ConfigGlialSynapseWeight(ii,jj,0);

}

xil_printf("\rAll around soma cell @(%d,%d) are working OK. \r\n",i+1,j);

}

print("\rFinishing code section 2: Glial Cells are OK. \n\r");

}

#endif

//************************ CODE SECTION 3 *******************************

//The following code configures the second from bottom left soma cell for testing different behaviours and parameters

#ifdef EN_CODE_SECTION_3 // code section 3 begins here, switch this to comment/uncomment

{

print("\n\rStarting Code section 3: testing bottom left soma cell for different behaviours...\n\r");

int i,j;

int b;

Xuint32 a;

ResetAndDisableCortexClock();

i=0; j=4; //use the second soma cell so that all the spike ins can be used and connected to synapses around it.

{

ConfigGlialDend(i,j,S,D,N,W); //16

ConfigGlialSynapse(i,j,W,E,32);

ConfigGlialDend(i,(j+1)%CORTEXROWS,N,W,D,E); //32

ConfigGlialSynapse(i,(j+1)%CORTEXROWS,W,S,64);

ConfigGlialDend(i,(j+2)%CORTEXROWS,N,D,E,W); //64

ConfigGlialSynapse(i,(j+2)%CORTEXROWS,W,S,128);

ConfigGlialDend(i+1,(j+2)%CORTEXROWS,N,S,W,D); //128

ConfigGlialSynapse(i+1,(j+2)%CORTEXROWS,W,E,256);

ConfigGlialDend(i+2,(j+2)%CORTEXROWS,N,E,D,S); //256

ConfigGlialSynapse(i+2,(j+2)%CORTEXROWS,W,W,512);

ConfigGlialDend(i+2,(j+1)%CORTEXROWS,D,E,S,W); //512

ConfigGlialSynapse(i+2,(j+1)%CORTEXROWS,N,N,1024);

ConfigGlialDend(i+2,(j)%CORTEXROWS,W,E,S,D); //1

ConfigGlialSynapse(i+2,(j)%CORTEXROWS,S,N,2);

ConfigGlialDend(i+2,(j-1+CORTEXROWS)%CORTEXROWS,D,E,S,N); //2

ConfigGlialSynapse(i+2,(j-1+CORTEXROWS)%CORTEXROWS,W,W,4);

ConfigGlialDend(i+1,(j-1+CORTEXROWS)%CORTEXROWS,W,N,S,D); //4

ConfigGlialSynapse(i+1,(j-1+CORTEXROWS)%CORTEXROWS,W,E,8);

ConfigGlialDend(i,(j-1+CORTEXROWS)%CORTEXROWS,E,D,S,W); //8

ConfigGlialSynapse(i,(j-1+CORTEXROWS)%CORTEXROWS,W,N,16);
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//set the axons to get the 10 first axonal inputs of the cortex connected to the 10 synapse and first output from the used soma

ConfigGlialAxon(0,0,0,0,W,N);

ConfigGlialAxon(0,1,W,0,N,0);

ConfigGlialAxon(0,2,W,S,N,0);

ConfigGlialAxon(0,3,0,S,N,0);

ConfigGlialAxon(0,4,0,0,E,0);

ConfigGlialAxon(0,5,0,0,0,0);

ConfigGlialAxon(0,6,0,N,0,0);

ConfigGlialAxon(0,7,0,N,W,0);

ConfigGlialAxon(0,8,0,0,W,0);

ConfigGlialAxon(0,9,W,0,0,0);

ConfigGlialAxon(0,10,0,S,0,0);

ConfigGlialAxon(0,(-1+CORTEXROWS),0,N,0,0);

ConfigGlialAxon(1,2,W,0,0,0);

ConfigGlialAxon(1,3,0,S,0,0);

ConfigGlialAxon(1,6,0,N,0,0);

ConfigGlialAxon(1,7,0,0,W,0);

ConfigGlialAxon(1,10,0,W,0,0);

ConfigGlialAxon(1,(-1+CORTEXROWS),0,W,0,0);

ConfigGlialAxon(2,0,S,0,0,0);

ConfigGlialAxon(2,1,S,0,0,0);

ConfigGlialAxon(2,2,S,0,0,0);

ConfigGlialAxon(2,3,S,0,0,0);

ConfigGlialAxon(2,4,0,0,0,0);

ConfigGlialAxon(2,5,0,0,0,0);

ConfigGlialAxon(2,6,0,0,N,0);

ConfigGlialAxon(2,7,0,0,N,0);

ConfigGlialAxon(2,8,0,0,N,0);

ConfigGlialAxon(2,9,0,0,N,0);

ConfigGlialAxon(2,10,0,0,W,0);

ConfigGlialAxon(2,(-1+CORTEXROWS),W,0,0,0);

//char Params[8] = {-12,-12,-3,-3,0,0,12,12}; ConfigSomaParam(i+1,j,-8000,-1,32,Params);//class I

//char Params[8] = {-3,-4,-4,-4,3,3,-3,-4}; ConfigSomaParam(i+1,j,-32000,-1,2500,Params);//class II

//char Params[8] = {-14,-14,-14,-14,2,2,-2,-2}; ConfigSomaParam(i+1,j,-20000,-1,5,Params);//Tonic spiking

//char Params[8] = {-4,-4,-3,-3,1,1,4,4}; ConfigSomaParam(i+1,j,00,0,2048,Params);//Spike latency

//char Params[8] = {-4,-3,-3,-3,1,1,4,3}; ConfigSomaParam(i+1,j,00,0,2800,Params);//Integrator

char Params[8] = {-4,-4,-3,-3,3,3,4,4}; ConfigSomaParam(i+1,j,100,100,2048,Params); ConfigGlialSynapseWeight(i+2,(j+2)%CORTEXROWS,-1040);// bistability

EnableCortexClock();

mydelay(112);

b=2;

ResetSpikeCounter(j);

for(a = 0; a < 1024; a+=4)

{

//WriteSpikeOutWord(0,a);

#if 0 //class I and II excitability

CORTEXIP_mWriteSlaveReg0(XPAR_CORTEXIP_0_BASEADDR,0,a);

b=1;//2 clock each

b=1;//2 clock each

b=1;//2 clock each

b=1;//2 clock each

b=1;//2 clock each

b=1;//2 clock each

b=1;//2 clock each

b=1;//2 clock each

b=1;//2 clock each

b=1;//2 clock each

b=1;//2 clock each

b=1;//2 clock each

b=1;//2 clock each

b=1;//2 clock each

#endif

#if 0 //Tonic spiking

CORTEXIP_mWriteSlaveReg0(XPAR_CORTEXIP_0_BASEADDR,0,516);

b=1;

b=1;//2 clock each

b=1;//2 clock each

b=1;//2 clock each

b=1;//2 clock each

b=1;//2 clock each

b=1;//2 clock each

b=1;//2 clock each
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b=1;//2 clock each

b=1;//2 clock each

b=1;//2 clock each

b=1;//2 clock each

b=1;//2 clock each

b=1;//2 clock each

b=1;//2 clock each

#endif

#if 0 // spike latency

CORTEXIP_mWriteSlaveReg0(XPAR_CORTEXIP_0_BASEADDR,0,a<10?516:0);

b=1;//2 clock each

b=1;//2 clock each

b=1;//2 clock each

b=1;//2 clock each

b=1;//2 clock each

b=1;//2 clock each

b=1;//2 clock each

b=1;//2 clock each

#endif

#if 0 // Integrator

if(a<800)

{

if(a<40)

{

CORTEXIP_mWriteSlaveReg0(XPAR_CORTEXIP_0_BASEADDR,0, a<12 ?516:0);

b=1;

b=0;

}

else

{

CORTEXIP_mWriteSlaveReg0(XPAR_CORTEXIP_0_BASEADDR,0, a<52 ?516:0);

//b=1;

b=0;

}

}

else

{

if(a<896)

{

CORTEXIP_mWriteSlaveReg0(XPAR_CORTEXIP_0_BASEADDR,0, a<812 ?516:0);

b=0;

}

else

{

CORTEXIP_mWriteSlaveReg0(XPAR_CORTEXIP_0_BASEADDR,0, a<908 ?516:0);

b=1;

//b=0;

}

}

//b=0;//1 clock

#endif

#if 1 //bistability

if(a<764)

{

if(a<40)

{

CORTEXIP_mWriteSlaveReg0(XPAR_CORTEXIP_0_BASEADDR,0, a<4 ?516:0);

b=1;

b=0;

}

else

{

CORTEXIP_mWriteSlaveReg0(XPAR_CORTEXIP_0_BASEADDR,0, a<4 ?516:0);

//b=1;

b=0;

}

}

else

{

if(a<768)

{

CORTEXIP_mWriteSlaveReg0(XPAR_CORTEXIP_0_BASEADDR,0, a<768 ?260:0);

b=0;

}

else

{
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CORTEXIP_mWriteSlaveReg0(XPAR_CORTEXIP_0_BASEADDR,0, a<768 ?260:0);

b=1;

//b=0;

}

}

#endif

b=1;//2 clock each

//b=0;//1 clock each

//b=0;//adjusted to 2.24us per loop iteration = (38+18)*40ns which is the update cycle of the soma cell here in this dendritic loop config

}

/* if((a=GetSomaResponse(j))!=1)

{

xil_printf("\n\rSoma @(%d,%d) with a synapse @(%d,%d). Sending %d spikes in it axon.********\r\n",i+1,j,ii,jj,a);

return 1;

}*/

xil_printf("\rAll OK. \r\n",i+1,j);

}

print("\rFinishing code section 3: different parameter behaviours are OK. \n\r");

}

#endif

//************************ CODE SECTION 4 *******************************

//The following code configures a single soma unit at the bottom left (after the left edge column) corner

// of the cortex with only one synapse and monitor its axon and dendritic signals for soma and synapse verification.

// I used this to debug the soma and synapse cells

#ifdef EN_CODE_SECTION_4 // code section 4 begins here, switch this to comment/uncomment

{

print("\n\rStarting Code section 4: testing basic functionality of the soma unit at the bottom left...\n\r");

ResetAndDisableCortexClock();

ConfigGlialDend(0,0,0,W,0,D);

ConfigGlialAxon(0,0,0,0,0,E);

ConfigGlialSynapse(0,0,W,E,0x7ff0);

ConfigGlialDend(0,1,0,W,0,E); //extended loopback for monitoring

ConfigGlialAxon(0,1,0,0,0,0); //no axon routing

ConfigGlialDend(0,2,0,W,0,E); //extended loopback for monitoring

ConfigGlialAxon(0,2,0,0,0,0); //no axon routing

ConfigGlialDend(1,2,0,0,W,S); //extended loopback for monitoring

ConfigGlialAxon(1,2,0,0,0,0); //no axon routing

ConfigGlialDend(0,119,0,W,0,E); //extended loopback for monitoring

ConfigGlialAxon(0,119,0,0,0,0); //no axon routing

ConfigGlialDend(1,119,W,0,0,N); //extended loopback for monitoring

ConfigGlialAxon(1,119,0,0,0,0); //no axon routing

ConfigGlialDend(2,0,0,0,0,W); //immediate loopback

ConfigGlialAxon(2,0,0,0,0,0); //no axon routing

ConfigGlialDend(2,1,0,0,0,W); //immediate loopback

ConfigGlialAxon(2,1,0,0,0,0); //no axon routing

char Params[8] = //{15,15,15,15,15,15,15,15};

{-4,-4,-3,-3,3,3,4,4};

ConfigSomaParam(1,0,-16384,-1,0x0001,Params);//config the soma

print("waiting...\n\r");

int waitcounter;

for(waitcounter=0;waitcounter<5000000;waitcounter++)

;

EnableCortexClock();

for(waitcounter=0;waitcounter<1000;waitcounter++)

;
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print("sending a presynaptic spike...\n\r");

CORTEXIP_mWriteSlaveReg0(XPAR_CORTEXIP_0_BASEADDR,0,0x1); //send a single presynaptic spike

for(waitcounter=0;waitcounter<10;waitcounter++)

;

//CORTEXIP_mWriteSlaveReg0(XPAR_CORTEXIP_0_BASEADDR,0,0x1); //send another single presynaptic spike

for(waitcounter=0;waitcounter<1000000;waitcounter++)

;

print("Code section 4 finished successfully: Bottom left soma basic functionality OK.\n\r");

}

#endif //code section 4 ends here

print("\r\n---Exiting main---\n\r");

XCACHE_DISABLE_ICACHE();

XCACHE_DISABLE_DCACHE();

return 0;

}

void mydelay(int period)

{

int del;

for(del=0;del<period;del++)

;

}

//This function configs a verification axonal routing starting at i,j 4/1/2010

void ConfigTestAxonalRouting(int i, int j)

{

#ifdef EN_COL_CONFIG

//first col

ClearColBuff(CortexColBuff);

SetGlialColBuff(CortexColBuff,(j-1+CORTEXROWS)%CORTEXROWS,0,0,0,0,0, E,0,0,0,0, 0);

SetGlialColBuff(CortexColBuff,j,0,0,0,0,0, W,0,0,S,0, 0);

SetGlialColBuff(CortexColBuff,(j+1)%CORTEXROWS,0,0,0,0,0, S,0,0,0,0, 0);

SetGlialColBuff(CortexColBuff,(j+2)%CORTEXROWS,0,0,0,0,0, 0,S,0,0,0, 0);

ConfigCortexCol(0,CortexColBuff);

//col 1 to 11

int r;

for(r=1; r<12; r++)

{

ClearColBuff(CortexColBuff);

if(r>0 && r<i+2) //extensions of the axonal loop

{

SetGlialColBuff(CortexColBuff,(j+2)%CORTEXROWS,0,0,0,0,0, 0,W,0,0,0, 0);

SetGlialColBuff(CortexColBuff,(j-1+CORTEXROWS)%CORTEXROWS,0,0,0,0,0, E,0,0,E,0, 0);

}

if(i>0 && r==i){

SetGlialColBuff(CortexColBuff,j,0,0,0,0,0, S,0,E,0,0, 0);

SetGlialColBuff(CortexColBuff,j+1,0,0,0,0,0, S,0,0,0,0, 0);

}

if(i<7)

{

if(r==i+2)

{

SetGlialColBuff(CortexColBuff,(j-1+CORTEXROWS)%CORTEXROWS,0,0,0,0,0, 0,0,0,N,0, 0);

SetGlialColBuff(CortexColBuff,(j )%CORTEXROWS,0,0,0,0,0, 0,E,N,0,0, 0);

SetGlialColBuff(CortexColBuff,(j+1)%CORTEXROWS,0,0,0,0,0, 0,N,E,0,0, 0);

SetGlialColBuff(CortexColBuff,(j+2)%CORTEXROWS,0,0,0,0,0, W,N,E,0,0, 0);

SetGlialColBuff(CortexColBuff,(j+3)%CORTEXROWS,0,0,0,0,0, 0,S,E,0,0, 0);

}

if(r==i+3)

{

SetGlialColBuff(CortexColBuff,(j+1)%CORTEXROWS,0,0,0,0,0, N,0,W,S,0, 0);

SetGlialColBuff(CortexColBuff,(j+2)%CORTEXROWS,0,0,0,0,0, W,N,E,S,0, 0);

SetGlialColBuff(CortexColBuff,(j )%CORTEXROWS,0,0,0,0,0, W,0,0,N,0, 0);

SetGlialColBuff(CortexColBuff,(j+3)%CORTEXROWS,0,0,0,0,0, 0,0,S,W,0, 0);

}

if(r==i+4)

SetGlialColBuff(CortexColBuff,(j+2)%CORTEXROWS,0,0,0,0,0, 0,0,0,W,0, 0);
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}

else

{

if(r==i+2)

{

SetGlialColBuff(CortexColBuff,(j-1+CORTEXROWS)%CORTEXROWS,0,0,0,0,0, 0,0,0,N,0, 0);

SetGlialColBuff(CortexColBuff,(j )%CORTEXROWS,0,0,0,0,0, 0,0,N,0,0, 0);

SetGlialColBuff(CortexColBuff,(j+1)%CORTEXROWS,0,0,0,0,0, 0,0,N,0,0, 0);

SetGlialColBuff(CortexColBuff,(j+2)%CORTEXROWS,0,0,0,0,0, W,0,N,0,0, 0);

SetGlialColBuff(CortexColBuff,(j+3)%CORTEXROWS,0,0,0,0,0, 0,0,S,0,0, 0);

}

}

ConfigCortexCol(r,CortexColBuff);

}//next r

#else

ConfigGlialAxon(0,(j-1+CORTEXROWS)%CORTEXROWS,E,0,0,0);

ConfigGlialAxon(0,j,W,0,0,S);

ConfigGlialAxon(0,(j+1)%CORTEXROWS,S,0,0,0);

ConfigGlialAxon(0,(j+2)%CORTEXROWS,0,S,0,0);

int r;

for(r=1; r<i+2; r++)

{

ConfigGlialAxon(r,(j+2)%CORTEXROWS,0,W,0,0);

ConfigGlialAxon(r,(j-1+CORTEXROWS)%CORTEXROWS,E,0,0,E);

}

if(i>0){

ConfigGlialAxon(i,j,S,0,E,0);

ConfigGlialAxon(i,j+1,S,0,0,0);

}

if(i<7)

{

ConfigGlialAxon(i+2,(j-1+CORTEXROWS)%CORTEXROWS,0,0,0,N);

ConfigGlialAxon(i+2,(j )%CORTEXROWS,0,E,N,0);

ConfigGlialAxon(i+2,(j+1)%CORTEXROWS,0,N,E,0);

ConfigGlialAxon(i+2,(j+2)%CORTEXROWS,W,N,E,0);

ConfigGlialAxon(i+2,(j+3)%CORTEXROWS,0,S,E,0);

ConfigGlialAxon(i+3,(j )%CORTEXROWS,W,0,0,N);

ConfigGlialAxon(i+3,(j+1)%CORTEXROWS,N,0,W,S);

ConfigGlialAxon(i+3,(j+2)%CORTEXROWS,W,N,E,S);

ConfigGlialAxon(i+3,(j+3)%CORTEXROWS,0,0,S,W);

ConfigGlialAxon(i+4,(j+2)%CORTEXROWS,0,0,0,W);

}

else

{

ConfigGlialAxon(i+2,(j-1+CORTEXROWS)%CORTEXROWS,0,0,0,N);

ConfigGlialAxon(i+2,(j )%CORTEXROWS,0,0,N,0);

ConfigGlialAxon(i+2,(j+1)%CORTEXROWS,0,0,N,0);

ConfigGlialAxon(i+2,(j+2)%CORTEXROWS,W,0,N,0);

ConfigGlialAxon(i+2,(j+3)%CORTEXROWS,0,0,S,0);

}

#endif

}

inline void WriteSpikeOutWord(int SpikeInIndex, Xuint32 SpikeOutWord)

{

CORTEXIP_mWriteSlaveReg0(XPAR_CORTEXIP_0_BASEADDR,4*(SpikeInIndex/30),SpikeOutWord);

}

void ResetSpikeCounter(int SpikeInIndex)

{

CORTEXIP_mReadSlaveReg0(XPAR_CORTEXIP_0_BASEADDR, 8*(SpikeInIndex/8)); //reset the counter

}

int GetSomaResponse(int SpikeInIndex)

{

Xuint32 a;

a=CORTEXIP_mReadSlaveReg0(XPAR_CORTEXIP_0_BASEADDR, 8*(SpikeInIndex/8)); //read and lock the rest

if((SpikeInIndex/4)%2==1) //if it is in the second half

a=CORTEXIP_mReadSlaveReg0(XPAR_CORTEXIP_0_BASEADDR, 4+8*(SpikeInIndex/8)); //read the rest

return (a>>(6*(SpikeInIndex%4))) & 0x3f;
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}

int TestSomaResponse(int SpikeInIndex) //testing soma with 0-64 presynaptic spikes

{

//int b;

Xuint32 a;

a=CORTEXIP_mReadSlaveReg0(XPAR_CORTEXIP_0_BASEADDR, 8*(SpikeInIndex/8)); //reset the counter

//for (b=0; b<n;b++) //generate n pulses in that spike in

//{

CORTEXIP_mWriteSlaveReg0(XPAR_CORTEXIP_0_BASEADDR,4*(SpikeInIndex/30),0x00000001<<(SpikeInIndex%30));

//}

int waitcounter;

for(waitcounter=0; waitcounter<2000; waitcounter++) //kill some time to make sure that all pulses are received

;

a=CORTEXIP_mReadSlaveReg0(XPAR_CORTEXIP_0_BASEADDR, 8*(SpikeInIndex/8)); //read and lock the rest

//CORTEXIP_mWriteSlaveReg0(XPAR_CORTEXIP_0_BASEADDR,4*(SpikeInIndex/30),0x00000001<<(SpikeInIndex%30));//send another spike for debuging

if((SpikeInIndex/4)%2==1) //if it is in the second half

a=CORTEXIP_mReadSlaveReg0(XPAR_CORTEXIP_0_BASEADDR, 4+8*(SpikeInIndex/8)); //read the rest

return (a>>(6*(SpikeInIndex%4))) & 0x3f;

}

/*

int main()

{

XHwIcap_DeviceWriteFrame()

XCACHE_ENABLE_ICACHE();

XCACHE_ENABLE_DCACHE();

print("---Entering main---\n\r");

{

int status;

print("\r\nRunning UartLiteSelfTestExample() for mdm_0...\r\n");

status = UartLiteSelfTestExample(XPAR_MDM_0_DEVICE_ID);

if (status == 0) {

print("UartLiteSelfTestExample PASSED\r\n");

}

else {

print("UartLiteSelfTestExample FAILED\r\n");

}

}

{

XStatus status;

print("\r\n Running HwIcapTestAppExample() for xps_hwicap_0...\r\n");

status = HwIcapTestAppExample(XPAR_XPS_HWICAP_0_DEVICE_ID);

if (status == 0) {

print("HwIcapTestAppExample PASSED\r\n");

}

else {

print("HwIcapTestAppExample FAILED\r\n");

}

}

print("---Exiting main---\n\r");

XCACHE_DISABLE_ICACHE();

XCACHE_DISABLE_DCACHE();

return 0;
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}

*/

#define APATERN 0x44444444

#define NAPATERN 0xbbbbbbbb

#define BPATERN 0x88888888

#define NBPATERN 0x77777777

#define RPATERN 0x22222222

#define OPATMASK 0x00fC0000

//this function processes the commands from the PC and executes them

void ProcessPCLink()

{

u8 Command,LastCommand, Col, CheckSum, AInterval, BInterval, t,f,l;

u8 MinTime, MaxTime;

u8 Timings[50];

int b;

Xuint32 IPatern;

Xuint32 OPatern;

int TimingIndex;

LastCommand = 0;

while(1)

{

Command = XUartLite_RecvByte(STDIN_BASEADDRESS);

u8 * p;

if( Command == ’c’) //config

{

Col = XUartLite_RecvByte(STDIN_BASEADDRESS); //col number

/*while (XUartLite_IsReceiveEmpty(STDIN_BASEADDRESS))

;

counter = XUartLite_Recv(&UartLite,(u8 *) CortexColBuff, (unsigned int)720);*/

for(p=(u8*)CortexColBuff; p<((u8*)CortexColBuff+720) ; p++)

(*p)=XUartLite_RecvByte(STDIN_BASEADDRESS);

CheckSum = XUartLite_RecvByte(STDIN_BASEADDRESS);

int i;

u8 * charbuff = (u8 *) CortexColBuff;

for(i=0, CheckSum+=Col+Command ; i<720 ; i++)

{

CheckSum += charbuff[i];

}

if(CheckSum == 0)

{

if(LastCommand!=’c’)

ResetAndDisableCortexClock();

if(ConfigCortexCol(Col,CortexColBuff)==XST_SUCCESS)

{

xil_printf("o");

//EnableCortexClock();

}

else

xil_printf("e");

}

else

xil_printf("c");

}

if( Command == ’s’) //simulation

{

CheckSum = Command;

CheckSum += (AInterval = XUartLite_RecvByte(STDIN_BASEADDRESS)); //first spike interval

CheckSum += (BInterval = XUartLite_RecvByte(STDIN_BASEADDRESS)); //second spike interval

CheckSum += XUartLite_RecvByte(STDIN_BASEADDRESS); //checksum

if(CheckSum==0) //no error

{

//ResetAndDisableCortexClock();

EnableCortexClock();

OPatern=CORTEXIP_mReadSlaveReg0(XPAR_CORTEXIP_0_BASEADDR, 0); //reset the counter

IPatern=0;

CORTEXIP_mWriteSlaveReg0(XPAR_CORTEXIP_0_BASEADDR,0, RPATERN |((AInterval==0)?APATERN:0) | ((BInterval==0)?BPATERN:0));

b=2;//wait for 2 clock cycles

b=2;//wait for 2 clock cycles

for(t=1; t<255 ; t++)

{

if(t==AInterval)

IPatern |= APATERN;
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else

IPatern &= NAPATERN;

if(t==BInterval)

IPatern |= BPATERN;

else

IPatern &= NBPATERN;

CORTEXIP_mWriteSlaveReg0(XPAR_CORTEXIP_0_BASEADDR,0, IPatern);

// b=0;//wait for 1 clock

// b=2;//wait for 2 clock cycles

// b=1;//2 clock each

// b=1;//2 clock each

// b=1;//2 clock each

// b=1;//2 clock each

OPatern=CORTEXIP_mReadSlaveReg0(XPAR_CORTEXIP_0_BASEADDR,0);

if((OPatern /*& OPATMASK*/)!=0)

break;

}

CheckSum = ’o’;

XUartLite_SendByte(STDOUT_BASEADDRESS,CheckSum); //sends ’o’

XUartLite_SendByte(STDOUT_BASEADDRESS,t); //sends output spike time t

CheckSum+=t;

CheckSum = (u8)(-(char)CheckSum);

XUartLite_SendByte(STDOUT_BASEADDRESS,CheckSum); //send the checksum

}

else

{

xil_printf("c");// checksum error

}

}//end if command==s

if( Command == ’a’) //an automatic series of simulations

{

CheckSum = Command;

CheckSum += (MinTime = XUartLite_RecvByte(STDIN_BASEADDRESS)); //earliest input spike interval

CheckSum += (MaxTime = XUartLite_RecvByte(STDIN_BASEADDRESS)); //latest input spike interval

CheckSum += XUartLite_RecvByte(STDIN_BASEADDRESS); //checksum

if(CheckSum==0) //no error

{

TimingIndex=0;

for(AInterval=MinTime; AInterval<=MaxTime; AInterval++)

{

for(BInterval=MinTime; BInterval<=MaxTime; BInterval++)

{

//ResetAndDisableCortexClock();

EnableCortexClock();

//OPatern=CORTEXIP_mReadSlaveReg0(XPAR_CORTEXIP_0_BASEADDR, 0);

IPatern=0;

f=255;

l=255;

CORTEXIP_mWriteSlaveReg0(XPAR_CORTEXIP_0_BASEADDR,0, RPATERN |((AInterval==0)?APATERN:0) | ((BInterval==0)?BPATERN:0));

OPatern=CORTEXIP_mReadSlaveReg0(XPAR_CORTEXIP_0_BASEADDR, 0);//reset the counter

OPatern=CORTEXIP_mReadSlaveReg0(XPAR_CORTEXIP_0_BASEADDR, 0);//reset the counter

for(t=1; t<255 ; t++)

{

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");
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asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

if(t==AInterval)

IPatern |= APATERN;

else

IPatern &= NAPATERN;

if(t==BInterval)

IPatern |= BPATERN;

else

IPatern &= NBPATERN;

CORTEXIP_mWriteSlaveReg0(XPAR_CORTEXIP_0_BASEADDR,0, IPatern);

OPatern=CORTEXIP_mReadSlaveReg0(XPAR_CORTEXIP_0_BASEADDR, 0);

if( ((OPatern & OPATMASK) !=0) && t<f)

f=t;

}//next sim

if(f < 10) //if early spike

f=255; //send worst case timing code 255

//else if(l<255 && f==255)

//f=254;

Timings[TimingIndex++]=f;

}//next BInterval

}//next Avterval

CheckSum = ’o’;

XUartLite_SendByte(STDOUT_BASEADDRESS,CheckSum); //sends ’o’

for(TimingIndex=0; TimingIndex<50; TimingIndex++)

{

XUartLite_SendByte(STDOUT_BASEADDRESS,Timings[TimingIndex]); //sends output spike time t

CheckSum+=Timings[TimingIndex];

}

CheckSum = (u8)(-(char)CheckSum);

XUartLite_SendByte(STDOUT_BASEADDRESS,CheckSum); //send the checksum

}
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else

{

xil_printf("c");// checksum error

}

}//end if command==a

LastCommand = Command;

}

}

/*****************************************************************************

* Filename: cortex.h

* Version: 2.17.a

* Description: Header File for reconfiguration of the Cortex

* Author: Hooman Shayani

*****************************************************************************/

#ifndef CORTEX_H_

#define CORTEX_H_

#define N 1

#define E 2

#define S 3

#define W 4

#define D 5

#define CORTEXCOLS 12

#define CORTEXROWS 120

#define YSOMA2SOMA 4 // vertical displacement between somas in a col >2

#define XSOMA2SOMA 3 // horizontal displacement between somas in a row >1

#define IOSOMAGAP 1 // space between iocells and first col of soma cells

#define YSOMASHIFT 0 // vertical shift of the somas in two neighbouring cols

XStatus EnableCortexClock(void);

XStatus DisableCortexClock(void);

XStatus ResetAndDisableCortexClock(void);

XStatus ConfigGlialAxon(int cellx, int celly,char NX, char EX, char SX, char WX);

XStatus ConfigGlialDend(int cellx, int celly,char NX, char EX, char SX, char WX);

XStatus ConfigGlialSynapse(int cellx, int celly,char XI, char DI, Xint32 Weight);

XStatus ConfigGlialSynapseWeight(int cellx, int celly, Xint32 Weight);

XStatus ConfigSomaParam(int cellx, int celly, Xint16 VReset, Xint16 VStart, Xint16 VBias, char *Params);

XStatus ConfigCortexCol(int colx, Xuint16 *Data);

int CortexSomaPlacement(int x , int y, int h);

XStatus ClearColBuff(Xuint16 *ColBuff);

XStatus SetGlialColBuff(Xuint16 *ColBuff,int Glialy , char ND,char ED,char SD,char WD,char DI, char NX,char EX,char SX,char WX,char XI, Xint16 SynWeight);

XStatus SetSomaColBuff(Xuint16 *ColBuff,int Somay , Xint16 V_Reset, Xint16 V_Start, Xint16 V_Bias, char *Params, char ND, char UED, char LED, char SD, char LWD, char UWD);

#endif /*CORTEX_H_*/

/*****************************************************************************

* Filename: cortex.c

* Version: 2.56.a

* Description: Source File for reconfiguration of the Cortex

* Author: Hooman Shayani

*****************************************************************************/

#include "xbasic_types.h"

#include "xstatus.h"

#include "xparameters.h"

#include "editlut.h"

#include "cortex.h"

extern XHwIcap *icapptr;

extern Xuint32 Buffer[250];

XStatus EnableCortexClock(void)

{
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CORTEXIP_mWriteSlaveReg4(XPAR_CORTEXIP_0_BASEADDR,0,0x01);

return XST_SUCCESS;

}

XStatus DisableCortexClock(void)

{

CORTEXIP_mWriteSlaveReg4(XPAR_CORTEXIP_0_BASEADDR,0,0x00);

return XST_SUCCESS;

}

XStatus ResetAndDisableCortexClock(void)

{

CORTEXIP_mWriteSlaveReg4(XPAR_CORTEXIP_0_BASEADDR,0,0x03);

CORTEXIP_mWriteSlaveReg4(XPAR_CORTEXIP_0_BASEADDR,0,0x02);

CORTEXIP_mWriteSlaveReg4(XPAR_CORTEXIP_0_BASEADDR,0,0x00);

return XST_SUCCESS;

}

XStatus ConfigGlialAxon(int cellx, int celly,char NX, char EX, char SX, char WX)

{

int x,y;

static Xuint32 axondecode[6]={0x00000000,0xAAAAAAAA,0xCCCCCCCC,0xF0F0F0F0,0xFF00FF00,0xFFFF0000};

// none North East South West DO

//ASSERT(cellx>=0 && cellx<12);

//ASSERT(celly>=0 && celly<120);

x=12+4*cellx+1;

y=celly;

Xuint32 bits[2];

bits[0]=axondecode[NX];bits[1]=axondecode[EX];

if(SetLUT(icapptr,x,y,LUTC,bits)!=XST_SUCCESS)//set LUTMUXX0

return XST_FAILURE;

bits[0]=axondecode[SX];bits[1]=axondecode[WX];

if(SetLUT(icapptr,x,y,LUTD,bits)!=XST_SUCCESS)//set LUTMUXX1

return XST_FAILURE;

return XST_SUCCESS;

}

XStatus ConfigGlialDend(int cellx, int celly,char NX, char EX, char SX, char WX)

{

int x,y;

static Xuint32 denddecode[6]={0x00000000,0xAAAAAAAA,0xCCCCCCCC,0xF0F0F0F0,0xFF00FF00,0xFFFF0000};

// none North East South West DO

//ASSERT(cellx>=0 && cellx<12);

//ASSERT(celly>=0 && celly<120);

x=12+4*cellx+1;

y=celly;

Xuint32 bits[2];

bits[0]=denddecode[NX];bits[1]=denddecode[EX];

if(SetLUT(icapptr,x,y,0,bits)!=XST_SUCCESS)//set LUTMUXD0

return XST_FAILURE;

bits[0]=denddecode[SX];bits[1]=denddecode[WX];

if(SetLUT(icapptr,x,y,1,bits)!=XST_SUCCESS)//set LUTMUXD1

return XST_FAILURE;

return XST_SUCCESS;

}

XStatus ConfigGlialSynapse(int cellx, int celly,char XI, char DI, Xint32 Weight)

{

int x,y;

static Xuint32 syndecode[5]={0x0000,0xAAAAAAAA,0xCCCCCCCC,0xF0F0F0F0,0xFF00FF00};

// none North East South West

//ASSERT(cellx>=0 && cellx<12);

//ASSERT(celly>=0 && celly<120);

x=12+4*cellx;

y=celly;

Xuint32 bits[2];

bits[0]=0;bits[1]=syndecode[DI];

SetLUT(icapptr,x,y,2,bits);//set LUTMUXSD
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bits[0]=0;bits[1]=syndecode[XI];

SetLUT(icapptr,x,y,3,bits);//set LUTMUXSX

SetSRR16(icapptr,x,y,0,Weight);//set weight reg

SetSRR16(icapptr,x,y,1,0x8000);//set control reg

//SetSRR16(icapptr,x,y,1,0x0001);//set control reg

return XST_SUCCESS;

}

XStatus ConfigGlialSynapseWeight(int cellx, int celly, Xint32 Weight)

{

int x,y;

x=12+4*cellx;

y=celly;

SetSRR16(icapptr,x,y,0,Weight);//set weight reg

SetSRR16(icapptr,x,y,1,0x8000);//set control reg

return XST_SUCCESS;

}

XStatus ConfigSomaParam(int cellx, int celly, Xint16 VReset, Xint16 VStart, Xint16 VBias, char *Params)

{

int x,y;

int i;

x=12+4*cellx;

y=celly; //calculate slice x and y

Xuint32 bits[2];

Xuint32 a,b;

char c;

//Set all dendritic MUXs to the external loop as the muxs are redundant!

bits[0]=0xCCCCCCCC; bits[1]=0xFF00FF00;

//bits[0]=0xAAAAAAAA; bits[1]=0xF0F0F0F0;

SetLUT(icapptr,x+1,y,LUTB,bits);//set LUTMUX0

SetLUT(icapptr,x+1,y,LUTC,bits);//set LUTMUX1

SetLUT(icapptr,x+1,y,LUTD,bits);//set LUTMUX2

//Set Param LUTs

for(i=0,a=0; i<8 ; i++)

a = (a<<1) | ((Params[i]<0) ? 0x01 : 0);

bits[0]=0; bits[1]=a|(a<<8)|(a<<16)|(a<<24);

SetLUT(icapptr,x+1,y+1,LUTB,bits);//set ParamLUT2

for(i=0,a=0,b=0; i<8 ; i++)

{

c = 15-abs(Params[i]);

a = (a<<1) | ((c & 0x04)? 0x01 : 0);

b = (b<<1) | ((c & 0x08)? 0x01 : 0);

}

bits[0]=a|(a<<8)|(a<<16)|(a<<24); bits[1]=b|(b<<8)|(b<<16)|(b<<24);

SetLUT(icapptr,x+1,y+1,LUTC,bits);//set ParamLUT1

for(i=0,a=0,b=0; i<8 ; i++)

{

c = 15-abs(Params[i]);

a = (a<<1) | ((c & 0x01)? 0x01 : 0);

b = (b<<1) | ((c & 0x02)? 0x01 : 0);

}

bits[0]=a|(a<<8)|(a<<16)|(a<<24); bits[1]=b|(b<<8)|(b<<16)|(b<<24);

SetLUT(icapptr,x+1,y+1,LUTD,bits);//set ParamLUT0

SetSRR32(icapptr,x,y+1,LUTA,(VReset&0xffff)|(((Xint32)VStart)<<16)); //set BuffReg to 0xVRSTVRST

SetSRR16(icapptr,x,y+1,LUTB,0x4000); //set CtrlReg to 0x00000002

SetSRR16(icapptr,x,y+1,LUTC,0x4000); //set TapCtrlReg to 0x00000002

SetSRR16(icapptr,x,y+1,LUTD,0x0000); //set TapReg to 0x00000000

SetSRR16(icapptr,x,y,LUTA,0x0000); //set PaddingReg to 0x00000000

SetSRR32(icapptr,x,y,LUTB,((Xuint32) VBias)<<6); //set BiasReg to VBias

SetSRR32(icapptr,x,y,LUTC,0x00000020); //set BiasCtrlReg to 0x04000000

return XST_SUCCESS;

}
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//This function is a clone of a function with the same name in the Cortex.vhdl and works in the same way

int CortexSomaPlacement(int x , int y, int h)

{

int col = 0;

int ret = 0;

if(x>=IOSOMAGAP) // if has passed the initial gap with iocells

{

col = (x-IOSOMAGAP)/XSOMA2SOMA;

if ((x-IOSOMAGAP) % XSOMA2SOMA == 0 ) //if in the right col

{

if ((y-col*YSOMASHIFT) % YSOMA2SOMA == 0 ) // if it is the lower soma

ret = 1;

if ((y-1-col*YSOMASHIFT) % YSOMA2SOMA == 0 ) // if it is the upper soma

ret= 2;

}

}

// avoid having a soma cell splited by the wrap around line

if ((y==0 && (y-1-col*YSOMASHIFT % YSOMA2SOMA) == 0) || (y==h-1 && (y-col*YSOMASHIFT % YSOMA2SOMA) == 0) )

// if an upper soma is in y=0 or an lower soma is in y=h-1

ret= 0;

return ret;

}

XStatus ConfigCortexCol(int col, Xuint16 *Data)

{

static Xuint32 denddecode[6]={0x00000000,0xAAAAAAAA,0xCCCCCCCC,0xF0F0F0F0,0xFF00FF00,0xFFFF0000};

// none North East South West DO

static Xuint32 syndecode[5]={0x0000,0xAAAAAAAA,0xCCCCCCCC,0xF0F0F0F0,0xFF00FF00};

// none North East South West

int y,yInZone,word;

int somacase;

XStatus Status;

long Bottom;

int ClkZone;

long HClkRow;

long MajorAddr = 0;

long MinorAddr;

u16 * Skips = icapptr->SkipCols;

int colx=6+2*col+1;

Xuint16 Data1,Data2,Data3;

Xuint32 ALUT[2],BLUT[2],CLUT[2],DLUT[2];

while(colx > *(Skips++))

MajorAddr++;

MajorAddr+=colx;

for(ClkZone = 0 ; ClkZone < 6 ; ClkZone++)

{

Bottom = (ClkZone<3)? 1 : 0;

HClkRow = ClkZone+ (Bottom?(CORTEXROWS/20-1)-(ClkZone<<1): 0) - (CORTEXROWS/40);

//Read the left slices of the col

MinorAddr = 32; // left slice

Status = XHwIcap_DeviceRead2Frames(icapptr, Bottom, XHI_FAR_CLB_BLOCK,HClkRow, MajorAddr, MinorAddr+2, &Buffer[82]);

if (Status != XST_SUCCESS) {

printf("DeviceReadFrame failed:%d\n\r",Status);

return XST_FAILURE;

}

Status = XHwIcap_DeviceRead2Frames(icapptr, Bottom, XHI_FAR_CLB_BLOCK,HClkRow, MajorAddr, MinorAddr, Buffer);

if (Status != XST_SUCCESS) {

printf("DeviceReadFrame failed:%d\n\r",Status);

return XST_FAILURE;

}

for(yInZone=0; yInZone< 20; yInZone++)

{

y=yInZone+ClkZone*20;

Data1 = Data[y*3];

Data2 = Data[y*3+1];
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Data3 = Data[y*3+2];

word = 42+yInZone*2+ ((yInZone>9)?1:0);

switch(CortexSomaPlacement(col,y,120))

{

case 0: //a glial cell

DecodeSRR16(ALUT,Data3); //synapse weight reg

Translate(ALUT);

DecodeSRR16(BLUT,0x8000); //synapse control reg

Translate(BLUT);

CLUT[0] = 0;

CLUT[1] = syndecode[ (Data1>>12) & 0x0007 ]; //D

Translate(CLUT);

DLUT[0] = 0;

DLUT[1] = syndecode[ (Data2>>12) & 0x0007 ]; //Dx

Translate(DLUT);

break;

case 1: // a soma cell lower half

DecodeSRR16(ALUT,0x0000); //set PaddingReg to 0x00000000

Translate(ALUT);

DecodeSRR32(BLUT,((Xuint32) Data3)<<6); //set BiasReg to VBias

Translate(BLUT);

DecodeSRR32(CLUT,0x00000020); //set BiasCtrlReg to 0x04000000

Translate(CLUT);

DLUT[0]=0; //empty

DLUT[1]=0;

Translate(DLUT);

break;

case 2: // a soma cell upper half

DecodeSRR32(ALUT,Data[(y-1)*3]|(((Xint32)Data[(y-1)*3+1])<<16)); //set BuffReg to 0xVRSTVRST

Translate(ALUT);

DecodeSRR16(BLUT,0x4000); //set CtrlReg to 0x00000002

Translate(BLUT);

DecodeSRR16(CLUT,0x4000); //set TapCtrlReg to 0x00000002

Translate(CLUT);

DecodeSRR16(DLUT,0x0000); //set TapReg to 0x00000000

Translate(DLUT);

break;

default:

printf("*************Wrong value returned by CortexSomaPlacement()!\n\r");

break;

}

if(Buffer[word] != ((BLUT[0]<<16) | (ALUT[0] & 0xffff)))

Buffer[word] = (BLUT[0]<<16) | (ALUT[0] & 0xffff);

if(Buffer[word+1] != ((DLUT[0]<<16) | (CLUT[0] & 0xffff)))

Buffer[word+1] = (DLUT[0]<<16) | (CLUT[0] & 0xffff);

if(Buffer[word+41] != ((BLUT[0] & 0xffff0000) | (ALUT[0]>>16)))

Buffer[word+41] = (BLUT[0] & 0xffff0000) | (ALUT[0]>>16);

if(Buffer[word+42] != ((DLUT[0] & 0xffff0000) | (CLUT[0]>>16)))

Buffer[word+42] = (DLUT[0] & 0xffff0000) | (CLUT[0]>>16);

if(Buffer[word+82] != ((BLUT[1]<<16) | (ALUT[1] & 0xffff)))

Buffer[word+82] = (BLUT[1]<<16) | (ALUT[1] & 0xffff);

if(Buffer[word+83] != ((DLUT[1]<<16) | (CLUT[1] & 0xffff)))

Buffer[word+83] = (DLUT[1]<<16) | (CLUT[1] & 0xffff);

if(Buffer[word+123]!= ((BLUT[1] & 0xffff0000) | (ALUT[1]>>16)))

Buffer[word+123]= (BLUT[1] & 0xffff0000) | (ALUT[1]>>16);

if(Buffer[word+124]!= ((DLUT[1] & 0xffff0000) | (CLUT[1]>>16)))

Buffer[word+124]= (DLUT[1] & 0xffff0000) | (CLUT[1]>>16);

}//next y in zone

//write back
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Status = XHwIcap_DeviceWrite4Frames(icapptr, Bottom, XHI_FAR_CLB_BLOCK,HClkRow, MajorAddr, MinorAddr, Buffer);

if (Status != XST_SUCCESS) {

printf("DeviceWrite4Frame failed:%d\n\r",Status);

return XST_FAILURE;

}

//Read the right slices of the col

MinorAddr = 26; // right slice

Status = XHwIcap_DeviceRead2Frames(icapptr, Bottom, XHI_FAR_CLB_BLOCK,HClkRow, MajorAddr, MinorAddr+2, &Buffer[82]);

if (Status != XST_SUCCESS) {

printf("DeviceReadFrame failed:%d\n\r",Status);

return XST_FAILURE;

}

Status = XHwIcap_DeviceRead2Frames(icapptr, Bottom, XHI_FAR_CLB_BLOCK,HClkRow, MajorAddr, MinorAddr, Buffer);

if (Status != XST_SUCCESS) {

printf("DeviceReadFrame failed:%d\n\r",Status);

return XST_FAILURE;

}

for(yInZone=0; yInZone< 20; yInZone++)

{

y=yInZone+ClkZone*20;

Data1 = Data[y*3];

Data2 = Data[y*3+1];

Data3 = Data[y*3+2];

word = 42+yInZone*2+ ((yInZone>9)?1:0);

switch(somacase=CortexSomaPlacement(col,y,120))

{

case 0: //a glial cell

ALUT[0]=denddecode[Data1 & 0x0007]; //N

ALUT[1]=denddecode[(Data1>>3) & 0x0007]; //E

Translate(ALUT);

BLUT[0]=denddecode[(Data1>>6) & 0x0007]; //S

BLUT[1]=denddecode[(Data1>>9) & 0x0007]; //W

Translate(BLUT);

CLUT[0]=denddecode[Data2 & 0x0007]; //NX

CLUT[1]=denddecode[(Data2>>3) & 0x0007]; //EX

Translate(CLUT);

DLUT[0]=denddecode[(Data2>>6) & 0x0007]; //SX

DLUT[1]=denddecode[(Data2>>9) & 0x0007]; //WX

Translate(DLUT);

break;

case 1: // a soma cell lower half

Data3= Data[(y+1)*3+2];

BLUT[0]=(Data3 & 0x01)? 0xCCCCCCCC : 0xAAAAAAAA;//UEO

BLUT[1]=(Data3 & 0x02)? 0xFF00FF00 : 0xF0F0F0F0;//LEO

CLUT[0]=(Data3 & 0x04)? 0xCCCCCCCC : 0xAAAAAAAA;//SO

CLUT[1]=(Data3 & 0x08)? 0xFF00FF00 : 0xF0F0F0F0;//LWO

DLUT[0]=(Data3 & 0x10)? 0xCCCCCCCC : 0xAAAAAAAA;//UWO

DLUT[1]=(Data3 & 0x20)? 0xFF00FF00 : 0xF0F0F0F0;//DI

Translate(BLUT);

Translate(CLUT);

Translate(DLUT);

break;

case 2: // a soma cell upper half

BLUT[0] = 0; //empty half of the ParamLUT2 (O5) feeds GND line for the soma cell!

Xuint32 DataTemp = (Data3&0xff00) | (Data3>>8);

BLUT[1] = DataTemp | (DataTemp<<16); //ParamLUT2 O6

DataTemp = (Data2&0xff) | ((Data2&0xff)<<8);

CLUT[0] = DataTemp | (DataTemp<<16); //ParamLUT1 O5

DataTemp = (Data2&0xff00) | (Data2>>8);

CLUT[1] = DataTemp | (DataTemp<<16); //ParamLUT1 O6

DataTemp = (Data1&0xff)|((Data1&0xff)<<8);

DLUT[0] = DataTemp | (DataTemp<<16); //ParamLUT0 O5

DataTemp = (Data1&0xff00) | (Data1>>8);

DLUT[1] = DataTemp | (DataTemp<<16); //ParamLUT0 O6

Translate(BLUT);
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Translate(CLUT);

Translate(DLUT);

break;

default:

printf("*************Wrong value returned by CortexSomaPlacement()!\n\r");

break;

}

if(Buffer[word] != ((BLUT[1] & 0xffff0000) | ((somacase!=0)? (Buffer[word]&0xffff):(ALUT[1]>>16))))

Buffer[word] = (BLUT[1] & 0xffff0000) | ((somacase!=0)? (Buffer[word]&0xffff):(ALUT[1]>>16));

if(Buffer[word+1] != ((DLUT[1] & 0xffff0000) | (CLUT[1]>>16)))

Buffer[word+1] = (DLUT[1] & 0xffff0000) | (CLUT[1]>>16);

if(Buffer[word+41] != ((BLUT[1]<<16) | ((somacase!=0)? (Buffer[word+41]&0xffff):(ALUT[1] & 0xffff))))

Buffer[word+41] = (BLUT[1]<<16) | ((somacase!=0)? (Buffer[word+41]&0xffff):(ALUT[1] & 0xffff));

if(Buffer[word+42] != ((DLUT[1]<<16) | (CLUT[1] & 0xffff)))

Buffer[word+42] = (DLUT[1]<<16) | (CLUT[1] & 0xffff);

if(Buffer[word+82] != ((BLUT[0]<<16) | ((somacase!=0)? (Buffer[word+82]&0xffff):(ALUT[0] & 0xffff))))

Buffer[word+82] = (BLUT[0]<<16) | ((somacase!=0)? (Buffer[word+82]&0xffff):(ALUT[0] & 0xffff));

if(Buffer[word+83] != ((DLUT[0]<<16) | (CLUT[0] & 0xffff)))

Buffer[word+83] = (DLUT[0]<<16) | (CLUT[0] & 0xffff);

if(Buffer[word+123]!= ((BLUT[0] & 0xffff0000) | ((somacase!=0)? (Buffer[word+123]&0xffff):(ALUT[0]>>16))))

Buffer[word+123]= (BLUT[0] & 0xffff0000) | ((somacase!=0)? (Buffer[word+123]&0xffff):(ALUT[0]>>16));

if(Buffer[word+124]!= ((DLUT[0] & 0xffff0000) | (CLUT[0]>>16)))

Buffer[word+124]= (DLUT[0] & 0xffff0000) | (CLUT[0]>>16);

}//next yinzone

//write back

Status = XHwIcap_DeviceWrite4Frames(icapptr, Bottom, XHI_FAR_CLB_BLOCK,HClkRow, MajorAddr, MinorAddr, Buffer);

if (Status != XST_SUCCESS) {

printf("DeviceWrite4Frame failed:%d\n\r",Status);

return XST_FAILURE;

}

}//next zone

return XST_SUCCESS;

}

XStatus ClearColBuff(Xuint16 *ColBuff)

{

int i;

for(i=0; i<360 ; i++)

ColBuff[i]=0;

return XST_SUCCESS;

}

XStatus SetGlialColBuff(Xuint16 *ColBuff,int Glialy , char ND,char ED,char SD,char WD,char DI, char NX,char EX,char SX,char WX,char XI, Xint16 SynWeight)

{

ColBuff[Glialy*3] =ND | (ED<<3) | (SD<<6) | (WD<<9) | (DI<<12);

ColBuff[Glialy*3+1] =NX | (EX<<3) | (SX<<6) | (WX<<9) | (XI<<12);

ColBuff[Glialy*3+2] =SynWeight;

return XST_SUCCESS;

}

XStatus SetSomaColBuff(Xuint16 *ColBuff,int Somay , Xint16 V_Reset, Xint16 V_Start, Xint16 V_Bias, char *Params, char ND, char UED, char LED, char SD, char LWD, char UWD)

{

ColBuff[Somay*3] =V_Reset;

ColBuff[Somay*3+1] =V_Start;

ColBuff[Somay*3+2] =V_Bias;

//Set Param LUTs

int i;

Xuint32 bits[2];

Xuint32 a,b;
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char c;

for(i=0,a=0; i<8 ; i++)

a = (a<<1) | ((Params[i]<0) ? 0x01 : 0);

ColBuff[Somay*3+5] =((Xuint16)(ND|(UED<<1)|(LED<<2)|(SD<<3)|(LWD<<4)|(UWD<<5)))

| (((Xuint16)a)<<8); //set ParamLUT

for(i=0,a=0,b=0; i<8 ; i++)

{

c = 15-abs(Params[i]);

a = (a<<1) | ((c & 0x04)? 0x01 : 0);

b = (b<<1) | ((c & 0x08)? 0x01 : 0);

}

ColBuff[Somay*3+4] = a | (((Xuint16)b)<<8); //set ParamLUT1

for(i=0,a=0,b=0; i<8 ; i++)

{

c = 15-abs(Params[i]);

a = (a<<1) | ((c & 0x01)? 0x01 : 0);

b = (b<<1) | ((c & 0x02)? 0x01 : 0);

}

ColBuff[Somay*3+3] = a | (((Xuint16)b)<<8); //set ParamLUT0

return XST_SUCCESS;

}



Appendix D

IO Cell Design

The left column of the cortex contains IO cells that can feed stimuli to the cortex and record the output

of the cortex from the axons routed to them. Two types of modules were designed and implemented for

these IO cells. The Spike Counter module and Spike Generator module. Both modules make use of the

DSP48E blocks that are located right on the edge of the region allocated to the Cortex in the Virtex-5

XC5VLX50T.

The Spike Counters Module

Fifteen of the DSP blocks were configured as 48-bit counters. By grouping the bits into eight groups

of six bits and setting all the bits to zero logic except the lowest significant bit in each group that is

connected to an axonal output from the Cortex, eight 6-bit spike counters were constructed. This way

fifteen DSP blocks were used to construct a total of 120 6-bit counters for all the Cortex axonal outputs.

Output registers of the DSP blocks were mapped to the embedded system memory address. Every time

that a DSP output register is read by the processor, 32 bits of the data is read and the rest is stored in

another register to be read by processor in the next instruction. Reading the output register also resets the

output register, preparing it for the next round of spike counting. Figure D.1 shows the block diagram of

the Spike Counter module with configuration of the DSP block as eight 6-bit counters.

The Spike Generator Module

Another DSP block is used to generate the simulation clock which shows a duration corresponding to

1ms of biological neuron simulation. This DSP is also configured as a countdown counter that resets

itself to a value stored in a register when it reaches zero and send a single pulse in the output. The

value controls the period of the simulation clock cycle. This value can be written to the register by the

processor. This signal can be used as an interrupt to the processor for performing input/output operations

in every simulation cycle.

It was possible to use the rest of the available DSP blocks for spike generators that independently

generate a spike after a programmable period of time to allow the processor simply encode the stimuli

in spike rates. However, for simplicity this was left to the processor to writes all the spikes to a set

of registers connected to the axonal inputs of the Cortex in an interrupt routine or a loop (in every

simulation cycle). These registers were memory mapped and accessible to the embedded processor by a

simple memory write instruction. After each write operation these registers automatically clear so that
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Chapter 1: DSP48E Description and Specifics
R

Architectural Highlights
The Virtex-5 FPGA DSP48E slice includes all Virtex-4 FPGA DSP48 features plus a variety 
of new features. Among the new features are a wider 25 x 18 multiplier and an 
add/subtract function that has been extended to function as a logic unit. This logic unit can 
perform a host of bitwise logical operations when the multiplier is not used. The DSP48E 
slice includes a pattern detector and a pattern bar detector that can be used for convergent 
rounding, overflow/underflow detection for saturation arithmetic, and auto-resetting 
counters/accumulators. The Single Instruction Multiple Data (SIMD) mode of the 
adder/subtracter/logic unit is also new to the DSP48E slice; this mode is available when 
the multiplier is not used. The Virtex-5 DSP48E slice also has new cascade paths. The new 
features are highlighted in Figure 1-2.

Figure 1-1: Virtex-5 FPGA DSP48E Slice
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Figure D.1: Block diagram of the Spike Counter module with configuration of the DSP block as eight 6-bit counters.

they only generate a spike with pulse width of one Cortex clock cycle.
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