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ABSTRACT 

Existing user performance models of navigation for very large 

documents describe trends in movement time over the entire navi-

gation task. However, these navigation tasks are in fact a combi-

nation of many sub-tasks, the details of which are lost when ag-

gregated. Thus, existing models do not provide insight into the 

navigation choices implicit in a navigation task, nor into how 

strategy ultimately affects user performance. Focusing on the 

domain of data visualizations, the very large documents we inves-

tigate are very large data views. We present an algorithmic deci-

sion process and descriptive performance model of zooming and 

panning navigation strategy, parameterized to account for speed-

accuracy trade-offs, using common mouse-based interaction tech-

niques. Our model is fitted and validated against empirical data, 

and used to evaluate proposed optimal strategies. Further, we use 

our model to provide support for interaction design considerations 

for achieving performant interaction techniques for navigation of 

very large data views. 

Keywords: Navigation model; panning; scrolling; very large data 
view; zooming. 

Index Terms: H5.m. Information interfaces and presentation 
(e.g., HCI): Miscellaneous. 

1 INTRODUCTION 

As the size of digital documents and datasets continues to grow, 

so does the need for efficient ways to navigate them. While tradi-

tional scrolling user interfaces (UI) include some utility to support 

large documents, research suggests that changes in viewing posi-

tion beyond just a few screen widths can be significantly more 

efficiently carried-out by zooming-out, and then back -in to the 

desired position in the document [16] (see Figure 1). Thus, for 

sufficiently large documents, some degree of zooming is essential 

for digital content consumption. In fact, many applications now 

offer some degree of zooming interaction, in addition to scrolling, 

to better support the growing size of documents. Productivity 

software, such as Microsoft Office, readers, such as Adobe Read-

er, and even web browsers all provide zooming and scrolling con-

trols to aid navigation of large documents. 

Our particular domain of interest lies within the visualization of 

very large single dimensional data, which generally display nu-

merical data along a horizontal axis. We will refer to these appli-

cations as horizontal data viewers, and associated documents as 

data views. Horizontal data viewers can be found for a variety of 

data, such as financial (Google Finance), weather (WeatherSpark), 

and social metrics (SumAll). These applications display data at 

different levels-of-detail based on zoom level, and as such, zoom-

ing and panning navigation becomes a first-order interaction. As 

such, we were curious whether users are efficiently zooming and 

panning while performing common navigation tasks, such as 

seeking a known location within a dataset, or searching for an 

unknown target using knowledge of landmarks in the data. 

Zooming and panning1 are fundamental and ubiquitous interac-

tion elements in desktop computing contexts, and, individually, 

have long been the focus of research in Human-Computer Interac-

tion. A body of research has specifically investigated user interac-

tions in zooming interfaces, where both zooming and panning are 

used to navigate. Guiard and Beaudouin-Lafon studied target 

acquisition in zooming interfaces and developed a holistic per-

formance model [17]. However, their model does not elaborate on 

the contributions of individual zooming and panning operations to 

the whole, and thus does not shed light on the user choices or any 

strategies that may be involved. 

Navigation in zooming interfaces is a complex interplay of se-

quential zooming and panning operations, each dependent on the 

previous. While zooming can be implemented around a fixed 

viewport position or cursor position, the latter only differs in that 

panning is replaced by pointing. In both cases, parameterizing this 

sequence will foster a systematic exploration and comparison of 

navigation strategy as more than just the sum of its parts – eluci-

dating the trade-offs integral to optimal navigation. Until now, 

optimal strategies have been posited, such as by Furnas and 

Bederson [16], but have never been empirically validated. As 

shown in Figure 1, a near target requires no zooming, only scroll-

ing (left). The “naïve optimal” strategy is zooming-out until the 

target is visible in the viewport (middle). The posited “optimal” 

strategy is to undershoot the target: zooming-out until the target is 

near the viewport, but not within view (right). 

In this paper, we explore navigation strategies in the context of 

mouse-based desktop interaction with very large data views. We 

theorize a user’s navigation strategy can be characterized as a 

sequence of interactions with trade-offs that can be parameterized; 

thus this work offers four key contributions. First, we present an 

algorithmic process highlighting the decisions contributing to 

these trade-offs, where sub-optimal choices are linked to negative 

impacts on overall performance. Second, we develop a parameter-

ized strategy model that describes the zooming and scrolling 

components of navigation. Third, we derive costing functions for 

this model based on empirical results, and evaluate proposed op-

timal strategies. Finally, we present interaction design considera-

tions to guide the development of scrolling and zooming interface 

navigation techniques for very large data views. 

                                                                 
1 As in [17], we do not distinguish between scrolling and panning. For the 
purposes of this paper, both terms will be used interchangeably. 

 

Figure 1. Navigation strategies posited in [16]: document repre-

sented by a horizontal line, target by a vertical mark, and viewport 

by a rectangle. Larger viewports correspond to a lesser zoom level.  
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2 RELATED WORK 

Panning and zooming have been a part of UI design since the 

early 1960’s [28]. “Infinitely” zooming interfaces were first intro-

duced with the Pad [25] and Pad++ [4] systems, supporting inter-

action with multi-scale documents. We focus our review here on 

works which investigate how users zoom and pan content (‘doc-

uments’), rather than of specific user interface controls. 

Furnas and Bederson presented space-scale diagrams as a 

means of understanding zooming and scrolling interfaces [16]. 

Based on a visual information complexity metric, they presented 

intuition towards an optimal zooming and panning trajectory, but 

these were not empirically validated. 

A method developed by van Wijk and Nuij calculates the opti-

mal zooming and panning trajectory, while maintaining visual 

context, to smoothly animate transitions between views in a 

zooming interface [29]. In contrast, we analyse interactively-

defined user trajectories to identify where sub-optimal decisions 

are made and to quantify these deviations from the optimal. 

Text document navigation patterns were characterized in a log 

study of Microsoft Word and Adobe Reader usage [1]. In map 

interfaces, navigation patterns have also been analysed to interpret 

task completion time differences between conditions [21] and the 

percentage of time spent zooming and panning has been compared 

between different tasks [23]. Our work seeks to explicitly parame-

terize the components of these navigation patterns and to quantify 

the impacts of deviations from the optimal strategy. 

Several techniques support simultaneous zooming and panning 

navigation. Speed-dependent automatic zooming (SDAZ) [22] is a 

technique that automatically changes the zoom level with respect 

to the speed of scrolling, controlled through velocity-based input. 

This technique has been shown to be more efficient than scrolling 

with manual zooming [27] and traditional scroll, pan, and zoom 

operations [10]. Zooming and scrolling control have been com-

bined in novel navigation techniques for position-based input; 

OrthoZoom [3] is a recent example and empirical evaluations 

have shown that OrthoZoom outperforms SDAZ. While these 

advanced interaction techniques offer more efficient navigation of 

very large documents, they do not represent the interaction tech-

niques presently found in a majority of applications “in the wild”. 

Moreover, this initial investigation focuses on the speed-accuracy 

trade-off between zooming and panning when they are carried out 

in sequence, which would not be possible by using a technique 

where they occur simultaneously. 

Performance models for scrolling have been presented and 

shown to be subject to Fitts’ Law [14] for scrolling to targets of 

known location [6][20]. Scrolling to targets of unknown location 

has been shown to follow either a linear model using scrollbars 

[2] or Fitts’ Law in a peephole pointing task [6]. The combination 

of simultaneous zooming and scrolling has been modelled and 

also shown to follow Fitts’ Law [17]. Fitts’ Law-based models 

provide us with valuable intuition of the total time we can expect 

a user to take to complete a task: an aggregate of all steps in-

volved. It does not, however, provide insight into what those indi-

vidual steps are, the sequence in which they occur, nor the param-

eterization of each, which is the focus of the current work. 

While early studies [20][30] used unmodified and uncon-

strained input, subsequent studies have mapped mouse position 

directly to scroll position to remove acquisition times [2][11][17], 

or have used bimanual input techniques to support simultaneous 

zooming and panning [17][27]. Our work differs in two ways. 

First, since we are interested in studying sequential zooming and 

panning when fully controlled by a user, we analyse zooming and 

panning operations distinctly from each other, as well as the time 

it takes to switch between operations. Similar “traditional” se-

quential zooming and panning input scenarios have been previ-

ously studied [10], but only as an aggregated measure of total 

navigation time. Second, we are interested in typical mouse-based 

desktop situations where bimanual interaction techniques of the 

type described in prior work are uncommon. 

In summary, while overall performance has been modelled, a 

deeper understanding of zooming and panning strategy is lacking. 

In particular, we explore how users conceptualize the navigation 

process, which strategies they employ, and what factors impact 

their choice of strategy and performance. Moreover, in developing 

generalized performance models, highly abstracted tasks were 

evaluated with very controlled input. In the present work we at-

tempt to bridge this gap and validate a theoretical model by com-

bining an abstracted navigation task with more ecologically valid 

input techniques. 

3 TASK ENVIRONMENT AND CONSIDERATIONS 

To investigate zooming interface navigation strategies, we consid-

er an abstracted zooming and panning task environment that could 

generalize to most real-world horizontal data viewers. The envi-

ronment consists of a horizontally-oriented document viewport 

with a scroll bar underneath, and zoom slider to the right (see 

Figure 2). Both provide only visual feedback of data view position 

and zoom level in the viewport and are non-interactive. 

The document is an abstract 1-D data view, containing a red 

target line that remains the same width at all zoom levels. A light-

blue goal zone appears in screen-space, fixed to the centre of the 

viewport. To mitigate desert fog, user disorientation when zoom-

ing and panning due to insufficient critical zones or cues [24], our 

data view is augmented with evenly spaced lines that subdivide 

and coalesce at different zoom levels. The zoom percentage is 

also displayed above the viewport, and the dark grey bars bound-

ing the upper and lower edges of the data view change colour to 

signal when the content is zoomed back to 100%. 

This interface supports a view-pointing task [18], previously 

applied to model zooming and panning performance [17], where 

the target must be found and positioned within the goal at a speci-

fied zoom level. In our variation of this task, the start and end 

zoom levels are identical, and zooming occurs with respect to the 

centre of the viewport, the zoom pivot. To successfully complete 

the task, one must zoom-out to find the target, and then perform a 

combination of interleaved zoom-in and corrective scroll opera-

tions to re-position it correctly. 

Interleaved zooming-in and panning are necessitated by a phe-

nomenon we have termed zoom-in drift – the appearance that the 

target shifts away from the zoom pivot when zooming-in. To 

zoom-out, document space must be compressed within screen-

space, resulting in the binning of many document-space pixels 

into a single screen-space pixel. This process must be reversed 

when zooming-in. Even if the target appears to be positioned ex-

actly at the zoom pivot prior to zooming-in, it will drift away due 

to this de-binning of pixels. 

 

Figure 2. Experimental interface: goal shown in blue, target in red. 



 

 

We now summarize factors important to zooming and panning 

tasks that have guided our model and experimental design: 

Input Device: Our work focuses on single-handed, mouse-based 

input, including the mouse-wheel to increase external validity. 

Viewport Sizes: Viewports larger than 40px have minimal im-

pact on performance in zooming and panning tasks [17]. For this 

reason, in our study, we do not vary the viewport size. 

Viewport Orientation: Based on our interest in large data visu-

alization interfaces, we use a horizontal document orientation. 

Interaction Techniques: We focus on 3 techniques for zooming 

and panning: click-and-drag pan, mouse-wheel scroll, and mouse-

wheel zoom (with CTRL modifier). These are variants of tech-

niques common to horizontal data viewer applications, as well as 

other software, such as readers and productivity suites. 

Familiarity with Content: Knowledge of the target location 

could alter a user’s strategy. Since we seek baseline performance, 

our work considers only navigation within unfamiliar content. 

Target Saliency: In our domain, information is displayed at 

varying levels-of-detail based on the zoom level, ensuring that an 

aggregated form of the target will be visible at any zoom level. 

Thus, we assume the target is equally discernible across all zoom 

levels and display the target with fixed width in screen-space. To 

minimize the impact of visual search, no distractors are included. 

Document Bounds: The scroll bar visually communicates the 

relationship between the total document size and portion dis-

played in the viewport. To ensure accurate scroll bar feedback, we 

limited panning to the document bounds. 

Zoom Pivot: We use a viewport centre-based zoom pivot as a 

generalization of the fixed-position zoom pivots typically found in 

horizontal data viewers. Previously, centre-based zooming has 

been used in a simultaneous zooming and panning task [17]. We 

note that the efficiency of zooming interfaces is reduced when 

document-bounded scrolling is paired with a fixed zoom pivot: 

zooming at document edges is encumbered since the magnitude of 

corrective scrolls is limited to the document bounds. To avoid this 

pitfall, we choose trial conditions that bypass document edges. 

4 A MODEL OF OPTIMAL PERFORMANCE 

Furnas and Bederson posited that a “naïve optimal” strategy is to 

zoom-out until the target is visible before zooming back -in [16]. 

This was further refined by considering nearby targets separately 

from distant ones. They calculated that the optimal strategy for 

near targets is scrolling without zooming. By extension, the opti-

mal strategy for distant targets was zooming-out until the target 

was near the viewport (rather than visible on-screen), then scroll-

ing to the target, before finally zooming back -in. “Near” was 

estimated to be within 1-3 viewport widths (see Figure 1).  

Naturally, such a model presumes that identifying the target is 

consistently difficult across zoom levels. This is true to a greater 

or lesser extent depending on the domain of the document. In the 

present work, we begin with the same assumption, but ultimately 

account for target salience in our strategy model.  

Empirical results lend support to the findings of Furnas and 

Bederson: users prefer scrolling without zooming when targets are 

near [17]. The insight here is the existence of a crossover point 

where zooming-out is faster than scrolling. We suggest users 

make this distinction based on their familiarity with the content, 

spatial reasoning ability, and aptitude using navigation operations. 

4.1 An Algorithmic Decision Process 

We developed a decision process to conceptualize the iterative 

manner by which a user searches for a target in a zooming and 

panning interface (see Figure 3). Our decision process accounts 

for both choices and interactions – regardless whether or not op-

timal. At each choice (diamond), a user may misjudge the best 

decision and at every interaction (rectangle), a user may navigate 

sub-optimally. This process clarifies the distinct components of 

the navigation strategy, and provides a framework to support the 

discussion of user choices and interactions. 

We highlight three phases, Z-O, S, and Z-I, which represent the 

zoom-out, scroll, and zoom-in steps of navigation, respectively. 

Note that a user is not required to engage in any zooming. If the 

user chooses not to zoom-out in Z-O, they will not reach Z-I, and 

the process elegantly reduces to simply describe scrolling in S. 

Z-O encapsulates the zoom-out phase of interaction. The criti-

cal decision, Is target close enough?, is aided by knowledge of the 

target location. A misjudgement leading to an error, for example 

failing to zoom-out far enough, would require restarting the deci-

sion process. Without any knowledge of target location, only the 

“naïve” optimal strategy can be employed. However, whether or 

not a target is salient at all zoom levels affects a user’s ability to 

follow the “naïve” optimal strategy. For example, content in mul-

ti-scale documents may only be visible at a particular zoom level. 

This leads us to consider a target saliency threshold, an upper 

bound on how far a user can zoom-out given content, which can 

undermine the “naïve” optimal strategy. Thus, we posit that both 

content familiarity and target saliency threshold impact the accu-

racy of choices made in Z-O. 

S and Z-I, on the other hand, encapsulate the scroll and zoom-in 

phases of interaction. Judgment of the critical decision, Has target 

shifted enough?, is a complex trade-off in screen-space pixels 

between speed, accuracy, and magnitude of scrolling, additionally 

complicated by zoom-in drift, since there is a limit to how far one 

can zoom-in before having to reposition the target close to the 

zoom pivot. For example, if a user chooses a low threshold for 

“shifted enough”, more scroll and zoom-in iterations would be 

required. Conversely, choosing a higher threshold would result in 

fewer scroll and zoom-in iterations, but at the increased risk of 

losing the target through desert fog. A performance balance must 

exist between “many small inaccurate scrolls and short zoom-ins” 

and “fewer larger accurate scrolls and long zoom-ins”. Thus, we 

posit that a user’s spatial reasoning ability and motor skills impact 

the accuracy of choices made in S and Z-I. 

Sub-optimal navigation is accounted for within the decision 

process. However, major errors, such as getting lost in desert fog 

or completely losing track of the target, require restarting the de-

 

Figure 3. User decision process for zooming and scrolling naviga-
tion, divided into phases. An error results in restarting the process. 
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cision process altogether – a manner of recursion. We feel this 

accurately reflects how users approach navigation problems and 

account for errors in the real world. If, for example, a user zooms-

in too fast, such that the target is out of range, they will need to 

decide whether the target is close enough to scroll to, or if they 

will zoom-out once again to relocate it. 

Not only does this decision process underscore the complex it-

erative trade-offs involved in zooming and scrolling navigation, it 

also provides intuition for improving the choices a user makes at 

each step. For example, providing feedback about target location 

and designing interaction techniques that supplement both a user’s 

motor and spatial abilities may help prevent interaction errors and 

improve overall performance. 

4.2 A Zooming-Scrolling Strategy Model 

Based on the intuition of our decision process, we develop a pa-

rameterized strategy model to calculate the expected navigation 

task completion time. The user choices described in the decision 

process become inputs to costing functions. The costing functions, 

in turn, account for both visual search and interaction time of each 

phase of interaction. This strategy model will allow us to evaluate 

both the trade-offs in strategy, such as between zoom and pan, and 

global contextual limitations, such as the target saliency threshold. 

The proposed model builds on rationale akin to coarse, high-level, 

predictive engineering models, such as KLM [7], but takes into 

account weighted factors for each method of navigation. This 

weighting enables the model to not only predict overall perfor-

mance time, but also explain how the user performs during each 

portion of the navigation. 

Without loss of generality, our model assumes a view-pointing 

task in a one-dimensional horizontal data view that can be zoomed 

and panned. For simplicity of navigation operation segmentation, 

zooming operations function with a viewport-centred zoom pivot, 

and the goal position is at the centre of the viewport. The scope of 

the model as presented is expected to include any interface with 

an arbitrary fixed zoom pivot position and arbitrary goal position. 

The model calculates the task completion time,  , in millisec-

onds (ms) for a particular navigation strategy. A navigation strate-

gy is defined as a set of 5 inputs to the model given 2 environmen-

tal constraints. We also introduce 2 descriptive variables to aid in 

the derivation. Table 1 provides an overview of all the terms used 

in the model, while Figure 4 illustrates the relationship between 

the inputs to the model.  

The derivation of   is: 

                                                      (1) 

While our decision process defines 3 phases of interaction, our 

strategy model separates interaction into 4 components: ZoomOut, 

Scroll, ZoomIn, and CorrScroll. The S Phase is represented by 

two components, the first scrolling prior to zooming-in (Scroll), 

and the second scrolling during zooming-in (CorrScroll). This 

distinction allows the strategy model to account for situations 

where a user only scrolls and does not zoom-out, foregoing zoom-

ins and corrective scrolls – calculating time to scroll alone. 

By iteratively searching the space of task completion times us-

ing different parameter values, optimal task completion times and 

parameter values can be established. In this section, we describe 

the logic behind these parameterizations and costing functions. 

Later, we empirically derive values for each, and validate the 

model. We start by explaining the derivation of these parameters, 

and follow with a discussion of the costing functions. 

4.2.1 Zooming-Out 

Our model is based on the relative position of the viewport and 

the target at the start of a given task. We define   as the distance 

to the target from the goal, in document pixels. In our case, the 

goal is coincident with the centre of the viewport (see Figure 5). 

We define   as the viewport size (horizontal) in screen pixels 

and   as the zoom level. The function  ( ) defines the number of 

document pixels displayed in the viewport in screen-space pixels 

for a given zoom level   (see Figure 6). 

 ( )       (2) 

The document is viewed at “actual size” (zoomed to 100%) 

when    . At this zoom level, screen-space pixels and docu-

ment pixels are equivalent, so  ( )    (see Figure 6a). The 

document is decreased to 50% when    , and so on. In general, 

zooming-out causes   to increase and zooming-in to decrease. 

We define   as the actual zoom level achieved by the user dur-

ing the zoom-out operation, given that users may either under-

shoot the zoom (perhaps “optimally”, as posited [16], or limited 

by the target saliency threshold) or overshoot the zoom. 

 

Figure 4. Diagram illustrating strategy model inputs, descriptions of 

which can be found in Table 1. First, a user zooms-out   zoom 

levels, then scrolls     px. Next, they zoom-in and corrective 

scroll   times, averaging    zoom levels and   px at each iteration. 

The precision of corrective scrolling is described by   px, the aver-

age offset of the target from the goal at the end of each corrective 

scroll. 

Constr. Name Measures Eq # 

  Target distance Distance to target in document pixels -- 

  Viewport size 
Viewport size (width) in screen-space 
pixels 

-- 

 

Inputs Name Measures Eq # 

  Actual zoom-out Number of levels zoomed-out -- 

  Scroll accuracy 
Average screen-pixel distance to 
zoom pivot at end of a  zoom-in step 

-- 

  
Scroll magni-
tude 

Average screen-pixels scrolled for 
each zoom-in step 

-- 

   Zoom-in delta 
Number of levels zoomed-in at zoom-
in step 

(5) 

  Zoom-in steps Average number of zoom-in steps (6) 
 

Descr. Name Measures Eq # 

   “Naïve optimal” The “naïve optimal” zoom-out level (3) 

  First scroll ratio 
The ratio of the viewport scrolled 
after zooming-out 

(7) 

Table 1. Summarizing meaning of strategy model terms: environ-

mental constraints, inputs, and descriptive variables. 
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While not used in model calculations, we define    as the “naïve 

optimal” zoom level [16], the minimum zoom level whereby the 

target is first visible in the viewport. This occurs when  (  )  ⁄  
  (see Figure 6b). We use this value as a baseline for comparison. 

Thus, substituting (2) and solving for    yields: 

        
     

 
   

                 
                                                                   

(3) 

4.2.2 Zooming-In 

Zooming-in is an interleaved process of zooming-in and correc-

tive scrolling (due to zoom-in drift). When the target appears 

“closest” to the zoom pivot, it is still unlikely that they are coinci-

dent. In the average case, the distance between the target and the 

zoom pivot is     px in screen-space. 

A user may not position the target as close as possible to the 

zoom pivot at every zoom-in step. We define   as the average 

range in screen-space pixels from the zoom pivot to the target 

over all zoom-in steps, where      . Then,  (    ) is the 

zoom-in drift of the target in screen-space pixels, away from the 

zoom pivot, given a change of    zoom levels (see Figure 7). 

 (    )        (4) 

We define   as the average distance in screen-space pixels that 

the target is scrolled over all zoom-in steps. Intuitively, some 

users may prefer that the target always remain on screen, thus 

ensuring that     ⁄ . Others may be comfortable with a larger 

 , confident in their ability to re-locate the target despite shifting 

off-screen. If a user consistently stops zooming-in when the target 

is at the edge of the viewport and scrolls the target exactly to the 

centre of viewport, then       and     ⁄ . 

Then, the average change in zoom level,   , that maintains the 

balance between  and   occurs when  (    )   . Thus, substi-

tuting (4) and solving for    yields: 

        
       ( )       ( ) 

                                          ( )      ( ) 
(5) 

Since the task we are modelling requires the user to return to 

the same zoom level at which they started, we derive the total 

number of zoom-in iterations,  , from   (actual zoom level) and 

   (delta of zoom-in steps): 

  
 

  
 (6) 

The parameters  ,  ,   , and   quantify the impact of the 

speed-accuracy trade-off of the Has target shifted enough? (see 

Figure 3, Z-I Phase). For example, a user may choose to be less 

precise when scrolling, with a larger   and smaller  , but at the 

cost of a decreased   , and as a result an increase in  . 

One corrective scroll is performed after zooming-out, to re-

centre the target prior to zooming-in. We handle this operation 

uniquely to account the scroll distance relative to the actual zoom-

out level ( ). Since our model is defined relative to the initial 

distance to the target, we define   as the ratio of target distance, 

 , to half the zoomed viewport size,  ( ): 

  
 

 ( )   
 (7) 

The distance of this first corrective scroll in screen-space pixels 

is then     ⁄ . For example, if a user zooms-out precisely to the 

“naïve optimal” zoom level,   , then    , and the distance to 

scroll is   ⁄ . 

4.2.3 Costing Functions 

We elaborate on the costing functions introduced at the beginning 

of this section. To account for the time it takes the user to perform 

each navigation operation, the costing functions are of the form 

      (   ), which calculates the average time (ms) to complete 

  repetitions of distance   for the operation   . 

We considered using Fitts’ Law for the scrolling costing func-

tion, however to do so we would need both the distance and size 

of target. Unfortunately, it is not possible to definitively calculate 

the size of the target at each step of the zoom-in process, as per-

ceived by the user. 

Thus, we instead use linear costing functions for zooming oper-

ations (8), and logarithmic costing functions for panning opera-

tions (9). We chose a linear costing function for zooming because 

mouse-wheel input inherently has physical limitations on the 

magnitude of ballistic movements before clutching is required. 

      (   )    (         )      ( )       (8) 

      (   )    (       ( )     )      ( )       (9) 

Values for  ,  , and   will be empirically derived.   and   are 

parameters of a fit for physical operation performance and   rep-

resents the time required to acquire/initiate the operation and vis-

ual search. There are no accepted models for visual search per-

formance [15]. While we assume a minimized cognitive load 

through pre-attentive search – that the absence or presence of the 

target is immediately distinguishable – our costing functions can 

later be extended to include models of visual search performance. 

5 EXPERIMENT – MODEL VALIDATION 

We ran an experiment to quantify the costing function parameters 

( ,  , and  ) for all four operations, fit, and validate our model.  

 

Figure 5. Diagram illustrating the distance to the target,  , based 

on the initial the viewport position, in document pixels. 

 

Figure 6. Diagrams (a) and (b) illustrate the viewport size,  , and 

the range function,  ( ), in screen-space pixels. 

 

 

Figure 7. Diagram illustrating the progression of the zoom-in drift 

function,  (    ), in screen-space pixels. 
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5.1 Participants and Apparatus 

We recruited 12 paid ($10) volunteer participants (7 female; none 

left-handed) with mean age 24 (min: 19, max: 30). Mean self-

reported computer usage was 24 hours per week. Self-reported 

frequency of using zooming and scrolling interaction techniques 

varied: 83% of participants reported using the mouse-wheel to 

scroll “often” or “always” when available. For input device, 50% 

of participants reported primarily utilizing wheel mice, 42% 

touchpads, and 8% touch mice. 

Participants performed the study in a private study room using a 

desktop computer configuration running Windows XP, with a 21-

inch LCD monitor displaying a resolution of 1280x1024 pixels, 

and a Logitech M510 wireless mouse. Participants were seated 20 

inches from the monitor. 

5.2 Methods and Design 

Participants performed a view-pointing task. Trials began with the 

document zoomed to 100%. The goal was to find the target line, 

position it within the goal zone, and reset the zoom scale to 100%. 

The interface was setup with a fixed-sized viewport (800x450px), 

displaying a document 2 Gpx wide. 

Following Guiard and Beaudouin-Lafon’s zooming and scroll-

ing study [17], we base our selection of distance to target ( ) and 

size of goal ( ) upon the index of difficulty (ID) [14], measured 

in bits. We used 5 evenly-spaced task difficulties, where zooming 

would be required, starting at 10 up to 26 [17]. The goal (8px) and 

target (1px) appeared with fixed-sizes in screen-space. Based on a 

pilot study, we found no significant effects of target direction, and 

simplify our design by limiting to right-directional navigation. 

Three interaction techniques were made available: click-and-

drag panning , mouse-wheel scrolling, and mouse-wheel zooming 

(with CTRL modifier). We included two methods of panning for 

external validity, and to evaluate whether participants had a pref-

erence. Control-display ratios for each technique were: 1:1 for 

click-and-drag pan, 60px per mouse-wheel detent for scrolling, 

and 0.5 zoom levels per mouse-wheel detent for zooming. 

A repeated measures within-participant design was used, with 

the independent variable difficulty (10, 14, 18, 22, 26 bits). The 

study was divided into 3 blocks, with 4 randomized repetitions of 

each condition per block. Prior to the trials, one practice repetition 

was administered and discarded. Each participant completed the 

experiment in a single session lasting approximately 30 minutes. 

The participants were randomly assigned to two groups, the da-

ta from the first is used to fit the costing functions, the fitting 

group, while data from the second is used to validate the model, 

the validation group. 

5.3 Data Analysis 

We recorded total navigation task completion time and details of 

each navigation operation: type (scroll; zoom), method (wheel 

scroll; wheel zoom; click-and-drag), direction (left or right; in or 

out), and duration, as well as viewport position and zoom level. 

We extract uses of each interaction technique from these logs, 

using direction reversal and operation type change (zoom or 

scroll) to delimit groups of sequential operations. We did not use 

time as a delimiter for navigation operations. We also calculated 

the transition time between operations. 

Since we are modelling error-free performance, we discard tri-

als where users commit major errors, as defined by our decision 

process. Scrolling prior to a zoom-out operation changes the ID 

for the task, making analysis unwieldy. Corrective zoom-outs 

when zooming-in effectively “restart” the model, and as such 

would require a recursive model. For simplicity of analysis and 

modelling, we did not account for these and instead discarded the 

trials. In total, 19.4% of trials were discarded (140/720). We did 

not remove any outliers from the data. 

While we were interested in both panning using the mouse-

wheel and click-and-drag, only 9.7% of interaction samples came 

from mouse-wheel scrolling interaction. As a result we did not 

have enough data to calculate cost functions for mouse-wheel 

scrolling, and these data were not analysed. 

5.4 Quantifying Costing Functions 

We extracted magnitude and duration for each of the 4 operation 

types from the fitting group to estimate parameters for our costing 

functions. Table 2 summarizes the costing function parameters. 

We used a method similar to that used in Chapuis et al. to calcu-

late fits on noisy, real-world data [8]. We took the performance 

samples from the first group of participants and divided the sam-

ples into 10-quantiles, with an equal number of samples in each. 

We fitted costing functions to the means of each quantile. Parame-

ters   and   describe the fitted line (   value reported), while   

is the average transition time between the start time of an opera-

tion and the end time of the preceding operation. As suspected, 

zooming had a linear fit (Out:        , In:        ). We 

suspect the lower    value for ZoomOut is due to the smaller 

number of samples. Participants engaged in fewer zooming-out 

operations relative to the others. Meanwhile, both scrolls had a 

strong logarithmic fit (Scroll:        , CorrScroll:        ). 

5.5 Empirical Model Input Parameters 

Through analysis of the interaction logs, we can quantify the pa-

rameters ( ,  ,  ,   , and  ) of our zooming and panning strategy 

model for each trial. The averages for the fitting group are out-

lined in Table 3 and for the validation group in Table 4. 

In both groups, the actual zoom-out level,  , and the number of 

zoom-in iterations,  , increase with ID, which follows intuition, 

since conditions with larger IDs have farther targets, and require 

more navigation overall. Interestingly, the average magnitude of 

zoom-ins,   , fluctuates minimally as ID increases and also has 

low variance, suggesting that participants were consistent in how 

far they zoom-in at each iteration. This suggests that differences 

Operation Type R
2
       

ZoomOut Linear 0.779 -447.095 157.672 808.285 

Scroll Log 0.941 161.453 124.217 1035.625 

ZoomIn Linear 0.975 36.511 100.532 329.175 

CorrScroll Log 0.939 103.116 92.558 704.918 

Table 2. Summarizing costing function parameters.   and   define 

a fit, while   is the average transition time between operations. 

Diff. Time (s)            

ID10 7.2(1.2) 8.2(1.3) 9.7(5.2) 171.9(97.5) 4.3(1.0) 2.5(1.3) 

ID14 9.5(1.7) 10.8(0.8) 19.8(11.5) 227.9(64.1) 4.0(0.9) 3.6(1.9) 

ID18 12.3(2.7) 14.8(0.7) 13.6(8.7) 258.4(96.6) 4.3(0.9) 4.4(2.3) 

ID22 14.3(2.6) 18.1(0.6) 19.3(12.9) 277.9(78.6) 4.4(1.1) 5.7(3.5) 

ID26 19.8(4.2) 21.3(0.3) 32.6(10.9) 407.1(145.2) 3.6(0.6) 6.9(2.9) 

Table 3. Mean (95% CI) model parameters for the fitting group. 

Diff. Time (s)            

ID10 6.4(1.0) 6.6(1.3) 14.1(7.3) 152.8(48.8) 3.8(0.8) 1.9(0.4) 

ID14 8.5(0.9) 10.2(0.8) 13.0(7.8) 160.9(62.2) 3.9(0.5) 2.8(0.5) 

ID18 11.1(1.8) 13.9(0.7) 12.2(6.1) 209.2(46.2) 4.5(0.8) 3.3(0.6) 

ID22 13.8(2.5) 17.3(0.6) 12.0(6.9) 224.6(80.1) 4.5(0.7) 4.1(0.8) 

ID26 18.2(2.9) 21.1(0.3) 21.2(7.7) 268.1(75.8) 3.8(0.6) 6.0(1.2) 

Table 4. Mean (95% CI) model parameters for the validation group. 

 

 



 

 

between participants may be primarily attributed to   and  . In the 

fitting group, the variance of   and  , in addition to the larger 

mean   values suggests these participants were less consistent.  

Task completion time was on the order of 1 second faster with-

in the validation group. This can be attributed to more consistent 

performance during zoom-in iterations, as there is less variance 

amongst the means of parameters   and  , compared to the fitting 

group. In both groups, the increase of   and   in the ID26 task 

suggests a shift in navigation strategy: participants sacrificed ac-

curacy ( ) for larger scroll distances ( ). 

5.6 Model Fitting and Validation 

We calculate the expected task completion time for the fitting 

group to test the fit against the observed data. Figure 8 (left) 

shows the observed navigation task completion time compared to 

the expected completion time. All expected times based on our 

model fall within the 95% confidence interval of the mean ob-

served data. On average, the expected completion times are 8.6% 

faster than the observed completion times. 

Next, to validate our model, we used the costing functions de-

rived from the fitting group to calculate the expected task comple-

tion time given the strategy model inputs of the validation group 

(see Figure 8, right). Again, all expected times based on our mod-

el fall within the 95% confidence interval of the mean observed 

data. In this case, the fit between observed and expected comple-

tion times is much tighter, with expected times 2.1% faster on 

average than the observed times. 

The discrepancy in fit between the model fitting and validation 

groups can be attributed to two participants in the former who 

were inconsistent in navigation patterns. 

5.7 Optimal Strategies 

Optimal task completion times are calculated for each distance to 

target ( ), by exploring a range of input parameters (see Figure 

8). For the fitting group, the estimated optimal completion time is 

on average 38.1% faster than the observed times (26.5%, 31.7%, 

38.4%, 40.3%, 53.5%). For the validation group, the estimated 

optimal completion time is on average 32.2% faster than the ob-

served times (18.1%, 23.6%, 32.0%, 38.1%, 49.3%). These find-

ings suggest that not only do users fail to strategize optimally, 

they also perform increasingly worse as the navigation task be-

comes more difficult. We suspect this is due to compounding sub-

optimal choices in the zoom-in phase with increasing iterations. 

With the potential for a 50% improvement in the most difficult 

condition, clearly, there is significant room for improvement in 

how users navigation very large data views. 

Based on our model, the average optimal values for each ID is 

the parameterization       ,      , and        , lead-

ing to two interesting implications. First, the speed-accuracy 

trade-off in zoom-in iterations favours precise and large scrolls. In 

fact, the model suggests that an optimal strategy is to zoom-in past 

the point where the target is still visible in the viewport. The ca-

veat is that users may have difficulty keeping track of the target 

when off-screen due to desert fog, which can result in a major 

error as defined by our decision process. Second, the optimal 

zoom-out level,  , exceeds the “naïve optimal”,   , posited by 

Furnas and Bederson, and contradicts their “optimal” strategy 

suggesting undershooting    is more performant [16]. We suggest 

two possible explanations for this difference. Since we simulated 

an unfamiliar document, such an “optimal” strategy is impossible, 

since target location is not known. It has been suggested that hu-

man performance has a very low upper bound based on perceptual 

bandwidth [17]. This may have resulted in reduced ballistic 

movements by users, who were constantly engaged in the pre-

attentive search task. An alternative explanation is that the precise 

metric used to determine the “optimal” strategy is unclear. Since 

Furnas and Bederson’s publication, advances in input devices, 

such as the mouse-wheel, has made multi-modal interaction easi-

er, in particular in-place zooming activation. In contrast, mouse 

pointing interaction has changed little. By drastically reducing the 

cost of engaging in a zooming operation, the favour may have 

shifted from more scrolling to more zooming, as predicted by our 

model. Our results do also support some of Furnas and Bederson’s 

intuition: that it is optimal to scroll without zooming for “small” 

distances. Our model suggests this crossover point, where zoom-

ing-out becomes more efficient than scrolling, occurs within a 

distance of one viewport width. 

Thus, slower and more accurate wins. Minimizing   and max-

imizing   pays dividends, as it increases the zoom-in range (  ), 

thus reducing the number of iterations ( ). Our model also sug-

gests scrolling is slower than zooming, and an unconstrained 

zoom-out ( ) is critical to optimal performance. A low target 

saliency threshold, which places a ceiling on  , will devastate 

navigation performance, forcing users to scroll more than needed. 

5.8 User Errors 

Error trials, which were discarded from the model fitting and vali-

dation, were also analysed. The vast majority of these trials result-

ed in errors committed during the zoom-in phase of navigation. In 

particular, zooming-in too far and succumbing to desert fog. This 

is evidenced by larger   values for these trials; on average 

295.1px (95% CI: 163.9px) versus 235.9px (95% CI: 79.5px) for 

non-error trials. This suggests that participants may have attempt-

ed to engage in a more efficient strategy, by increasing the scroll 

distance, but committed more errors in so doing. This evidence 

supports the observation that the optimal strategy predicted by our 

model may be difficult for users to fully engage due to limitations 

in spatial reasoning ability. 

6 LIMITATIONS 

The generalizability of the costing functions presented depends on 

how well they describe a given user interface. Since we designed 

our study to mimic a typical desktop user context, these costs may 

need to be reassessed when applying the model to non-desktop 

contexts, or non-mouse interaction paradigms, such as touchpads, 

track-points, or direct touch manipulation. Also, we used Win-

dows XP system drivers with default settings. Indeed, different 

drivers implement varying transfer functions [26]. The presence 

of customized drivers or settings in the real-world may impact the 

generalizability of the costing functions of the model. 

In our study, the task required the user to engage in a “pre-

attentive” visual search, where the judgement of presence or ab-

sence of a target could be made very quickly. In real world docu-

 

Figure 8. (Left) Model fitting results (95% CI error bars). (Right) 

Model validation results (95% CI error bars). 
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ments, distractors may be present, or the search target may not be 

uniformly salient across zoom levels, both factors which could 

increase the time required for the visual search task. 

Despite these limitations, we have demonstrated the strategy 

model is robust to the studied context and thus should generalize 

to any horizontal zooming and panning interface with an arbitrary 

fixed zoom pivot position and arbitrary goal position. 

7 INTERACTION DESIGN CONSIDERATIONS 

Based on the optimal strategy suggested by our strategy model, 

we elaborate two considerations for the design of interaction tech-

niques for very large data views. 

Maximize target saliency threshold. Our model shows the 

benefit of maximizing the actual zoom-out level ( ), beyond the 

point where the target is first visible in the viewport. If the target 

is not visible at all zoom levels, then a ceiling is placed on  , 

which implies guaranteed sub-optimal performance. Techniques 

like semantic zooming [25] and visualization aggregation [13] can 

help to promote salience of targets at all levels of zoom. However, 

the task domain must be carefully considered when aggregating 

data, such that condensed representations do not lack the detail 

required to complete a task. Lack of detail may be continuous, 

such as details simply blending together as the user zooms, or 

discrete, such as when zooming-out of a map application results in 

street labels being removed. 

Enhance motor and spatial skills. Optimal navigation benefits 

from being able to correctively scroll quickly and accurately (min-

imize  , maximize  ). Techniques such as snapping, semantic 

pointing [5], and control-display gain schemes [9] can augment a 

user’s natural abilities in minimizing  . Moreover, techniques 

such as overview+detail and focus+context (see [12] for a review) 

or contextual cues about off-screen target location [19] provide a 

means for users to maximize  , while mitigating potential major 

errors in navigation due to loss of target. Based on insights from 

error trials, users seem to want to leverage a more optimal strate-

gy, but are limited by their spatial abilities. Thus, it is important to 

ensure that both precise and ballistic navigation operations are 

easily controlled. 

8 FUTURE WORK AND CONCLUSION 

We have presented a decision process and strategy model that 
provides empirical evidence in favour of long and precise panning 
for optimal zooming and panning navigation. However, results 
also indicate that users may be aware, but unable to engage such 
an optimal strategy due to limitations of their own spatial reason-
ing ability. We present two design considerations to aid users in 
achieving optimal strategy and review research which aims to-
wards these goals. However, many do not yet scale to the com-
plexities and magnitude of larger datasets. This is a clear area for 
future research. 

Together, the decision process and strategy model provide a 
generalized approach to understanding of zooming and scrolling 
across different contexts. The generality of the particular costing 
functions we have supplied is an open question; it is up to the user 
of our model to determine the costing functions for their context. 
Evaluating our strategy model with cursor-based zoom pivots and 
more advanced simultaneous zooming and panning techniques is 
an open area of research we intend to pursue. 

In our work, we have shown the benefit of a systematic analysis 
of the components of a complex navigation strategy. It is our hope 
that the model described in this paper will promote further discus-
sion and comparison of the impact of user decisions on navigation 
strategy. A navigation strategy, after all, is more than just the sum 
of its parts. 
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