
UV-Net: Learning from Boundary Representations

Pradeep Kumar Jayaraman
Autodesk Research

Aditya Sanghi
Autodesk Research

Joseph G. Lambourne
Autodesk Research

Karl D.D. Willis
Autodesk Research

Thomas Davies
Autodesk

Hooman Shayani
Autodesk Research

Nigel Morris
Autodesk Research

Abstract

We introduce UV-Net, a novel neural network architecture
and representation designed to operate directly on Boundary
representation (B-rep) data from 3D CAD models. The B-rep
format is widely used in the design, simulation and manufac-
turing industries to enable sophisticated and precise CAD
modeling operations. However, B-rep data presents some
unique challenges when used with modern machine learning
due to the complexity of the data structure and its support
for both continuous non-Euclidean geometric entities and
discrete topological entities. In this paper, we propose a uni-
fied representation for B-rep data that exploits the U and V
parameter domain of curves and surfaces to model geometry,
and an adjacency graph to explicitly model topology. This
leads to a unique and efficient network architecture, UV-Net,
that couples image and graph convolutional neural networks
in a compute and memory-efficient manner. To aid in future
research we present a synthetic labelled B-rep dataset, Soli-
dLetters, derived from human designed fonts with variations
in both geometry and topology. Finally we demonstrate that
UV-Net can generalize to supervised and unsupervised tasks
on five datasets, while outperforming alternate 3D shape
representations such as point clouds, voxels, and meshes.

1. Introduction

Parametric curves and surfaces form the basis of
computer-aided design (CAD) and are widely used in design,
simulation, and manufacturing. CAD software is primar-
ily concerned with modeling and representing 3D solids—
closed, watertight shapes which describe objects unambigu-
ously with consistently oriented patches of surface geometry.
The industry-wide standard to represent solid models is the
Boundary representation (B-rep) [41, 23]. The B-rep is a
versatile data structure comprised of faces (bounded por-
tions of surfaces), edges (bounded pieces of curves) and ver-
tices (points), glued together with topological connections
between them. The B-rep enables a variety of parametric

F

E

E

E

E

F
F

dge Features

Curve
Conv

ace FeaturesF

E

Surf
Conv

Figure 1: UV-Net builds features by sampling points on the
edges and faces of solid models. These features are then
message-passed among adjacent topological entities.

curves and surfaces, such as lines, arcs, planes, cylinders,
toruses and Non-Uniform Rational B-Splines (NURBS), to
precisely represent complex 3D shapes formed from CAD
modeling operations such as extrusions, fillets, and Booleans.
CAD users interact directly with B-rep faces, edges, and ver-
tices to select, align, and modify 3D shapes. To leverage the
recent advances of deep neural networks in CAD software,
an appropriate representation of B-rep data is required. Such
a representation has the potential to unlock numerous CAD
applications such as auto-complete of modeling operations,
smart selection tools, shape similarity search and many more.
Critical to enabling these applications is a representation that
encodes the B-rep entities themselves.

Despite widespread usage of B-rep data in the industry,
there exists limited research on applying deep neural net-
works to this representation directly. There are numerous
challenges in feeding B-rep data to neural networks. B-rep
data consists of disparate geometric and topological entities,
such as parametric curves and surfaces, each with their own
set of parameters. Moreover, the mapping between a shape
and a surface type is not one-to-one, for example, a plane

1

ar
X

iv
:2

00
6.

10
21

1v
2 

 [
cs

.C
V

] 
 2

6 
A

pr
 2

02
1



can be represented as a B-spline of arbitrary degree. This
means raw surface information, such as parametric coeffi-
cients or spline control points, cannot be fed directly into a
neural network, as it would not be invariant to the specific
parameterization. Finally, consideration must be given to
how different curve and surface geometry are connected to
form the entire shape, i.e. the topology.

An alternate approach is to preprocess B-rep data into
well-studied representations, such as images, voxels, point
clouds, or triangle meshes. Although plausible, such con-
versions are neither differentiable, nor trivial. Discretized
representations, such as point clouds or voxels, suffer from
loss of fidelity and may lose the critical mapping back to the
original B-rep entities. Conversion to triangle meshes can be
non-trivial and prone to failure when high quality, manifold
meshes are required [13].

To tackle these challenges, we present UV-Net, a novel
neural network architecture and representation designed to
operate directly on B-rep entities (Figure 1). In this paper,
we make the following contributions:

• We present a new representation of 3D CAD models de-
rived from B-reps, which captures geometric features from
the parameter domain as a regular grid, and topological
information as a graph.

• We propose a novel architecture which couples an image
CNN and a hierarchical graph-neural network in a compute
and memory-efficient manner.

• We create and release a synthetic labeled dataset: SolidLet-
ters, which unlike other synthetic datasets, is balanced, and
has variations in both geometry and topology.

• We demonstrate the efficacy of UV-Net on multiple tasks
including 3D shape classification, segmentation, and self-
supervised shape retrieval on unlabeled data. We achieve
state-of-the-art results on both classification and segmen-
tation tasks by leveraging the full B-rep data structure.

2. Related Work

Common geometric representations Modern neural net-
works work with several discrete 3D representations like
point clouds, voxels, meshes and multi-view images. A B-
rep can be easily sampled to obtain point clouds [30, 40].
A problem with this conversion is that CAD models often
contain small features that convey important information.
A prohibitively dense point cloud might be required to cap-
ture such fine details. 3D CNNs [48] can be applied to
voxelized B-reps, as shown by Zhang et al. [46] for classifi-
cation. Unfortunately, there is a cubic compute and memory
cost to increasing the voxel grid resolution to capture small
faces from a B-rep. O-CNN [38] can alleviate this prob-
lem using sparse octrees, however, very deep octrees may

be needed to delineate tiny faces common in B-rep data.
Neural networks representing signed distance [27, 9] or oc-
cupancy [25] functions are grid-free and concise, but need to
learn mappings to B-rep face and edges along with positional
encodings to support downstream applications, which is a
challenging problem. Triangle meshes on the other hand
better preserve the geometric and topological information
of a solid model [16, 43]. These methods require the B-rep
to be converted to watertight, manifold meshes with tight
constraints on vertex/edge count, edge length, and angles; a
difficult task prone to failure [18, 13]. Finally, multi-view
images represent 3D shapes by rendering, and have shown
excellent results on shape classification and retrieval [36].
Such renderings are not expressive enough to represent and
map back to the multitude of entities in a B-rep, thereby
limiting applications. There is a recent interest in the ma-
chine learning community in the generation of parametric
geometry such as Bézier curves [24, 39, 35], splines [12],
Coons patches [34] and binary space partitioning planes [8].
However, these methods do not deal with feature extraction
from B-reps with disparate parametric curve/surface types.

3D geometry as images Closely related to our considera-
tion of geometry as regular grids or images are geometry
images [15] where arbitrary meshes were parametrized into
2D grids for compression and resampling. Sinha et al. [33]
parametrized meshes globally as images to apply CNNs.
Groueix et al. [14] learnt the parametrization of point clouds
by deforming grids of points. Kawasaki et al. [20] smoothed
the normal map of B-spline surfaces for fairing. Different
from these works, we deal with parametric shapes employed
in CAD, and focus on deriving a representation from the B-
rep while retaining geometric and topological information.

Boundary representations Few neural networks are capa-
ble of directly consuming B-rep data. Initial attempts before
the deep learning era focused on automatically recognizing
machining features in a solid model. These methods con-
vert the B-rep into a face-adjacency graph [2], with features
such as surface type and edge convexity, that is then used by
rule-based schemes [19] or simple neural networks [29, 26].
However, hand-engineered features struggle to generalize
well to other tasks. Babic et al. [4] surveys several clas-
sic machine learning methods for feature classification on
B-reps. Very recently, Cao et al. [6] used a graph neural
network to segment the faces of a B-rep by converting it into
a face-adjacency graph. A major limitation of this method is
that it can only work on B-reps with planar faces, as it uses
the coefficients of the scalar plane equation as node features
to describe the geometry. In contrast to these works, we
aim to derive a general representation from the B-rep that is
suitable for a wide range of tasks, and can leverage advances
in modern deep learning methods.

2



Face

S1

S2

C12

C12

S1 S2

(a) Boundary representation (b) Face-adjacency graph

u

v

Point coordinate Surface normal Trimming mask

(c) UV-grids for curves and surfaces

Figure 2: Our representation. (a) The B-rep is a complex data structure with several geometric and topological entities that is
difficult to feed to neural networks. (b) We derive a face-adjacency graph from the B-rep to capture topological information. (c)
Each face and edge in a B-rep contains a parametric surface and curve, respectively, which we represent as regular UV-grids,
and store as node and edge attributes in the graph. Local neighborhoods in UV-grids map to local regions in the geometry.

3. Method

In this section we review the B-rep data structure, and
introduce UV-Net’s representation and network architecture.

3.1. Input representation

The B-rep data structure comprises several topological
entities—faces, edges, halfedges, and vertices, with connec-
tions between them, see Figure 2 (a). Faces are the visible
portion of parametric surfaces such as planes, cones, cylin-
ders, toruses, and splines. Edges are the visible interval of
parametric curves and vertices are the endpoints of edges.
Each face is delimited by one or more loops of halfedges.
Anti-clockwise loops define outer boundaries while clock-
wise loops define internal holes. Solid modeling packages
are designed to generate closed and watertight B-rep mod-
els, in which every edge contains two halfedges on adjacent
faces. The data structure also stores many references allow-
ing efficient navigation between all adjacent entities [23].

Although expressive, the B-rep is a complex data structure
and is difficult to feed to neural networks in its original form.
Our goal is to extract the most informative geometric and
topological information from the B-rep, and convert it into
a representation that can easily and efficiently work with
existing neural network architectures.

Topology UV-Net uses a face-adjacency graph derived from
the B-rep,G(V,E), to model the topology where the vertices
V represent the faces in the B-rep, while the edges E encode
the connectivity between the faces, as shown in Figure 2
(b). This can be easily built in constant time complexity
by traversing through the halfedges of the B-rep: current
face→ halfedges→ twin-halfedges→ neighboring faces.
The face adjacency captures the two most geometrically and
topologically rich entities: faces and edges from the B-rep,
and is sufficient to capture both local and global information
about a solid, as we later demonstrate.

Curve geometry Each topological edge in a B-rep has an
associated parametric curve to define the actual geometry.
Consider one such parametric curve C(u), which is a map
from an interval [umin, umax] ∈ R, the parameter domain, to
the geometry domain R3. The curve could be parameterized
as a line, circular arc, or B-spline; we only expect that an
interface is available to evaluate the curve and optionally, its
first order derivative. Our idea is to represent the geometry
of the curve by discretizing its parameter domain [20] as a
regular 1D grid by a uniform step size δu = umax−umin

M−1 , where
M is the number of chosen samples, as shown in Figure 2 (c).
At each of the discretized points in the parameter domain
uk, we can attach a set of features evaluated from the curve,
e.g., absolute point coordinates C(uk), and optionally the
unit tangent vector Ĉu(uk) as features. This 1D UV-grid is
set as input edge features in G as shown in Figure 2(c).

Surface geometry Each topological face in a B-rep has
an associated surface geometry that can be a plane, sphere,
cylinder, cone, or a freeform NURBS surface. The sur-
faces are trimmed by the halfedge loops that run along
the boundary of the face to expose only a portion of the
surface as a visible region. Consider one such paramet-
ric surface S(u, v) which is a map from a 2D interval
[umin, umax] × [vmin, vmax] ∈ R2, the parameter domain, to
the geometry domain R3. We discretize the parameter do-
main into a regular 2D grid of samples with step sizes
δu = umax−umin

M−1 , and δv = vmax−vmin
N−1 , where M and N are

the number of samples along each dimension, as shown in
Figure 2 (c). The intervals [umin, umax] and [vmin, vmax] are
chosen such that they closely bound the loop that defines the
visible region. At each of these grid points indexed by (k, l),
we attach the following local features encoding the geometry
of the surface as channels: (1) 3D absolute point position
S(uk, vl) (the scale of the solid is normalized into a cube of
size 2 and centered at origin). (2) Optionally, the 3D abso-
lute surface normal Su(uk,vl)×Sv(uk,vl)

‖Su(uk,vl)×Sv(uk,vl)‖ pointing outwards

3



Shape

embedding

(b) Our representation

…

64D

64D

Surface

…

Curve

#V x 128D 128D

Graph

64D

64D Node embeddings

(c) Image convolutions for curve 

and surface features
(d) Graph convolutions for message passing 

curve and surface features

2D 

CNN

1D 

CNN

GNN

(a) Solid model

Figure 3: UV-Net encoder architecture. (a) A solid model is represented by (b) a set of regular UV-grids representing each
face’s and edge’s geometry by discretizing the parameter domain, and a graph that captures its topology with face-adjacency
information. (c) Curve and surface features are extracted from the UV-grids with 1D and 2D CNNs, respectively. (d) These
features are treated as edge and node embeddings of the graph and further processed by graph convolutions. The result is a set
of node embeddings, that can be pooled to get the shape embedding of the solid model.

consistently. (3) Trimming mask with 1 and 0 representing
samples that are in the visible region and trimmed region, re-
spectively. This 2D UV-grid is defined as input node features
in G. The representation is flexible enough to incorporate
other features like curvature based on the downstream task.

We set the number of samples M=N=10 in all experi-
ments throughout the paper. This is not a technical restric-
tion, rather it is convenient to form mini-batches of features.
A fixed step size is sufficient when the mapping between
parameter and geometry domains are roughly uniform. We
quantitatively evaluate this in the supplementary material. In
the case of extreme parameterizations with high stretching,
it is possible to derive a step size to upper bound the distance
between samples [47].

Advantages The UV-Net representation has several advan-
tages: (1) Evaluating curves/surfaces at a set of parameters is
fast for both primitive and spline surfaces [32]. (2) The rep-
resentation is sparse and scales with the number curves and
surfaces in the B-rep. (3) The grid is largely invariant to the
exact parametrization. For example, the grid does not change
when a planar surface is converted into a NURBS patch, or
when degree elevation or knot insertion is performed, since
the parameterization and geometry remain identical [28]. In
contrast, the raw curve/surface equation will change signif-
icantly. (4) Finally, local neighborhoods in the parameter
domain (UV-grids) correspond to local neighborhoods in
curve/surface geometry domain, hence hierarchical feature
extraction on the manifold [5] is possible.

3.2. Network architecture

With this representation, we first perform image con-
volutions on the curve and surface UV-grids. These local
curve/surface features are then propagated over the entire
B-rep with graph convolutions as shown in Figure 3.

Curve & surface convolution Our surface CNN takes in
2D UV-grids with typically 4 or 7 channels (3 xyz, 3 normals,
1 trimming mask) and is defined as: Conv(4/7, 64, 3) →
Conv(64, 128, 3) → Conv(128, 256, 3) → Pool(1, 1) →
FC(256, 64), where Conv(i, o, k) is an image convolutional
layer with i input channels, o output channels, and kernel
size k, Pool(n, n) is an adaptive average pooling layer which
outputs a n×n feature map, and FC(i, o) is a fully connected
layer which takes an input in i-D vector and maps it to o-D
vector. Our curve CNN takes 1D UV-grids computed from
the curves lying in the edges of the B-rep, and is defined sim-
ilarly with 1D convolutional and pooling layers. The weights
of the curve and surface CNN are shared among all edges
and faces in a B-rep, respectively, making them permutation-
invariant. Both convolutional and fully-connected layers do
not have biases, and include batch normalization and the
LeakyReLU activation function. We pad the features with
size bk/2c to retain the spatial dimensions of the input.

Message passing The output of curve and surface CNNs are
hidden features treated as input edge and node features to the
graph neural network. Given the initial features, we compute
the hidden node features h(k)

v in graph layer k ∈ 1 . . .K, by
aggregating the input node features h(k−1)

v from a one-hop
neighborhood u ∈ N(v) while conditioning them on the
edge features h(k−1)

uv :

h(k)
v = φ(k)

(
(1 + ε(k)) h(k−1)

v +∑
u∈N(v)

fΘ

(
h(k−1)
uv

)
� h(k−1)

u

))
, (1)

where φ(k) is a multi-layer perceptron (MLP) with two fully
connected layers FC(64, 64)→ FC(64, 64), ε(k) is a learn-

4



able parameter to distinguish the center nodes from the neigh-
bors and fΘ is a linear projection from the edge to node fea-
ture space. This update equation extends the Graph Isomor-
phism Network [45], with additional consideration of edge
features. The hidden edge features are next updated similarly
while considering the features of the endpoint nodes:

h(k)
uv = ψ(k)

(
(1 + γ(k)) h(k−1)

uv + fΞ

(
h(k−1)
u + h(k−1)

v

))
,

(2)
where ψ(k) is a 2-layer MLP as before, γ(k) is a learn-
able parameter to distinguish the edge features from its
neighbors, and fΞ is a linear projection from the node
to edge feature space. At the end, we then take all the
hidden node features {h(k)

v | k ∈ 1 . . .K} and apply an
element-wise max-pooling operation across the nodes to ob-
tain hierarchical graph-level feature vectors from every layer
{h(k) | k ∈ 1 . . .K}, where h(k) = maxpoolv∈V (h

(k)
v ).

These features are then linearly projected into 128D vectors
and summed to obtain the final shape embedding:

hG =

K∑
k=1

w(k) · h(k) + b(k). (3)

We use K = 2 graph layers in all experiments. The node
and graph embeddings obtained from the network can be
used for several downstream applications as detailed next.

4. Experiments

In this section, we qualitatively and quantitatively eval-
uate UV-Net on 3D shape classification, segmentation, and
shape retrieval on unlabelled data.

4.1. Datasets

We briefly introduce the five datasets used in our ex-
periments and provide further details in the supplementary
material. We select the datasets below as they are available
in B-rep format, unlike many common benchmark datasets
provided in mesh format.

Machining feature dataset [46] a synthetic labeled, bal-
anced dataset representing machining features such as cham-
fers and circular end pockets applied to a cube. It has 23,995
3D shapes (∼1000 per class) split into 24 classes.

MFCAD dataset [6] a synthetic segmentation dataset of
15,488 3D shapes, similar to the Machining feature dataset,
but with multiple machining features. 16 different segmenta-
tion labels are used and applied per face.

FabWave dataset [1] a small labeled, imbalanced collec-
tion of 5,373 3D shapes split into 52 mechanical part classes,
such as brackets, gears, and o-rings.

ABC dataset [22] a real-world collection of millions of 3D
shapes. The dataset is unlabelled, imbalanced, and has many
duplicates. We remove duplicates and use a subset of 46k
models in our experiments.

SolidLetters dataset our dataset consists of 96k 3D shapes
generated by randomly extruding and filleting the 26 alpha-
bet letters (a–z) to form class categories across 2002 style
categories from fonts. Compared to other synthetic datasets
that have similar intra-class topology, SolidLetters contains
significant variations in both geometry and topology, due to
font variety, and is well-balanced.

4.2. Tasks

We now compare UV-Net to PointNet [30], DGCNN [40],
and MeshCNN [16] on several standard tasks. We show
additional results from the baseline methods presented with
the Machining feature and MFCAD datasets.

4.2.1 Classification

We first evaluate our method on the task of 3D shape classifi-
cation. The ability to classify 3D components in large B-rep
assemblies is valuable for numerous applications including
product lifecycle management and automation of repetitive
tasks such as simulation setup. We show the advantages
of using both geometry and topology in the B-rep. This is
particularly important in datasets where data within a class
has high geometric variance but similar topology, as is com-
mon in parametric CAD modeling. Our network comprises
the UV-Net encoder network in Figure 3 followed by a non-
linear classifier (2-layer MLP) that maps the 128D shape
embedding into class logits. Our input geometric features
include xyz coordinates and the trimming mask.

We train point cloud-based methods on 2048 points sam-
pled uniformly from the solid model, FeatureNet [46], the
baseline for the Machining feature dataset, on 643 voxel
grids, and MeshCNN [16] on triangle meshes. For the Ma-
chining Feature dataset we convert B-reps into high-quality,
watertight, manifold meshes as required by MeshCNN using
the finite-element mesher in Autodesk Fusion 360 with a
target edge-count of 2000 edges. As MeshCNN requires all
meshes to have a similar edge count, we find it is impractical
to use with datasets of varying shape complexity, such as
FabWave, SolidLetters, and ABC. Although it may be feasi-
ble to use a target edge count suitable for the most complex
shape in the dataset, in practice this dramatically increases
training time and limits the advantages of mesh pooling.

We train all models to a maximum of 350 epochs with
cross-entropy loss and the Adam [21] optimizer. Table 1
shows that our method achieves the best classification ac-
curacy on all datasets. Unstructured representations suffer
when data within a class has high geometric variance but
similar topology, since they cannot model the latter explicitly.

5



Table 1: Solid model classification.

Dataset Model Accuracy (%) #Param.

Machining
Feature

UV-Net 99.94 ± 0.00 1.34M
PointNet (2048) 87.13 ± 0.15 0.81M
DGCNN (2048) 92.81 ± 0.69 1.81M
FeatureNet (643) 98.85 ± 0.48 33.94M
MeshCNN (2000) 98.90 ± 0.70 0.67M

FabWave
UV-Net 94.51 ± 0.10 1.35M
PointNet (2048) 80.08 ± 3.61 0.82M
DGCNN (2048) 69.95 ± 2.37 1.81M

SolidLetters
UV-Net 97.24 ± 0.10 1.34M
PointNet (2048) 94.72 ± 0.17 0.81M
DGCNN (2048) 96.62 ± 0.13 1.81M

Notably, we outperform FeatureNet [46] on their dataset, and
obtain the highest results on SolidLetters, demonstrating that
our method can exploit both geometry and topology.

4.2.2 Segmentation

We now consider the problem of segmenting the faces of
a B-rep, a classic task with applications in machining fea-
ture recognition, computer-aided process planning and CAD
modeling history reconstruction. We consider the MFCAD
and ABC datasets in this experiment and demonstrate the
benefit of directly working with B-rep entities. To work
around lack of labels in the ABC dataset, we use the Au-
todesk Shape Manager [3], a commercial solid-modeling
kernel, to assign labels indicating the CAD operation likely
to have created the face, such as ExtrudeSide, ExtrudeEnd,
or Fillet, we provide more details in supplementary material.

Our segmentation network is similar to the classification
network with a small difference: we concatenate the shape
embedding to each of the node embeddings, and use a non-
linear classifier to output per-node logits. We additionally
include curve tangents and surface normals in the edge and
face input features, respectively.

To investigate the benefits of working with B-rep data
directly, we compare against established point and mesh-
based methods. We mesh the B-reps in the MFCAD dataset,
as previously described and discard 27 shapes that fail to
mesh. To generate point clouds for both the MFCAD and
ABC datasets, we first convert the B-reps into render-meshes,
i.e., non-watertight, disjoint meshes. We then sample the
triangles uniformly based on the surface area to generate
2048 points. The mapping between the faces and primitives
(edges, and points) are retained, so that we can perform a
per-face voting to compute face-level scores.

We train the models as before using the cross-entropy
loss. Considering each face in the B-rep as a data point,
we report the accuracy, per-class accuracy and intersection-

over-union (IoU) metrics in Table 2. Results show that UV-
Net solves the face segmentation problem in the MFCAD
dataset, outperforming their baseline method [6] and point
cloud-based methods by a wide margin. MeshCNN [16]
obtains very similar results to UV-Net; we suggest this is due
to the dihedral angle feature used, which many segmentation
labels in the MFCAD dataset strongly correlate with. Our
method achieves state-of-the-art results while operating on B-
reps directly and avoids the problem of producing consistent
meshing. We observe a similar trend with the ABC dataset.
Point cloud methods are unable to discover the topological
information necessary to identify rare classes, and suffer
from loss of fidelity.

4.2.3 Self-supervised learning

Learning from unlabeled data is important with solid models
since real-world labeled datasets are limited, and represen-
tation learning by an encoder-decoder scheme is non-trivial
due to a lack of B-rep decoders. We leverage contrastive
learning [44, 7, 17, 31] (CLR) and propose the following
transformations to create positive views for training on B-rep
data, each of which enforces a useful prior on the model.

Connected patch Extract a random node and its n-hop
neighbors (n ∈ {1, 2}). This implies that local patches in a
B-rep hint about the global shape.

Drop nodes Randomly delete nodes with uniform probabil-
ity (0.4) along with attached edges to encourage B-reps with
partially similar faces to be clustered together in the latent
space.

Drop edges Randomly delete edges with uniform probabil-
ity (0.4), to encourage B-reps that look similar visually, but
have different topology be clustered together.

Our CLR model has three components [7]. Given a B-rep
in UV-grid+graph representation G, we uniformly sample
two i.i.d. transformations T1 and T2 to obtain two positive
views T1(G) and T2(G). Occasionally (10% of the time), we
set T1 to the identity transformation so that the global shape
is available to the neural network to associate with the other
partial views. An ablation study for these transformations is
provided in the supplementary material.

Our UV-Net encoder extracts the 128D shape embeddings
hi and hj of positive pairs. A 3-layer non-linear projec-
tion head (MLP) with ReLU activations maps these embed-
dings to 64D latent vectors zi and zj . Given a mini-batch
of size N = 256, we compute {zk | k ∈ 1 . . . 2N}, and
bring together the positive pairs while treating the remaining
2(N − 1) data as negative examples, with the normalized
temperature scaled cross-entropy [7] loss.

We first use the SolidLetters dataset (upper case only
since CLR performs per-instance discrimination) to quantita-
tively understand how our method performs. After training

6



Table 2: Solid face segmentation. The per-primitive scores refer to per-point scores for point cloud-based models and per-edge
scores for MeshCNN. The corresponding per-face scores are computed by voting the predictions from all primitives in a face.

Dataset Model
Accuracy Per-class accuracy Intersection-over-Union

#Param.
Per-face Per-prim. Per-face Per-prim. Per-face Per-prim.

MFCAD

UV-Net 99.95 ± 0.02 - 99.93 ± 0.20 - 99.87 ± 0.03 - 1.23M
UV-Net (xyz) 99.83 ± 0.06 - 99.80 ± 0.00 - 99.63 ± 0.06 - 1.23M
PointNet 32.13 ± 7.92 59.13 ± 7.54 16.20 ± 8.51 15.78 ± 8.17 7.15 ± 5.22 8.27 ± 4.66 0.87M
DGCNN 82.50 ± 2.46 91.60 ± 2.18 80.43 ± 4.51 78.80 ± 4.57 67.70 ± 4.73 78.67 ± 6.27 0.98M
GNN - - - - 93.60 [6] - 0.53M
MeshCNN 99.89 ± 0.01 98.52 ± 0.04 99.84 ± 0.03 98.29 ± 0.09 99.70 ± 0.06 95.93 ± 0.05 2.29M

ABC

UV-Net 88.87 ± 0.70 - 56.81 ± 0.93 - 50.37 ± 1.11 - 1.23M
UV-Net (xyz) 77.33 ± 0.48 - 47.38 ± 0.54 - 38.99 ± 0.42 - 1.23M
PointNet 40.77 ± 1.79 61.27 ± 0.55 19.87 ± 0.51 25.53 ± 0.32 11.10 ± 0.70 18.47 ± 0.31 0.87M
DGCNN 54.18 ± 3.19 67.80 ± 0.59 27.30 ± 1.34 34.93 ± 1.52 18.14 ± 1.97 26.26 ± 1.27 0.98M

Figure 4: Self-supervised shape retrieval on SolidLetters and
ABC datasets. Column 1: Query, Columns 2–11: Retrieved
results sorted left to right by distance in latent space.

the model for 350 epochs, we extract the shape embeddings
of the test set and perform k-means clustering to generate 26
clusters. We measure the clustering quality against ground
truth clusters (labels) using the adjusted mutual-information
metric [37]. We also classify the shape embeddings using
a linear Support-Vector Machine (SVM) and compute the
classification accuracy. Results in Table 3 show that the
shape embeddings obtained with our CLR model is rich with
category information even though it is trained without labels.

To perform shape retrieval, we take random shape em-
beddings from the test set of SolidLetters and ABC (random
20% split) as queries, and compute their k-nearest neighbors

Table 3: Quality of self-supervised shape embeddings ob-
tained with our contrastive learning method on SolidLetters.

Method Score (%)

Linear SVM 79.40 ± 0.20
K-means clustering 58.17 ± 0.25

65

70

75

80

85

90

95

100

UV-Net PointNet DGCNN FeatureNet MeshCNN

C
la

ss
if

ic
at

io
n
 a

cc
u
ra

cy
 (

%
)

10x10 grid

2048 points

64^3 voxels

2000 edges

7x7 grid

1024 points

48^3 voxels

1000 edges

5x5 grid

512 points

32^3 voxels

500 edges

3x3 grid

256 points

20^3 voxels

250 edges

Figure 5: Sensitivity of input representations and methods
to sampling resolution for machining feature classification.

in the UV-Net shape embedding space as shown in Figure 4.
The results demonstrate that our CLR approach is viable,
and shows high potential to learn from large-scale unlabeled
CAD datasets, an unaddressed problem until now.

4.3. Sensitivity to sampling

We now study the effect of the sampling resolution on the
accuracy produced by the network. A robust method should
degrade gracefully when the sample count is reduced, or
leverage other information to produce consistent results. The
classification networks are all trained with reduced resolution
data and the accuracy is reported in Figure 5. We see that

7



71.47

85.34

99.59

99.33

99.87

70 75 80 85 90 95 100

Topology only

Face features only

UV-Net (Faces only)

Full UV-Net (xyz only)

Full UV-Net

Segmentation IoU %

Figure 6: Ablation study with input features and components
of UV-Net on the MFCAD segmentation problem.

our method is robust to sampling resolution in the machining
feature detection task. This is because we not only capture
the geometry, but also the topological information that can
be leveraged for the task. Moreover, every face in the solid
is seen by UV-Net regardless of its surface area, while other
representations suffer from loss of fidelity.

4.4. Feature and architecture ablation

Here we study the importance of the input features, and
network components on the MFCAD segmentation problem:

Full UV-Net (xyz only) We remove the normals from the
set of input features but use the full architecture.

UV-Net (Face only) This is similar to the full architec-
ture, but without the input curve features and curve CNN
(fΘ(huv) term in Eq. 1 and entire Eq. 2 are removed).

Face features only We replace the GNN portion of the net-
work with an MLP (similar parameter count as the GNN).
Edge features are also removed since they cannot be consid-
ered without a message-passing scheme.

Topology only We remove the curve and surface CNNs,
and set the edge and node attributes of the graph as noise
sampled from a normal distribution, so that the network is
forced to solve the task with topology features only.

These networks are trained for 100 epochs on the MF-
CAD segmentation task and the IoU score is compared
against the full model. The benefits of jointly considering
the geometric features and topology as proposed is evident
from Figure 6, and validates the merits of our approach.

4.5. Invariance to reparametrization

A solid can be altered in subtle ways without changing
the 3D appearance by reparametrizing the curve/surface ge-
ometry. This can occur when converting models from one
format to another (e.g. STEP to SAT), changing the surface
type (e.g. plane to spline), or as a result of some high level
CAD modeling operation. The UV-grid is to a large extent
invariant to common reparametrizations as discussed earlier.

On the other hand, reversing a surface parametrization
along the u- or v-axis amounts to flipping the UV-grid about
the same axis, while transposing the surface parametrization
by exchanging the u- and v-axis is equivalent to rotating and

Table 4: Effect of reparametrizing the SolidLetters classifi-
cation test set on UV-Net.

Convolution Reparametrized Test Accuracy

Regular
No 96.74 ± 0.06
Yes 55.98 ± 2.36

D2 equivariant
No 96.58 ± 0.01
Yes 96.59 ± 0.02

flipping the UV-grid. Flips about u- and v-axis and rotations
by {k π2 | k ∈ [0, 1, 2, 3]} belong to the Dihedral symmetry
group D2, and regular image convolutions are not invariant to
them as we show in Table 4. We see that randomly perform-
ing these transformations to surfaces in the test set but not
the training set affects the classification accuracy. However,
employing D2 group equivariant convolutions [42] followed
by a group pooling layer in the surface CNN (Section 3.1)
makes the model resilient to these reparametrizations.

5. Conclusion
We have presented UV-Net, a neural network and repre-

sentation that can work on B-rep data, and leverage existing
image and graph convolutional neural networks. We have
shown its benefits and versatility on both supervised and
self-supervised tasks spanning five B-rep datasets, outper-
forming other representations such as point clouds, voxels,
and meshes. In addition, we introduced SolidLetters, a new
synthetic B-rep dataset with variations in both geometry
and topology. We believe our work can unlock data-driven
applications in established CAD modeling pipelines, and
revitalize research interest in this domain.

Limitations & future work We fixed the sampling step
size for each curve or surface regardless of its geometry.
Choosing the step using derivatives [47, 20] or learning it
in a task-dependent manner could be an interesting exten-
sion. While UV-grids are versatile, we did not exploit other
information available in the B-rep such as curve and surface
types, edge convexity, halfedge ordering, etc. which might
prove useful in certain applications. Finally, our UV-grid
features are not rotation-invariant. Although we can use lo-
cal coordinates for each UV-grid [11, 10] or switch to other
features like mean-curvature, this may make the network
lose sight of the relative orientation of various faces and
edges. We leave the detailed study of various invariances to
future work. We also believe there is tremendous potential
to improve our self-supervised method for transfer learning
from large datasets like ABC. Finally, it is worth investi-
gating how ideas from this work can be adapted to other
representations like subdivision surfaces, where the limit
surface can be parametrized as a regular structure using the
faces of the control mesh.

8



References
[1] Atin Angrish, Benjamin Craver, and Binil Starly. “Fab-

Search”: A 3D CAD Model-Based Search Engine for
Sourcing Manufacturing Services. Journal of Com-
puting and Information Science in Engineering, 19(4),
2019. 041006. 5, 12

[2] Silvia Ansaldi, Leila De Floriani, and Bianca Falci-
dieno. Geometric modeling of solid objects by using a
face adjacency graph representation. ACM SIGGRAPH
Computer Graphics, 19(3):131–139, 1985. 2

[3] Autodesk. Autodesk ShapeManager.
https://en.wikipedia.org/wiki/ShapeManager. 6,
14

[4] Bojan Babic, Nenad Nesic, and Zoran Miljkovic. A re-
view of automated feature recognition with rule-based
pattern recognition. Computers in Industry, 59(4):321–
337, 2008. 2

[5] Michael M. Bronstein, Joan Bruna, Yann LeCun,
Arthur Szlam, and Pierre Vandergheynst. Geometric
deep learning: Going beyond euclidean data. IEEE
Signal Processing Magazine, 34(4):18–42, 2017. 4

[6] Weijuan Cao, Trevor Robinson, Yang Hua, Flavien
Boussuge, Andrew R. Colligan, and Wanbin Pan.
Graph representation of 3d cad models for machining
feature recognition with deep learning. In Proceedings
of the ASME 2020 International Design Engineering
Technical Conferences and Computers and Information
in Engineering Conference, IDETC-CIE. ASME, 2020.
2, 5, 6, 7, 12

[7] Ting Chen, Simon Kornblith, Kevin Swersky, Mo-
hammad Norouzi, and Geoffrey E Hinton. Big self-
supervised models are strong semi-supervised learners.
In Advances in Neural Information Processing Systems,
volume 33, pages 22243–22255. Curran Associates,
Inc., 2020. 6

[8] Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang.
Bsp-net: Generating compact meshes via binary space
partitioning. In 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
42–51, 2020. 2

[9] Zhiqin Chen and Hao Zhang. Learning implicit fields
for generative shape modeling. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 5932–5941, 2019. 2

[10] Haowen Deng, Tolga Birdal, and Slobodan Ilic. Ppf-
foldnet: Unsupervised learning of rotation invariant 3d
local descriptors. In Computer Vision – ECCV 2018,
pages 620–638, Cham, 2018. Springer International
Publishing. 8

[11] Haowen Deng, Tolga Birdal, and Slobodan Ilic. Ppfnet:
Global context aware local features for robust 3d point
matching. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 195–205, 2018.

8
[12] Jun Gao, Chengcheng Tang, Vignesh Ganapathi-

Subramanian, Jiahui Huang, Hao Su, and Leonidas J.
Guibas. Deepspline: Data-driven reconstruction of
parametric curves and surfaces. arxiv:1901.03781v1,
2019. 2

[13] Christophe Geuzaine and Jean-François Remacle.
Gmsh: A 3-d finite element mesh generator with
built-in pre- and post-processing facilities. Interna-
tional Journal for Numerical Methods in Engineering,
79(11):1309–1331, 2009. 2

[14] Thibault Groueix, Matthew Fisher, Vladimir G. Kim,
Bryan Russell, and Mathieu Aubry. Atlasnet: A papier-
mâché approach to learning 3d surface generation. In
Proceedings IEEE Conf. on Computer Vision and Pat-
tern Recognition (CVPR), 2018. 2

[15] Xianfeng Gu, Steven J. Gortler, and Hugues Hoppe.
Geometry images. ACM Transactions on Graphics,
21(3):355—-361, 2002. 2

[16] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes,
Shachar Fleishman, and Daniel Cohen-Or. Meshcnn: A
network with an edge. ACM Transactions on Graphics,
38(4), 2019. 2, 5, 6

[17] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Mo-
mentum contrast for unsupervised visual representation
learning. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 9726–
9735, 2020. 6

[18] Yixin Hu, Teseo Schneider, Xifeng Gao, Qingnan Zhou,
Alec Jacobson, Denis Zorin, and Daniele Panozzo. Tri-
wild: Robust triangulation with curve constraints. ACM
Transactions on Graphics, 38(4):52:1–52:15, 2019. 2

[19] S. Joshi and T.C. Chang. Graph-based heuristics for
recognition of machined features from a 3d solid model.
Computer-Aided Design, 20(2):58–66, 1988. 2

[20] Taro Kawasaki, Pradeep Kumar Jayaraman, Kentaro
Shida, Jianmin Zheng, and Takashi Maekawa. An
image processing approach to feature-preserving b-
spline surface fairing. Computer-Aided Design, 99:1–
10, 2018. 2, 3, 8

[21] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In 3rd International Con-
ference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015. 5

[22] Sebastian Koch, Albert Matveev, Zhongshi Jiang, Fran-
cis Williams, Alexey Artemov, Evgeny Burnaev, Marc
Alexa, Denis Zorin, and Daniele Panozzo. Abc: A
big cad model dataset for geometric deep learning. In
The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019. 5, 12

[23] Sang Hun Lee and Kunwoo Lee. Partial entity struc-
ture: A compact non-manifold boundary representation
based on partial topological entities. In Proceedings

9



of the Sixth ACM Symposium on Solid Modeling and
Applications, SMA ’01, page 159–170, New York, NY,
USA, 2001. Association for Computing Machinery. 1,
3

[24] Raphael G. Lopes, David Ha, Douglas Eck, and
Jonathon Shlens. A learned representation for scal-
able vector graphics. In 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 7929–
7938, 2019. 2

[25] Lars Mescheder, Michael Oechsle, Michael Niemeyer,
Sebastian Nowozin, and Andreas Geiger. Occupancy
networks: Learning 3d reconstruction in function space.
In Proceedings IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2019. 2

[26] Konstantinos Nezis and George Vosniakos. Recogniz-
ing 212d shape features using a neural network and
heuristics. Computer-Aided Design, 29(7):523–539,
1997. 2

[27] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning
continuous signed distance functions for shape repre-
sentation. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2019. 2

[28] Les Piegl and Wayne Tiller. The NURBS Book.
Springer-Verlag, New York, NY, USA, second edition,
1996. 4, 11

[29] S. Prabhakar and M.R. Henderson. Automatic form-
feature recognition using neural-network-based tech-
niques on boundary representations of solid models.
Computer-Aided Design, 24(7):381–393, 1992. 2

[30] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J.
Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 77–85, 2017. 2, 5

[31] Aditya Sanghi. Info3d: Representation learning on 3d
objects using mutual information maximization and
contrastive learning. In Computer Vision – ECCV
2020, pages 626–642. Springer International Publish-
ing, 2020. 6

[32] Thomas W. Sederberg. "Computer Aided Geometric
Design". BYU Faculty Publications, 2012. 4

[33] Ayan Sinha, Jing Bai, and Karthik Ramani. Deep
learning 3d shape surfaces using geometry images. In
Computer Vision – ECCV 2016, pages 223–240, Cham,
2016. Springer International Publishing. 2

[34] Dmitriy Smirnov, Mikhail Bessmeltsev, and Justin
Solomon. Learning manifold patch-based representa-
tions of man-made shapes. arXiv:1906.12337v3, 2021.
2

[35] Dmitriy Smirnov, Matthew Fisher, Vladimir G. Kim,
Richard Zhang, and Justin Solomon. Deep paramet-
ric shape predictions using distance fields. In 2020
IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition (CVPR), pages 558–567, 2020. 2
[36] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and

Erik G. Learned-Miller. Multi-view convolutional neu-
ral networks for 3d shape recognition. In 2015 IEEE
International Conference on Computer Vision (ICCV),
pages 945–953, 2015. 2

[37] Nguyen Xuan Vinh, Julien Epps, and James Bailey.
Information theoretic measures for clusterings compar-
ison: Variants, properties, normalization and correction
for chance. Journal of Machine Learning Research,
11(95):2837–2854, 2010. 7

[38] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu
Sun, and Xin Tong. O-cnn: Octree-based convolu-
tional neural networks for 3d shape analysis. ACM
Transactions on Graphics (SIGGRAPH), 36(4), 2017.
2

[39] Yizhi Wang, Yue Gao, and Zhouhui Lian. At-
tribute2font: Creating fonts you want from attributes.
ACM Transactions on Graphics, 39(4), 2020. 2

[40] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,
Michael M. Bronstein, and Justin M. Solomon. Dy-
namic graph cnn for learning on point clouds. ACM
Transactions on Graphics (TOG), 2019. 2, 5

[41] K.J. Weiler. Topological Structures for Geometric Mod-
eling. Rensselaer Polytechnic Institute, 1986. 1

[42] Maurice Weiler and Gabriele Cesa. General e(2)-
equivariant steerable cnns. In Advances in Neural
Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. 8

[43] Ruben Wiersma, Elmar Eisemann, and Klaus Hilde-
brandt. Cnns on surfaces using rotation-equivariant
features. ACM Transactions on Graphics, 39(4), 2020.
2

[44] Zhirong Wu, Yuanjun Xiong, X Yu Stella, and Dahua
Lin. Unsupervised feature learning via non-parametric
instance discrimination. In 2018 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
pages 3733–3742, 2018. 6

[45] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie
Jegelka. How powerful are graph neural networks? In
International Conference on Learning Representations,
2019. 5

[46] Zhibo Zhang, Prakhar Jaiswal, and Rahul Rai. Fea-
turenet: Machining feature recognition based on 3d
convolution neural network. Computer-Aided Design,
101:12–22, 2018. 2, 5, 6, 12, 15

[47] Jianmin Zheng and Thomas W. Sederberg. Estimating
tessellation parameter intervals for rational curves and
surfaces. ACM Transactions on Graphics, 19(1):56–
–77, 2000. 4, 8

[48] Zhirong Wu, S. Song, A. Khosla, Fisher Yu, Linguang
Zhang, Xiaoou Tang, and J. Xiao. 3d shapenets: A deep
representation for volumetric shapes. In 2015 IEEE
Conference on Computer Vision and Pattern Recogni-

10



tion (CVPR), pages 1912–1920, 2015. 2

A. Supplementary material
A.1. Sampling error in UV-grids

We quantitatively measure how well the UV-grids approx-
imate the original surface geometry. We chose a random
selection of 132,492 models from the ABC dataset, and
converted them into our UV-grid representation: curves are
represented by grids with 10 points and unit tangents, while
surface are represented by 10×10 grids with points and unit
surface normals. We then compute four metrics, two re-
lated to edge curve approximation and two related to surface
approximation:

• Chordal error (curves): The distance between the cen-
ter of the line joining two points and the ground truth
curve evaluated at the average u parameter value of two
successive sample points.

• Chordal error (surfaces): The distance between the
average of four points defining a patch on a 10×10
point grid and the real surface evaluated at the average
(u, v) of the patch. This error metric is considering the
point grid as a bi-linear approximation of the surface.

• Bézier approximation error (curves): A cubic
Bézier span is constructed from the points and unit
tangent vectors following Equation 9.47 in [28]. The
Bézier approximation error is then taken as the aver-
age distance between the center of the Bézier and the
real edge curve evaluated at the average u parameter
value of the two sample points used to construct the
Bézier span.

• Bézier approximation error (surfaces): A cubic
Bézier patch is constructed from the 4 points and unit
normals following Equation 9.58 in [28]. The Bézier ap-
proximation error is then taken as the average distance
between the center of the patch, and the real surface
evaluated the central (u, v) parameter value. This error
metric is considering the point grid as a cubic Bézier ap-
proximation of the surface.

To allow these errors to be compared for solids of different
sizes we divide each by then longest length of the bounding
box of the entire solid.

As the neural network is passed ordered lists of edge
curve points and tangents and an ordered grid of points and
normals, the network has sufficient information to under-
stand the curve and surface information as a linear/bilinear
interpolation. Chordal errors of 89.19% surface patches and
93.33% curves are within 10−3 of the longest length of the
B-rep’s bounding box as shown in Table A.1.

The network also has access to curve tangent and surface
normal information. If we assume that the surface normal in-
formation can be used by the network then the approximation
error is further reduced and we find that the Bézier approx-
imation errors of 96.84% surface patches and 99.77% are
within 10−3 of the longest length of the B-rep’s bounding
box.

While it is unclear if the network actually uses this infor-
mation to build an interpolation of the curve/surface geom-
etry, this information is part of the input and is empirically
found to help in our ablation studies (see Section 4.4).

A.2. SolidLetters dataset

A publicly available, balanced, and labeled dataset is
vital to assist in designing and testing B-rep neural network
architectures. To this end, we create “SolidLetters”, a new,
synthetic, labeled dataset for solid models that includes both
geometric and topological variations. It comprises upper and
lower case letters in various styles obtained from a collection
of 2002 system and Google Fonts. Each data point has three
labels: (1) the alphabet, (2) the case (upper or lower), and
(3) the name of the font.

Creation We first create the outline of each letter with

Table A.1: Percentage of curves and surfaces with approx-
imation errors exceeding various thresholds computed on
random samples from the ABC dataset.

Factor of
box size

Surfaces Curves

Bézier Chordal Bézier Chordal

Above 10−3 3.16% 10.81% 0.23% 6.67%
Above 10−2 0.80% 2.65% 0.06% 1.33%
Above 10−1 0.09% 0.10% 0.02% 0.02%

(a) (b)

(c) (d)

Figure A.1: Running example of data generation. (a) 2D
wire B-rep going through boundary of the font face. (b)
Trimmed planar sheet filling the interior of the boundary. (c)
Extrude. (d) Fillet edges of the topmost face (SolidLetters).

11



0

500

1000

1500

2000

2500

3000

3500

4000

a b c d e f g h i j k l m n o p q r s t u v w x y z

Figure A.2: Per-class distribution of solids in the SolidLet-
ters dataset.

every font (size 10) (Figure A.1a), and fill its interior with a
trimmed planar sheet surface, see Figure A.1b. Treating the
planar sheet as a profile surface on the XY-plane, we extrude
it along a vector e pointing upwards, see Figure A.1c. We
define this vector such that its head lies at a random point
in the spherical cap situated along the z-axis to introduce
variance in the extrusion direction. By sampling two random
numbers ξ1 and ξ2 from a uniform distribution U(0, 1), we
can define the vector e as: ex =

√
1− e2

z cos(2πξ2), ey =√
1− e2

z sin(2πξ2), ez = ξ1(1− cos θ) + cos θ, where θ is
the angle subtended by the spherical cap that we set to 45◦.
Furthermore, to break the symmetry of the shape across the
XY-plane and introduce more complexity in the model, we
identify the topmost face in the extruded solid and perform
filleting by blending the edges with a constant radius 0.1,
see Figure A.1d. This introduces new curved faces in the
model along the edges of the topmost face, and changes the
topology as well. Filleting is prone to failure when the face
has edges that meet at sharp angles or the local thickness is
small compared to the filleting radius. Hence, we attempt to
fillet three times by successively reducing the filleting radius
by 50%, and upon failure leave the extruded solid as such.
After removing fonts that are non-English and symbols, we
end up with a total of 95,795 data points. There is an average
of 33 faces per solid in the dataset. The per-class distribution
of data is shown in Figure A.2. We show a visual overview
of the entire dataset in Figure A.3.

Data split We partition the dataset into an official 80-20
train-test split based on the complexity of the solids, which
can be roughly measured using the number of faces. We
place the solids in the datasets into three bins based on
the number of faces: [Fmin, F1), [F1, F2), [F2, Fmax], where
Fmin and Fmax are the minimum and maximum number
of faces in a solid in the entire dataset, respectively. F1

is defined as 0.15 × (Fmax − Fmin), while F2 is set to
0.30× (Fmax − Fmin). The solids in each bin are partitioned
randomly into an 80-20 train-test split and finally combined.

A.3. Other datasets

A.3.1 Machining feature

The Machining feature dataset [46] is available at github.
com/madlabub/Machining-feature-dataset.
The original train-test split information was not available, so
we created a random 85-15 split within each category, and
held out 20% of the training set for validation.

A.3.2 FabWave

The FabWave dataset [1] is available at dimelab.org/
fabwave. We use the subset of data that the authors call
“Standard" which contains mechanical part categories. There
are a total of 52 part categories, this is 4 less than what is
provided in the dataset because we removed some categories
that have very few or no models available in them. There
is no official train-test split, so we randomly partitioned the
data in a 80-20 ratio within each class. The data distribution
is shown in Figure A.4.

A.3.3 MFCAD

The MFCAD dataset [6] is available at github.com/
hducg/MFCAD. The dataset has 15,488 files (this is 2 more
than listed in the paper). The train-validation-test ratio is
60-20-20, and we use the official split shared by the authors
which partitions the models while considering the number
of labels per solid. Unlike the full set of labels described in
the paper, the dataset only has labels on planar faces. This is
likely because Cao et al. [6]’s method only supports planar
faces. There are a total of 350,295 faces in the dataset
classified into 16 segmentation categories. Some visual ex-
amples are shown in Figure A.5, and the class distribution in
Figure A.6.

A.3.4 ABC

The entire ABC dataset [22] consists of over 1 million
CAD assemblies containing over 13 million individual B-
rep bodies created by users of the Onshape CAD software.
It is available at deep-geometry.github.io/abc-
dataset. To use the dataset in our experiments we use
the following process to remove duplicates and generate
segmentation labels.

Duplication removal We remove duplicates from the ABC
dataset in four steps. All duplicate removal is performed at
the B-rep body level, rather than with assemblies.

1. Remove small files: A significant number of models in
the dataset are simple primitives that are unsuitable for
our experiments. We first remove models with a file size
of less than 15kB as a simple but effective proxy for
removing simple primitives.

12

github.com/madlabub/Machining-feature-dataset
github.com/madlabub/Machining-feature-dataset
dimelab.org/fabwave
dimelab.org/fabwave
github.com/hducg/MFCAD
github.com/hducg/MFCAD
deep-geometry.github.io/abc-dataset
deep-geometry.github.io/abc-dataset


Figure A.3: Visual overview of the SolidLetters dataset.

13



0

100

200

300

400

500

600

700

800

B
ea

ri
n
g
s

B
o
lt
s

B
o
x
es

B
ra

ck
et

s

B
u
sh

in
g

B
u
sh

in
g
_
D

am
p
in

g
_
L

in
er

s

C
o
ll
et

s

C
o
tt
er

_
P

in
s

E
x
te

rn
al

_
R

et
ai

n
in

g
_
R

in
g
s

E
y
eb

o
lt
s_

W
it
h
_
S

h
o
u
ld

er
s

F
ix

ed
_
C

ap
_
F
la

n
g
e

F
o
rg

ed
_
P

ip
e_

F
la

n
g
e

G
as

k
et

G
ea

rs

G
ea

r_
R

o
d
_
S
to

ck

G
ro

m
m

et
s

H
ea

d
le

ss
_
S

cr
ew

s

H
ex

_
H

ea
d
_
S

cr
ew

s

H
o
le

b
o
lt
s_

W
it

h
_
S
h
o
u
ld

er
s

Id
le

r_
S

p
ro

ck
et

In
te

rn
al

_
G

ea
r

K
ey

w
ay

_
S

h
af

t

M
ac

h
in

e_
K

ey

M
it
er

_
G

ea
r_

S
et

_
S
cr

ew

N
u
ts

O
_
R

in
g
s

P
ip

es

P
ip

e_
F

it
ti

n
g
s

P
ip

e_
Jo

in
ts

P
u
sh

_
R

in
g
s

R
ec

ta
n
g
u
la

r_
G

ea
r_

R
ac

k

R
et

ai
n
in

g
_
R

in
g
s

R
o
ll
er

s

R
o
ta

ry
_
S
h
af

t

R
o
u
ti

n
g
_
E

y
eB

o
lt

s_
B

en
t_

C
lo

se
d
_
E

y
e

S
h
af

ts

S
h
af

t_
C

o
ll

ar

S
le

ev
e_

W
as

h
er

s

S
lo

tt
ed

_
F

la
t_

H
ea

d
_
S

cr
ew

s

S
o
ck

et
_
C

o
n
n
ec

t_
F

la
n
g
es

S
o
ck

et
_
H

ea
d
_
S

cr
ew

s

S
p
ri

n
g
s

S
p
ro

ck
et

s

S
p
ro

ck
et

_
T

ap
er

_
L

o
ck

_
B

u
sh

in
g

S
tr

u
t_

C
h
an

n
el

_
F

lo
o
r_

M
o
u
n
t

S
tr

u
t_

C
h
an

n
el

_
S

id
e_

S
id

e

T
ag

_
H

o
ld

er

T
h
u
m

b
_
S

cr
ew

s

U
n
th

re
ad

ed
_
F

la
n
g
es

W
as

h
er

s

W
eb

b
in

g
_
G

u
id

e_
C

o
n
n
ie

l

Figure A.4: Distribution of categories in the FabWave dataset.

stock

triangular_blind_step

6sides_passage

rectangular_through_slot

rectangular_blind_step

…

Figure A.5: Example 3D models from the MFCAD dataset,
colored by segmentation label.

0

20000

40000

60000

80000

100000

Figure A.6: Distribution of segmentation labels in the MF-
CAD dataset.

2. Remove file duplicates and invalid files: We next re-
move exact file duplicates and invalid file type such as

.xmm_txt.

3. Remove non-solid and simple solids: We next remove
non-solid models, such as those containing only wires
or open solids, as well as simple solids with less than 30
faces.

4. Remove geometric duplicates: Finally we remove ge-
ometric duplicates by creating and comparing a unique
hash string for each model using the number of edges,
number of faces, number of shells, number of lumps,
area, volume, and moments of inertia. This approach is
efficient and invariant to rotation.

From the pool of unique models we choose a random sample
of 46k models to use in our experiments.

Segmentation labels Since the ABC dataset is unlabeled,
we create our own labels to test UV-Net’s segmentation
performance on a real-world dataset. We use the Autodesk
Shape Manager (ASM) [3] kernel to perform a rule-based
feature prediction for each of the faces in the solids. ASM
predicts the modeling operation that could have created the
face, e.g., chamfer, fillet, extrude and revolve. ASM is unable
to identify the modeling operation in some cases, and we
ignore such faces during training/testing. Additionally, it
also predicts whether the change made by the extrusion
was additive or subtractive. We consolidate this information
into labels as follows:

• Chamfer, Fillet and Revolve are retained as such. However,
we notice that Chamfer and Revolve are virtually non-
existent in our data.

14



ExtrudeSide

CutSide

Fillet Unknown

CutEnd …

Figure A.7: Example 3D models from the ABC dataset,
colored by segmentation label.

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

Figure A.8: Distribution of segmentation labels in the ABC
dataset.

• In the case of extrusion, we utilize the extrude direction
and the surface normals of a sample of points in the visible
region of each face to make a fine-grained categorization.

– If the normals and extrude direction are aligned, then
we set the label as ExtrudeEnd if the change type is
additive, and CutEnd if the change type is subtractive.

– If the normals and extrude direction are near perpendicu-
lar, then we set the label as ExtrudeSide if the change
type is additive, and CutSide if the change type is
subtractive.

Our subset of the ABC dataset has a total of 4,218,036 faces.
Figure A.7 shows some example segmentation labels while
the label distribution shown in Figure A.8. The dataset is
split into train and test sets randomly in a 80-20 ratio.

A.4. Training details

Our implementation is in PyTorch and we use DGL (dgl.
ai) for graph operations. All experiments were conducted
on NVIDIA GV100, Quadro P6000, or Tesla V100 GPUs.
All networks in Section 4 are optimized using the Adam

optimizer with default parameters (learning rate: 0.001, β1:
0.9, β2: 0.999).

UV-Net’s mini-batches are created by concatenating the
nodes and edges of all the graphs in the batch to form a
supergraph. For all classification and segmentation experi-
ments, we used a batch size of 128 for UV-Net, PointNet, and
FeatureNet. We reduced the batch size to 64 for DGCNN,
due to its high memory consumption, and used the default
mini-batch size of 16 with MeshCNN. Contrastive learning
generally requires a higher batch size since the quality of
negative views depend on the data points in the mini-batch,
hence, we set it to 256 in this case. DGCNN has a hyperpa-
rameter k to define the number of k-nearest neighbors used
to build the graph dynamically in each of its layers. We set
this to 20 in the classification and segmentation experiments.
In the sensitivity to sampling study in Section 4.3, we set k
to 10 in the case of 1024 points, and 5 in the case of 512 and
256 points, so that the local neighborhood is well defined.

We adapted the following implementations for our com-
parisons:

• PointNet: we used the PyTorch implementation from the
official DGCNN code (github.com/WangYueFt/
dgcnn) for classification, and an unofficial imple-
mentation for segmentation (github.com/fxia22/
pointnet.pytorch).

• DGCNN: we used the official PyTorch implementation
available at github.com/WangYueFt/dgcnn for
classification. Since the segmentation implementation was
not available in the official version, we used another im-
plementation from github.com/AnTao97/dgcnn.
pytorch that is recommended by the authors.

• FeatureNet: we implemented this model based on the
network architecture provided in the paper [46].

• MeshCNN: we used the official implementation from
github.com/ranahanocka/MeshCNN.

A.5. Additional self-supervised results

A.5.1 Ablation on CLR transformations

We perform an ablation study on the different transforma-
tions that we proposed to generate views for contrastive learn-
ing. We train our CLR model on the SolidLetters dataset
for 100 epochs while removing one transformation at a time.
While training for 100 epochs is not sufficient for the net-
work to converge, it gives us a fair understanding of the
importance of each transformation. The clustering and lin-
ear SVM classification scores are computed as described
in Section 4.2.3 and reported in Figure A.9. It is apparent
from the results that using all the proposed transformations
together is generally beneficial and improves the shape em-
beddings. It is important to note that the transformations

15

dgl.ai
dgl.ai
github.com/WangYueFt/dgcnn
github.com/WangYueFt/dgcnn
github.com/fxia22/pointnet.pytorch
github.com/fxia22/pointnet.pytorch
github.com/WangYueFt/dgcnn
github.com/AnTao97/dgcnn.pytorch
github.com/AnTao97/dgcnn.pytorch
github.com/ranahanocka/MeshCNN


40 45 50 55 60 65 70

No Drop Edges

No Drop Nodes

No Subgraph (n=1)

No Subgraph (n=2)

No Full graph

All transformations

Linear SVM Classification (%) K-Means Clustering (AMI)

Figure A.9: Ablation on the transformations used in con-
trastive learning.

may have to be tuned for practical use cases based on the
dataset and potential downstream tasks. For example, the
right number of hops used to define the subgraphs may vary
based on the complexity of the B-reps in the dataset. We did
not explore this in our experiments, and directly applied the
method that gave best results in the SolidLetters dataset on
the ABC dataset.

A.5.2 Shape retrieval

Here we share more qualitative results for shape retrieval on
the SolidLetters and ABC datasets with k-nearest search in
the latent space generated by our contrastive learning method
in Figure A.10 and Figure A.11.

16



Figure A.10: More self-supervised shape retrieval results on SolidLetters. Column 1: Query, Columns 2–11: Retrieved results
sorted left to right by distance in latent space.

17



Figure A.11: More self-supervised shape retrieval results on ABC. Column 1: Query, Columns 2–11: Retrieved results sorted
left to right by distance in latent space.

18


