
Supercharging Trial-and-Error for
Learning Complex Sofware Applications
Damien Masson

dmasson@uwaterloo.ca
Autodesk Research

Toronto, Ontario, Canada
Cheriton School of Computer Science,

University of Waterloo
Waterloo, Ontario, Canada

George Fitzmaurice
george.ftzmaurice@autodesk.com

Autodesk Research
Toronto, Ontario, Canada

Jo Vermeulen
jo.vermeulen@autodesk.com

Autodesk Research
Toronto, Ontario, Canada

Justin Matejka
justin.matejka@autodesk.com

Autodesk Research
Toronto, Ontario, Canada

Exploration
“Where do I need to go to do X?”

Execution
“What does Y do?”

Assessment
“Is it what I want?”

Recovery
“Revert to a clean state”

Home Insert Draw Design

ToolTrack

Model of Trial-and-Error

Home Insert Draw Design
1

2

5

Draw a shape

Drawing a flowchart

Creating a poster

ToolTrip
[ToolTaste]Untitled

Home Insert Draw Design

Test on copy
Test on example

ToolTaste

Figure 1: We present a Conceptual Model for trial-and-error and three techniques that improve support for trial-and-error in
complex software at the Exploration, Execution and Recovery phases: ToolTrack, ToolTrip and ToolTaste.

ABSTRACT
Despite an abundance of carefully-crafted tutorials, trial-and-error
remains many people’s preferred way to learn complex software.
Yet, approaches to facilitate trial-and-error (such as tooltips) have
evolved very little since the 1980s. While existing mechanisms work
well for simple software, they scale poorly to large feature-rich ap-
plications. In this paper, we explore new techniques to support

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9157-3/22/04. . . $15.00
https://doi.org/10.1145/3491102.3501895

trial-and-error in complex applications. We identify key benefts
and challenges of trial-and-error, and introduce a framework with
a conceptual model and design space. Using this framework, we
developed three techniques: ToolTrack to keep track of trial-and-
error progress; ToolTrip to go beyond trial-and-error of single com-
mands by highlighting related commands that are frequently used
together; and ToolTaste to quickly and safely try commands. We
demonstrate how these techniques facilitate trial-and-error, as il-
lustrated through a proof-of-concept implementation in the CAD
software Fusion 360. We conclude by discussing possible scenarios
and outline directions for future research on trial-and-error.

CCS CONCEPTS
• Human-centered computing → Interactive systems and tools;
HCI theory, concepts and models; Graphical user interfaces.

https://doi.org/10.1145/3491102.3501895
mailto:permissions@acm.org
mailto:justin.matejka@autodesk.com
mailto:jo.vermeulen@autodesk.com
mailto:george.fitzmaurice@autodesk.com
mailto:dmasson@uwaterloo.ca

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Masson et al.

KEYWORDS
trial-and-error, learning by exploration, software learning, tech-
nique, conceptual model, design space

ACM Reference Format:
Damien Masson, Jo Vermeulen, George Fitzmaurice, and Justin Matejka.
2022. Supercharging Trial-and-Error for Learning Complex Software Ap-
plications. In CHI Conference on Human Factors in Computing Systems (CHI
’22), April 29-May 5, 2022, New Orleans, LA, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3491102.3501895

1 INTRODUCTION
Discoverability and explorability were key advantages of early
graphical and direct manipulation user interfaces [38]. By rely-
ing on recognition rather than recall, these interfaces accelerated
learning new software because people did not have to learn and
memorize complex syntax. Instead, users had access to continuous
visual representations of the objects of interest and the possible
actions through icons and menus (i.e., visibility [29]), continuous
feedback, and reversible actions, all of which facilitated exploration.
These ideas have left a lasting mark on user interface design ever
since. Indeed, people nowadays still rely on – and prefer – to use
trial-and-error to learn how to use unfamiliar software or explore
new functionality, rather than reading documentation [1, 17]. Yet,
the way in which software facilitates trial-and-error has evolved
very little since the 1980s, mostly relying on text tooltips and rec-
ognizable icons and labels. While these approaches work well for
relatively simple applications, they are less efective for complex
feature-rich software applications such as Adobe Illustrator or Au-
todesk AutoCAD [1, 24, 30]. Hence, when users get stuck during
trial-and-error, their only recourse is to seek explicit help by con-
sulting ofcial documentation, asking others, or searching the web.

Early on, researchers noted the tendency to learn-by-doing and
formulated guidelines to support exploration of the interface [7, 8,
32]. However, these guidelines are often hard to follow in practice,
and it is unclear how modern feature-rich applications could imple-
ment them efectively. For example, with ever evolving software
and a growing number of commands, it is challenging to “keep
the number of possible operations small”, or “make the possible
operations distinguishable” and “continuously visible” [7, 32].

Research in software learning often does not specifcally target
trial-and-error; instead, the community tends to focus on other
aspects of learnability (e.g., surfacing contextually relevant tutori-
als). This may be explained by the tendency to see trial-and-error
as an unproductive approach compared to explicit help such as
tutorials, as trial-and-error can lead to learning suboptimal solu-
tions and can result in users asymptoting at mediocre performance
levels [6]. As a result, explicit support for trial-and-error remains
largely unexplored. However, given people’s natural tendency to
rely on trial-and-error, we believe there is an exciting opportunity
for more in-depth research into how we can improve trial-and-error,
particularly for large and feature-rich applications.

In this paper, we make the following contributions:
- A Framework for Trial-and-Error: We review the literature
on trial-and-error and extract four benefts and four challenges
(Section 4), which we develop into a conceptual model (Section 5.1)
and design space (Section 5.2) of trial-and-error. This framework

can be used in a generative way to compare existing trial-and-
error approaches and identify opportunities for future research.

- Three Trial-and-Error Techniques: We introduce three tech-
niques and demonstrate how these facilitate trial-and-error for
complex software, linking to challenges in the conceptual model
and gaps in the design space:
- ToolTrack allows users to track their trial-and-error progress
and quickly locate commands of interest (Section 6.1);

- ToolTrip goes beyond trial-and-error of single commands by
showing related commands that are often combined (Section 6.2);

- ToolTaste lets users rapidly and safely test and experiment with
commands (Section 6.3).

- Fusion 360 Implementation: We implemented the above tech-
niques in the CAD software Fusion 360 (Section 7).

2 BACKGROUND

2.1 What is Trial-and-Error?
Broadly speaking, trial-and-error consists of trying diferent ap-
proaches to solve a problem (trials), discarding failures (errors), and
repeating until one is successful. Trial-and-error is a fundamental
method of problem-solving, and has applications in various do-
mains (e.g., fnding new drugs [15], solving puzzles [39], etc.). In
this paper, we refer to trial-and-error in the context of software
learning [1, 30, 36], also known as learning by exploration [7, 8, 32],
exploratory learning [36], and self-directed exploration [17, 24].

In terms of when trial-and-error is used, observational studies [8,
17, 30, 36] have found it to be used in three main contexts:

As a frst approach: While some users might prefer reading
documentation frst, self-guided exploration was found to be used
more than half the time when attempting a new problem [1, 17].

In combination: Help resources and trial-and-error are often
combined to fnd new aspects of the interface to explore or to
disambiguate help instructions that appear unclear [36]. For ex-
ample, when users get stuck using trial-and-error, they may look
for a video online, scrub through the video to identify the relevant
commands, and then fnish the task through trial-and-error in the
application, ignoring most of the video [17].

Task-free exploration: Trial-and-error is also often the strat-
egy of choice when users do not have a specifc goal in mind other
than learning how to use a new tool [8]. This last use case arises
when users try out new software and want to assess its capabilities,
without having a specifc task in mind.

2.2 Why Do People Prefer Trial-and-Error?
While there is no single answer to explain why people prefer trial-
and-error, several reasons are mentioned in the literature that can
explain this preference.

The Paradox of the Active User: This paradox refers to the
common observation that users refrain from reading manuals and
instead start to immediately use the software [5]. Carroll and Rosson
identify two biases displayed by software users that help explain
this phenomenon: production bias and assimilation bias. Production
bias refers to the fact that throughput is the paramount goal of users.
They have little motivation to learn about the system, and will most
likely ignore training material or manuals. Assimilation bias means
that users rely on what they already know, even when faced with

https://doi.org/10.1145/3491102.3501895

Supercharging Trial-and-Error for Learning Complex Sofware Applications CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

completely new problems. Numerous studies have confrmed these
biases and found them to be equally important – even exacerbated –
with modern and feature-rich software [1, 17, 24, 30]. Users have an
“illusion of progress” when using trial-and-error [30], and perceive
any tasks that do not directly contribute to the completion of their
goal as a waste of time. Moreover, Rieman et al. found that users
often feel time pressured when having to accomplish a new task [36].
As a result, users tend to start problem-solving without external
help, as they believe that to be the most efcient strategy.

Low threshold: In many ways, trial-and-error is easier to use
and get started with than alternatives such as reading manuals
or following tutorials. First, users can use trial-and-error without
having any knowledge of the applications’ vocabulary, i.e., terms
that have a specifc meaning in the application’s context, such
as “layers” in Photoshop or “headings” in Microsoft Word [30].
In contrast, to seek help, users will need to be familiar with the
applications’ vocabulary and be able to articulate a search query.
In fact, vocabulary mismatch is the leading cause of unsuccessful
attempts at fnding help [17]. Second, trial-and-error makes use of
arguably the most minimalist and concise manual: the user interface.
User interface elements are often arranged in ways to optimize
for fast scanning to quickly fnd the item of interest. In contrast,
manuals and tutorials can be overwhelming due to large amounts
of textual information, while videos can be difcult to scan to fnd
the segment of interest. Thus, these help resources are difcult to
skim and users might be faster by exploring the interface [30].

Self-reliance: Users tend to over-estimate their capabilities and
trial-and-error’s usefulness [1, 30]. Users are constantly faced with
user interfaces. Additionally, these interfaces are made to look
consistent, sharing the same afordances (e.g., the visual appearance
of buttons), similar icons, and, sometimes, the same functionality
(e.g., when transitioning between tools within the same application
domain). Thus, users are led to believe that they can use software
applications without any help [36]. And for the most part, they are
right; about 50% of trial-and-error episodes are successful [30]. Even
if the outcome of a trial-and-error session is negative, users are
not particularly frustrated by it [17] and they easily forget failures,
further reinforcing their feeling that they “can do it themselves”.

Just-in-time learning: Rieman et al. found that “users often
prefer to postpone their learning until driven to it by real tasks” [36].
Trial-and-error has the advantage of allowing users to explore only
what is absolutely necessary to accomplish their task. In contrast,
a tutorial would often present diferent possible parameters and
capabilities of a command on abstract tasks or toy problems. Thus,
by using trial-and-error, users are introduced to new functionality
just-in-time to accomplish a real task.

2.3 How Software Facilitates Trial-and-Error
Because of the strong success of “point-and-click” WIMP interfaces
and their advantages for ease of learning [42], graphical user in-
terfaces evolved to further facilitate and encourage exploring the
interface – and as a result, to support aspects of trial-and-error.
Polson and Lewis [32], and Draper and Barton [8] proposed guide-
lines to support exploratory behaviours, which were later compiled
into six guidelines by de Mul and van Oostendorp [7]. Nowadays,
software commonly follows most of these recommendations:

(1) “Keep the number of possible operations small at any given time”
(2) “Make the possible operations distinguishable”
(3) “Make clear what the consequences of every action will be”
(4) “Make the efects of actions visible once they have been executed”
(5) “Show the last actions performed by the user”
(6) “Make actions easily undoable to make it safe to experiment”

While modern feature-rich applications like Microsoft Word or
Adobe Photoshop implement most of these guidelines, there are
still barriers for trial-and-error. For example, Word hides less com-
mon commands in its “Ribbon” interface, groups related commands,
and only shows particular ribbons depending on the situation (e.g.,
the “Picture Format” ribbon pops up when a picture is selected).
However, while this helps with keeping the number of possible
operations small, approaches that hide much of an application’s
functionality can make it harder to fnd and explore less popular
commands. Adobe Photoshop similarly groups related commands
in its Tools Palette, but this can complicate fnding a desired tool
that is currently not visible. As the number of available commands
increases, it also becomes more difcult to distinguish visually
similar icons. While tooltips help users to predict the efect of a
particular operation, they often only provide short text descriptions
with limited information, which has spurred research into more
detailed tooltips with video or dynamic previews [13, 40]. Lastly,
most software ofers “undo” and “redo” functionality, with some
applications (like Photoshop) providing a higher level of granularity
with an advanced history panel or timeline of past actions. Never-
theless, it remains difcult to safely test and compare the efects of
multiple commands, without accidentally losing data [24].

3 RELATED WORK
Despite extensive literature studying trial-and-error [1, 7, 8, 24,
30, 32, 36], and techniques targeting specifc aspects of software
learnability [14], most systems to date have not specifcally targeted
trial-and-error. Yet, some of these approaches ofer features and
opportunities that could beneft trial-and-error.

3.1 Guiding Exploration
One way to help users with trial-and-error when a software ap-
plication contains a large amount of commands (sometimes in the
thousands) is to guide their exploration towards only a subset of
those commands. Several systems propose to gather information
from the user and from the larger community to guide exploration.
This can be done at a micro-level, through Scented Widgets [43], or
at a macro-level, by overlaying a heatmap of the most frequently
used commands [26]. Alternatively, instead of overlaying infor-
mation, the interface can adapt to make certain commands more
prominent. For example, menus can be organized depending on
selection frequency [9, 37] and elements can be gradually faded
in [10]. In the same vein, Carroll and Carrithers used the “training
wheels” metaphor to propose interfaces that show only a subset of
the commands [4]. The interface then unlocks additional features
as users get more familiar with it.

Our work difers in that we specifcally look at exploration in
the context of trial-and-error; while directing users’ to the most

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Masson et al.

frequently used commands might be benefcial to discover com-
mands, it is arguably not particularly helpful during a trial-and-
error episode, in which users have a task in mind and try to accom-
plish it as quickly as possible. Instead, we look at other cues such
as marking whether commands have already been explored previ-
ously (Section 6.1), to draw users attention to missed but possibly
relevant commands [30] and prevent them from repeating mistakes
by selecting the wrong command [24].

3.2 Recommending Actions
Other techniques focused on recommending the users’ next ac-
tions to help them discover new commands. For example, the OWL
system [20, 21] and CommunityCommands [27] provide command-
level recommendations; the former models command usage and
then compare it across a pool of users while the latter applies collab-
orative fltering algorithms to present command recommendations
to users. DiscoverySpace [11] explored task-level recommendations
in Photoshop to help novices accomplish tasks by harvesting and
suggesting one-click action macros. Together, these recommenda-
tions systems have shown promising results to help novice users
learn and use complex software.

We draw inspiration from recommender systems and these prior
techniques to propose workfow-level suggestions for trial-and-
error. Specifcally, we recommend workfows (i.e., sequences of
commands) to facilitate trial-and-error by illustrating how com-
mands can be used, boosting serendipitous discovery, and prompt-
ing users with alternative approaches (Section 6.2).

3.3 Experimenting and Exploring Alternatives
One of trial-and-error’s key principles is to repeatedly experiment
and try out diferent operations, but this process can be tedious
and slow in complex software applications. Several systems have
aimed to facilitate part of the experimentation phase. For example,
Side Views [40] ofers evolved preview capabilities allowing users
to see and explore multiple variations of the parameters associated
with a command. Similarly, Subjunctive Interfaces [22, 23] and
Parallel Paths [41] let users work with multiple copies of the data
and explore diferent parameters in parallel. Lastly, several more
sophisticated “undo” systems have been proposed (see Nancel &
Cockburn [28] for an overview) that allow users to selectively
change past actions to explore alternatives without having to start
from scratch [34, 35]. Alternatively, Lafreniere et al. proposed a set
of command disambiguation techniques [19]: Did-You-Mean and
Or-do allow users to undo the recent command and replace it by
another one, transferring parameters if possible.

Inspired by these approaches, we go beyond prior undo systems
by allowing safe experimentation through the use of an explicit
sandbox mode for trial-and-error, in which users can easily discard
their results or apply them to their current document (Section 6.3).

4 PROPERTIES OF TRIAL-AND-ERROR
To better understand trial-and-error, we analyzed empirical studies
of people’s behaviour when learning new software applications.
We reviewed and extracted sentences qualifying trial-and-error
from eight observational and diary studies that covered a broad
range of user profles (from all ages [24] and with diferent levels of

technical expertise [7, 17, 36]) and application domains (drawing [8],
email [7], marketing [1, 30], 3D design [17], note-taking [24], photo
editing [19]), as shown in Table 1.

Property [8] [7] [36] [1] [30] [17] [24] [19]
B1: High success rate ✓ ✓ ✓ ✓ ✓ ✓
B2: Feeling of progress ✓ ✓
B3: No context switching ✓
B4: Discover commands ✓ ✓
C1: Cannot fnd commands ✓ ✓ ✓ ✓ ✓ ✓
C2: Cannot operate commands ✓ ✓
C3: Suboptimal solutions ✓ ✓ ✓

 C4: Costly recovery ✓

Table 1: Breakdown of the eight properties of trial-and-error
and which study observed and mentioned them.

Our analysis resulted in eight properties of trial-and-error that
were observed, often in several of the studies. We categorized these
into four benefts (B1–B4) and four challenges (C1–C4). Table 1
shows the breakdown of the properties and the papers they were
mentioned in. Next, we briefy discuss each of these properties.

4.1 Benefts
B1: High success rate – Trial-and-error often performs equally, if
not better [7, 24, 30] than using help. For example, Novick et al.
found higher success rate and shorter completion times when using
trial-and-error compared to help [30]. This is especially important
considering that users tend to use trial-and-error more often than
other problem-solving strategy [1, 17], or in combination with other
strategies like disambiguating information from manuals [36].

B2: Feeling of progress – Trial-and-error allows users to directly
work toward achieving their goal [36], giving them a feeling of
progress [30]. From a user-perspective, reading training materials
and following tutorials with artifcial tasks might feel like a waste of
time. Instead, when using trial-and-error, users set their own tasks,
and thus have the feeling of getting closer to their objective. In fact,
this feeling leads users to spend more time on trial-and-error than
help, even if using help may be faster [30].

B3: No context switching – By defnition, trial-and-error happens in
the software, which saves users from going back and forth between
an external help source (e.g., forums, YouTube, web searches) and
the application. In contrast, help resources – even when integrated
directly in the application – will reduce the space allocated for the
task, create an interruption, and increase cognitive load [12, 36].

B4: Discover commands along the way – Even in a successful trial-
and-error session, fnding the right command often requires multi-
ple unsuccessful attempts involving a variety of commands. These
unsuccessful attempts might feel like a waste of time. However, in
the long run, they help to get the user familiar with the interface.
When faced with a new task, a user might recall a command that
they “stumbled onto by accident” during trial-and-error [1, 36].

Supercharging Trial-and-Error for Learning Complex Sofware Applications CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

“Where do I need to go to do X?” “What does Y do?” “Is it what I want?”

No

“Revert to a clean state”

Yes
Success

C4: Costly Recovery

C3: Suboptimal solution

Exploration Execution Assessment

Recovery

Figure 2: Our conceptual model of trial-and-error. References to the challenges presented in Section 4.2 are underlined in red.
The Exploration and Execution phases are further detailed in Figure 3 and Figure 4 respectively.

4.2 Challenges
C1: Cannot fnd commands – A trial-and-error session might reach
a dead-end once users run out of cues to follow [30]. Users tend
to select menus and commands which appear to lead the most
quickly to their goal (i.e., they use a label-following heuristic [32]).
Previous studies have identifed various causes to these dead-ends:
the relevant command is hidden or disabled [17]; the afordances are
poor or misleading [19]; the user’s vocabulary difers from the one
used by the software [1, 17, 30]; or the user missed the command
because they did not look in the right place [24, 30]. Once stuck, the
only recourse for users is to resort to a diferent problem-solving
strategy such as looking for help [1, 17].

C2: Cannot operate commands – Users can face difculties under-
standing how to navigate a specifc command. Often, this is due to
an incomplete or mistaken mental model of the application (e.g.,
users do not understand that objects are locked or grouped) [1]. At
best, users will abandon the command and try a diferent – often
less efcient – approach, involving a diferent command; users are
rarely completely stuck when using trial-and-error [8]. At worst, it
can lead to roadblocks in a trial-and-error session as users might
be unable to assess if the command is relevant to their task.

C3: Suboptimal solutions – Novick et al. found that trial-and-error
episodes sometimes resulted in unconventional ways of completing
a task [30]. Indeed, when feeling under time pressure and having
little desire to learn the software, people may stick to the frst
solution that they stumble across, even if it is inefcient. While
these approaches appear successful, they are often slower or bad
practices which might be problematic later on [30].

C4: Costly recovery – Reverting to a clean state after an unsuccessful
attempt is crucial for trial-and-error. Yet, this recovery can be costly.
For example, Mahmud et al. [24] found that older adults often tried
to undo actions that impacted the interface (e.g., selecting a diferent
brush) but those are not typically part of the undo stack. As result,
they undid the wrong thing and accidentally lost data.

5 FRAMEWORK
We propose a framework including a conceptual model of trial-and-
error and a design space of techniques that provide support for trial-
and-error. The goal of this framework is threefold: (1) improve our
understanding of trial-and-error; (2) identify how previous work
impacts trial-and-error; and (3) reveal opportunities to improve
software applications’ support for trial-and-error.

5.1 Conceptual Model of Trial-and-Error
To better understand when users face the challenges described in
Section 4.2, and to fnd solutions to those challenges, we propose
a conceptual model of trial-and-error (Figure 2). We designed this
model based on our review of the literature on users’ behaviours
when using trial-and-error. As such, we defne a complete episode as
four consecutive phases that are repeated until achieving success.
We describe these phases and applications of our model in the
following sections.

5.1.1 Phases.
Exploration: Given a set of commands, in the Exploration phase,
users will attempt to fnd commands that are likely to achieve
the desired result. The exact exploration strategy difers between
users [24], and their experience with the application itself as well as
previous applications [30]. On one extreme, this search can appear
random and exhaustive [30]. On the other extreme, the exploration
can be targeted when users have partial knowledge about the ap-
plication [30]. In both cases, this strategy is often described as a
label-following heuristic [32], as mentioned before (see Section 4.2).
Usually, reviewing a potential command is done in multiple steps
(see Figure 3) [24]: frst, users will search based on features easily
accessible at a glance (e.g., icon, label, position). If a command’s
meaning remains unclear after this step, some users will use a more
“costly” fltering, if available (e.g., reviewing the description in the
tooltip of commands). If a candidate command was identifed, this
step leads to the Execution phase. Otherwise, the user’s trial-and-
error episode might end here because they could not identify a
relevant command (C1).

Quick search
“Is this label/icon relevant?”

Careful search
“Is the description relevant?”

Yes

Maybe

No

No

Exploration

C1: Cannot find commands Execution

Yes

Figure 3: The exploration phase in the conceptual model.

Execution: Once a candidate command is identifed, the next
step is to try it. At this stage, Draper and Barton diferentiate be-
tween two kinds of user goals [8]: “experimenting with a command

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Masson et al.

to learn what it does” and“looking for a command to achieve a
specifc goal”. In the frst case, users experiment with the command
and explore the diferent parameters and options, rapidly testing
diferent variations (even if they are not useful to them) by skipping
Assessment and directly going to Recovery. In the second case, users
are more targeted and only explore the relevant parameters and
options to get their task done. Once completed, they will proceed
to Assessment. In both cases, users may face a breakdown in the
trial-and-error process if they cannot operate the command (C2).

Task-free
“What does Y do?”

Task-oriented
“How do I use Y to do X?”

Execution
Recovery

Assessment

C2: Cannot operate commands

Figure 4: Conceptual model of the execution phase.

Assessment: After executing the command, users will have to
decide if they are satisfed with the result. In practice, this phase
often boils down to checking if the result appears correct. Conse-
quently, even if this result is a workaround and difers from what
an expert would have done (C3) [30], it might satisfy users and they
will most likely stick with it (i.e., assimilation bias [5]). If users are
satisfed, then the trial-and-error episode is complete and successful.
Otherwise, users will have to go to the Recovery phase.

Recovery: This last phase occurs in preparation of a new trial
when a clean state is necessary to allow for another attempt. This
can be done by manually reverting the changes, or by using the
built-in undo mechanism. In both cases, this recovery might be
tedious and error-prone [24] (C4). Once the prior state has been re-
covered, users might switch to a diferent help strategy [1], go back
to Execution if they want to further experiment with the command,
or return to Exploration to look for a diferent command [24].

5.1.2 Generalization of the Model.
While we presented our conceptual model using commands for
clarity, these only represent a subset of the operations that users
commonly learn through trial-and-error. In addition to commands,
prior studies also observed users using trial-and-error to fgure
out (1) the user interface (e.g., open or close a view, change the
tool currently selected, customize the interface), (2) parameters
associated with a command, and (3) workfows (e.g., fnd the most
efcient sequence of commands to accomplish a particular task) [1,
24, 30]. We designed our model to be general enough to include
these variations. One can read the previous explanation and replace
command by either user interface, parameter or workfow as needed.

Our model is also recursive: a trial-and-error episode can contain
sub-trial-and-error episodes. For example, when using trial-and-
error to experiment with diferent workfows, a user might be faced
with new commands. The user can then momentarily pause their
exploration of diferent workfows to start a new trial-and-error

episode aiming to understand the new command. Once the sub-trial-
and-error episode is over, users will return to the main trial-and-
error session – i.e., exploring workfows. Similarly, users can fall
into “undirected diversion” in which they discovered an interesting
feature and decide to take a break from their trial-and-error session
to investigate the new feature through task-free exploration.

5.1.3 Using the Model.
This conceptual model can serve as a generative tool to inspire new
solutions to support trial-and-error and to classify and understand
existing approaches. Here, we provide a few examples of how the
model can help to clarify support for trial-and-error in existing
techniques and how it can inspire new techniques.

For example, adding “Patina” [26] to a software application pro-
vides an additional fltering step during the Exploration phase, in
which the user can look at the frequency of use for each command
to assess whether it is relevant or not. Similarly, adding the “Or-
do” feature from Lafreniere et al. [19] would create a direct path
between the Recovery and Assessment phases – users can recover
from an undesired command by replacing it with another, with the
parameters transferred, essentially skipping the Execution phase.

In terms of inspiring new techniques, as shown in Figure 1 and
as we will describe in Section 6.3, ToolTaste provides additional
support for Execution by always allowing execution of commands
(addressing challenge C2), even if that command is disabled in
the current situation, and for Recovery by allowing users to more
easily compare diferent variations of a command and set their own
restoration points (addressing challenge C4).

5.1.4 Related Models.
Don Norman identifed two “gulfs” that people have to bridge to
use something: the Gulf of Execution and the Gulf of Evaluation [29].
Using the Seven Stages of Action as described by Norman, one can
model part of the trial-and-error process (with the stages of execu-
tion corresponding to the Exploration and Execution phases, and the
stages of evaluation corresponding to the Assessment phase). How-
ever, this representation does not consider the Recovery phase and
the non-linear nature of trial-and-error. Our model difers by be-
ing more specifc and modelling trial-and-error’s core components
such as the Execution-Assessment-Recovery loop or the Exploration
phase. This allows designers to identify where difculties appear
during the trial-and-error process, and helps identify gaps or new
paths that could be created (as discussed in Section 5.1.3).

Inspired by animal food foraging strategies, Pirolli and Card
proposed information foraging theory [31], which explains how
“information scent” cues can help people to navigate information
and make decisions. This theory can help understand trial-and-
error; in this case, users are interested in accomplishing a task
with the software at hand. However, while information foraging
tries to explain why and when users would change site (or, in our
context, try a diferent tool) to maximize their chances of attaining
their goal, our model describes the general pattern followed by
users during a trial-and-error session. Thus, information foraging
theory is complementary to and can be combined with our model
to better understand users’ choices (e.g., why a tool was chosen
or abandoned in favour of another), and to consider providing
additional information scent cues to help people in their trial-and-
error process. The techniques we will later introduce (Section 6)

Supercharging Trial-and-Error for Learning Complex Sofware Applications CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

User

Interface

Command

Workflow

Parameter

Exploration RecoveryExecution

Support

Phase

Training
Wheels

Patina ToolTrack

Community
Commands

DiscoverySpace
ToolTrip

Side View

Parallel
Paths ToolTaste

Did-You-Mean
& Or-do

Linear
Undo

Preview

Overlay Separate view Alter interface Seldom supportedAlter document

Detour tooltips
& submenus

Dialog Link-Ups
& Tool Hot-Swaps

ToolClips

Scented
Widgets

Ephemeral
&
Split
Menus

Subjunctive
Interfaces

Chimera

Selective Undo

Figure 5: Design space of support for trial-and-error.

provide further information scent cues in addition to the existing
tooltips and icons to help direct users to tools they have not explored
yet (ToolTrack) or are likely to be of interest for the task they want
to achieve (ToolTrip), or can make it easier to quickly and safely try
something out (ToolTaste).

5.2 Design Space of Support for Trial-and-Error
From a review of the literature and our conceptual model, we pro-
pose a design space for tools aiming to support trial-and-error (Fig-
ure 5). Designing support for trial-and-error implies choosing what
to support, when the support should intervene, and how to present
that support to the user. Throughout this section, we present the
design space dimensions and illustrate them using examples from
prior research. Note that we use the word “document” to refer to
the data being manipulated. Thus, “document” will correspond to a
text document in Microsoft Word, a drawing in Photoshop, a 3D
model in Fusion 360, etc.

5.2.1 Types of support.
Trial-and-error tasks in complex software pertain to various el-
ements of the interface. Below, we list four aspects of complex
software frequently targeted by trial-and-error.
- User Interface, which corresponds to actions with a scope lim-
ited to the interface without impact on the document. For example,
hiding a side-panel or changing the currently selected tools.

- Parameter, which corresponds to the diferent values associated
with a command. For example, the rectangle’s width when using
a command to draw a rectangle.

- Command, which corresponds to operations to modify the docu-
ment. For example, copy/paste, or application specifc-commands
(e.g., centering selected text in Microsoft Word).

- Workfow, which corresponds to a sequence of commands. A
user might be familiar with the commands and how they work,
but may lack knowledge on how to combine them to accomplish
a particular task. Alternatively, a user might be looking for a more
efcient workfow to achieve the desired result.

Most systems ofer support at a command-level, either by directing
users’ attention to specifc commands [26] or suggesting commands

to try [27]. Support for parameters has also been thoroughly ex-
plored, by ofering ways to visualize the efect of parameter vari-
ations [40]. However, to the best of our knowledge, few systems
ofer support at the workfow-level. Notable exceptions are Dis-
coverySpace [11], which suggests action macros, and Subjunctive
Interfaces [22, 23], which allows the exploration of multiple varia-
tions of the document.

5.2.2 Time of Intervention.
Support for trial-and-error can intervene at diferent stages of the
exploration. We consider three stages, extracted from our concep-
tual model, in which an intervention is possible: Exploration, Ex-
ecution, and Recovery. Details about each phase are presented
in Section 5.1. We excluded Assessment from our list because this
quick decision phase ofers little opportunity for an intervention.

Systems such as Patina [26] (which shows frequently used com-
mands through an overlay), and ToolClips [13] (which augments
tooltips with video clips) intervene during the Exploration phase. In
contrast, typical preview systems (e.g., a thumbnail with a preview
of the flter in GIMP) and more advanced previews such as Side
Views [40] allow users to understand a command and each param-
eter’s efect during the Execution phase. Lastly, the “Did-You-Mean”
and “Or-do” systems proposed by Lafreniere et al. [19] intervene
during the Recovery phase.

5.2.3 Types of Presentation.
From previous work, we identifed fours ways of presenting the
support to users, categorized from least to most obtrusive:
- Altering the document, which is the simplest form of presen-
tation but also the least obtrusive; users see the modifcation
because their document has changed.

- Altering the interface, also referred to as an adaptive UI, which
consists of changing, hiding or moving elements of the interface.

- Overlaying, which consists of showing the information on top
of the interface or the document, without obstructing the view.

- In a separate view, which opens an additional view with the
information. This presentation mode is the most fexible approach
but also the most obtrusive one as it reduces the space allocated
by the software application.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Masson et al.

This dimension has been extensively explored by existing systems.
For example, “undo” systems typically only alter the document
while Side Views [40] and CommunityCommands [27] display in-
formation through separate views. Patina [26] and ScentedWid-
gets [43] use overlays to show information gathered from the com-
munity. Finally, systems such as Training Wheels [4] alter the in-
terface to restrict the number of commands.

6 SUPERCHARGING TRIAL-AND-ERROR
In this section, we show how our framework can be used to de-
sign new features that tackle some of the challenges identifed in
Section 4.2. We reviewed previous work on systems that support
trial-and-error in Figure 5. Note that this excludes approaches that
do not intervene during trial-and-error, such as high-guidance sys-
tems like stencil-based tutorials [16], and other systems that require
users to articulate search queries or read manuals [18, 25]. From
this analysis, we found that three issues remained poorly covered:
(1) users cannot keep track of their progress during a trial-and-

error episode;
(2) experimenting with commands and recovering from workfows

is difcult; and
(3) exploring at a workfow-level is mostly unsupported.
Throughout this section, we describe the design and rationale be-
hind ToolTrack, ToolTrip and ToolTaste – three features compatible
with complex applications that tackle the aforementioned issues.

6.1 ToolTrack: Show Coverage and Track
Progress

In large complex software applications, the Exploration phase can be
tedious; users often lose track of their progress and end up retrying
commands that they discarded earlier [24], or discard commands
too early, before exploring relevant command parameters [30] (C1).
Drawing inspiration from previous work helping with the explo-
ration such as Patina [26], we propose ToolTrack (Figure 6) to over-
lay information about one’s prior exploration on top of commands.
We defne three levels of coverage of a command:
- level 0: The command has never been used;
- level 1: The command’s tooltip has been opened at least once;
- level 2: The command has been executed at least once.
At the last level, we calculate a fner granularity of coverage by
calculating the percentage of parameters’ explored, e.g., a command
with fve parameters will be considered fully explored once all
fve parameters have been modifed at least once. ToolTrack then
modifes the interface to show diferent feedback depending on
how well a command has been explored. A level-0 command will
be shown with a top-left yellow corner; a level-1 command will be
shown with a small top-left yellow corner; a level-2 command will
be unaltered, but will show a progress bar on hover to present the
percentage of the command’s parameters explored.

ToolTrack was designed to be discreet as to not hinder typical
use, while also providing useful cues in trial-and-error episodes. As
such, a user will be able to quickly locate unexplored commands by
noticing the commands that display a yellow triangle. This helps
users keep track of their progress (B2) as well as locate potentially
relevant commands (C1). Similar to Patina [26], ToolTrack helps
users to fnd previously used commands by looking for those that

Software File Edit View
New Document

Open…

Close

Save As…
Save

Home Insert Draw Design

New
Page

Delete

Page Zoom Frequency Gaussian

Figure 6: ToolTrack shows unexplored commands with a yel-
low triangle, and for commands that have been used before,
it shows a progress bar indicating how deeply that command
has been explored.

do not display a yellow corner. Finally, ToolTrack’s last objective
is to motivate further exploration of commands and parameters in
the hope of revealing alternative solutions (C3).

6.2 ToolTrip: Exploration at Task-Level
Users’ goals with complex software are often high-level (e.g., “creat-
ing a roof”) and will require the combination of diferent commands.
Yet, common cues in complex software only inform users at a com-
mand level, meaning that users have to fgure out themselves how
to arrange commands to achieve their goal. This lack of support
for trial-and-error at the task or workfow level is apparent when
looking at the design space (Figure 5). While DiscoverySpace [11]
provides workfow support by suggesting and allowing users to
execute action macros (i.e., sequences of operations), it does not al-
low users to pick and choose commands from these sequences, nor
learn from them. Thus, we extend this idea further through ToolTrip
(Figure 7), which let users go on “trips” in which all the commands
necessary to reach the end are presented. Trips are presented with a
title and a brief description of the end goal. Following a trip is done
with as little guidance as possible to let users trial-and-error. Indeed,
considering the infnite number of arrangements of commands and
workfows, it is unlikely that users will fnd the exact ToolTrip that
corresponds to their task. However, part of a given workfow might
still be useful to their task. In the meantime, being able to rapidly
examine a large amount of possible ways to go about a problem
directly in the application might lead them to fnd better solutions
(C3) or discover relevant commands (C1). Finally, ToolTrip allows
users to examine possible usage of a command when combined
with other commands. Moreover, these suggested ToolTrips can be
personalized based on the user’s recent history.

Users are presented with diferent ToolTrips with a brief descrip-
tion of the outcome of the trip (i.e., the efect of executing the full
sequence of commands). Once a trip

1
is selected, commands in the

2 5trip will display a coloured badge (, , in Figure 7). A new
view will be pinned in the interface showing the name of currently
selected trip, the icons of the commands composing the trip, and
a button to stop following this trip. By hovering over an icon, the
corresponding command is shown to the user, possibly changing
the currently selected view in the user interface (e.g., a tab in the
application’s ribbon) if needed to show that command.

Supercharging Trial-and-Error for Learning Complex Sofware Applications CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Home Insert Draw Design

New
Page

Delete

Page Shapes Frequency Gaussian

1

2

5

Drawing a flowchart

Creating a poster

Draw a shape

Figure 7: ToolTrip ofers workfows that contain a particular
command under the mouse cursor, highlighting other com-
mands in that workfow with numbered badges.

6.3 ToolTaste: Rapid Testing of Commands
Experimentation is key to trial-and-error, yet, trying commands
is difcult in complex software. First, commands often have pre-
conditions, which, if not met, will make the command unusable or
appear to have no efect (C2) (e.g., making text bold in Microsoft
Word requires one to frst select text). Second, experiments have to
be done on the document at hand, possibly resulting in an accidental
loss of data when trying to recover (C4). Recovery is especially
difcult when exploring multiple “depths” of commands as most
software ofers little control over the granularity of the “Undo”
system (see Figure 5).

[ToolTaste]Untitled

Home Insert Draw Design

Test on copy
Test on example

Figure 8: ToolTaste allows users to test any command, even
if it is currently disabled – either on the current document
or on an example that has been curated to work with that
command.

ToolTaste allows users to quickly and safely test a command in
order to assess its relevance for the task at-hand. Users can right-
click on any command – even disabled ones – and select “Test on
example” or “Test on copy”. Users are then moved to a diferent view
with an example-project or a copy of the current document loaded
so that users can experiment with the command independently
from their main project. At any time, users can reset the document
(to test a new set of parameters) and go back-and-forth between the
main view and ToolTaste to compare changes. Once done exploring,
the changes can be merged with the main document, or discarded.

ToolTaste difers from traditional recovery systems in that users
set their own “restoration points” on a specifc command, which has
two advantages. First, users have control over the recovery stack,
allowing them to recover from a long chain of commands. Second,
because ToolTaste requires an explicit action from the user, we know
when a trial-and-error episode starts and for which command. In
ToolTaste, we use this opportunity to ofer example-projects tailored

to each command, but other systems could leverage this information
to show help related to the command (e.g., Ambient Help [25]).

7 PROOF-OF-CONCEPT IMPLEMENTATION
IN FUSION 360

We implemented ToolTrack, ToolTaste and ToolTrip in the Autodesk
Fusion 360 Computer Aided Design (CAD) tool. Fusion 360 is a
feature-rich software application used by professional and recre-
ational users to create sketches of 3D models and turn them into 3D
printable objects. We chose Fusion 360 as it is difcult to learn [17],
but also because it has a large community of users. We directly mod-
ifed Fusion 360’s source code to implement these three techniques,
using C++ and Qt 1, as discussed below.

7.1 Interaction and Visualization
We implemented ToolTrack to show how much a command has
been explored, in addition to existing information such as icons and
labels (Figure 9A). We modifed all the buttons in the ribbons and
menus of Fusion 360 to overlay them with ToolTracks. A command
that has never been explored will have a yellow corner, this corner
decreases in size if the command’ tooltip has been looked at, and
will completely disappear once the command has been executed
once. Hovering over the button or menu will show a progress bar
indicating how many parameters associated with this command
have been explored.

We augmented Fusion 360’s tooltips by adding: a progress bar
showing a ToolTrack (i.e., how much of the command has been ex-
plored), frequent next commands as extracted from ToolTrips, and
three popular ToolTrips that involve the command being hovered
(Figure 9B). Each ToolTrip has a distinct colour (either red, green
or blue), a title, and the ordered sequence of unique icons for each
command composing the trip (limited to 10), with commands that
have never been used displaying a yellow corner. Hovering over
a ToolTrip will result in the commands that are part of the trip to
display a badge of the colour of the trip (Figure 9D). Additionally,
users can hover over individual command icons in the tooltip (Fig-
ure 9B) which will then highlight only that specifc command in the
interface. By default, Fusion 360 fades out the tooltip if the pointer
is moved away from the command. We modifed this behaviour to
provide users with the opportunity to explore the expanded tooltip
without having to keep the mouse cursor over the command. Specif-
ically, we added a 500ms delay once the user moves the pointer
away from the command. Only if the mouse cursor is not inside
the tooltip at the end of this 500ms delay, then the tooltip fades out.
Otherwise, it remains visible to let users interact with it.

Clicking on a ToolTrip in the tooltip will result in pinning that
particular trip. A new view is opened at the right of the application
showing the title of the trip and the list of icons for commands in
the trip (Figure 9C). Users can hover over each icon in the trip to
locate the corresponding command in the interface. While this view
is pinned, commands in the interface that are part of the trip display
a badge with a number indicating their position in the sequence.
To stop following the trip, users can click the “Stop” button in
Figure 9C.

1https://www.qt.io/

https://www.qt.io/

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Masson et al.

A

B
C

D
E

F

Figure 9: Our prototype implementation in Fusion 360 showing ToolTrack (A), ToolTrip (B, C, D) and ToolTaste (E, F).

Lastly, we modifed the right-click contextual menu for com-
mands by adding two options: “Test on copy” and “Test on example”
(Figure 9E). Clicking these menu options will open a new tab with
either an example-model that we created for that purpose before-
hand, or a copy of the current model. Copies are made in-memory
to ensure a smooth experience. This new tab is coloured green and
titled “[TEST]” to make it stand out (Figure 9F). Users can then
manipulate the model as they would with their main model. Alter-
natively, they can close the tab to discard the changes, or save the
model if they are satisfed with the result.

7.2 Automatically Generating ToolTrips
A ToolTrip is essentially a sequence of commands associated with
a title and a description. While ToolTrips could have been created
manually using a set of representative tasks, given the large number
of ways to arrange commands, ofering personalized suggestions
for all users would require creating thousands of ToolTrips. As
an alternative approach, we propose to generate ToolTrips auto-
matically from data collected from the community. Specifcally,
Fusion 360 users can record “Screencasts” [2] (based on Chron-
icle [33]) which are video recordings with meta-data about the
specifc commands being used. People often post these screencasts
on forums to demonstrate how to use a tool or ask for help. As they
contain users’ workfows and other meta-data such as a title and a
brief description, they are an ideal source for generating ToolTrips.

We collected 73,573 public screencasts generated by users of the
Fusion 360 community. We excluded screencasts categorized as
“Bug Reports” and “Troubleshooting”, those with no title, and those
published more than 6 months ago in order to avoid screencasts
that use outdated workfows. We also fltered out very long (over 30
commands) and very short (less than 5 commands) screencasts. Fi-
nally, we obtained 1,936 screencasts, which we turned into ToolTrips
by extracting their sequence of commands, title, and description.

7.3 Suggesting ToolTrips
One approach to allow users to explore and fnd ToolTrips would be
to ofer a search engine. This is in part what DiscoverySpace [11]
proposed by prompting users for their task and ofering suggestions
based on this prompt. However, articulating search queries can be

difcult for users, especially with new software applications [17],
and would prevent serendipitous discovery.

Instead, we automatically suggest ToolTrips to the user and up-
date suggestions based on the current context. Considering that
ToolTrips are shown in a command’s tooltip, we base our sugges-
tion algorithms on the command under the mouse cursor and the
user’s recent command history. Our suggestion system works as
follows: First, it flters out ToolTrips that do not contain the com-
mand under the mouse cursor. Then, it computes scores based on
the number of commands in the ToolTrip that also appear in user’s
recent command history. Whenever a command in the ToolTrip
also appears in the last fve commands executed by the user, we
add this command’s inverse frequency to the ToolTrip’s score (fre-
quencies are computed as the percentage of the number of times a
command occurs throughout our database of ToolTrips). We found
this scoring function to work decently well for our purpose; it does
a fuzzy matching to fnd workfows matching the users’ command
history, attributing more weight to infrequent commands. Addi-
tionally, we made a variation of this scoring function to return
workfows involving novel commands. We implemented this varia-
tion by adding the inverse frequency of all the commands that are
part of the ToolTrip but were never explored before. In our fnal
implementation, tooltips show three diferent ToolTrips: the top two
returned by the frst scoring function, and the top one returned by
the second scoring function.

7.4 Example Scenarios
Throughout this section, we provide a walkthrough of how ToolTrack,
ToolTrip and ToolTaste can be used to support users during trial-
and-error sessions in Fusion 360.

7.4.1 Task 1: Model a Pen Holder. First, the user scans the interface
by reviewing icons and labels. Three commands appear relevant:
“Create Sketch”,

A B
“Extrude”,

C
“Create Form” (Figure 10, Step 1, re-

spectively , and). The user narrows down the options by
reviewing ToolTrips to give them an idea of what commands can do.
Specifcally, “Create Form” has the ToolTrip “Phone Holder” which
seems close to their goal of creating a pen holder (Figure 10, Step
2). The user then selects the ToolTrip and moves on to Fusion 360’s
“Form” tab (Figure 10, Step 3). Here, the ToolTrip highlights the “Box”

Supercharging Trial-and-Error for Learning Complex Sofware Applications CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Step 1

Step 2

Step 3

Result

A B C

Figure 10: Creating a pen holder by following a ToolTrip ti-
tled “Phone Holder”.

command 5 , the “Modify” command 6 , and several navigation
commands such as “Pan” 4 and “Orbit” 1 . After experimenting
with these commands, the user quickly grasps how to navigate
around the object, and manages to create a box using the “Box”
command. Then, using the “Modify” command, the user is able
to carve out a hole in the middle of the box (to hold the pens) by
dragging the top faces of the box down (Figure 10, Result).

7.4.2 Task 2: Turning the Pen Holder into a Cup. The user now
decides to add a handle so that they can use the pen holder as a cup.
For this task, the previous “Create Form” command is not adapted
as the user wants a sharp handle. They remember seeing the “Create
Sketch” command that looked promising during their previous trial-
and-error episode. Specifcally, the command had a ToolTrip titled
“Create Card Holder”, which also seemed relevant. To not lose their
progress, the user right-clicks the “Create Sketch” command and
starts experimenting on a copy of their current document (Figure 11,
Step 1). Once in sketch mode, the user starts exploring commands
that appear relevant. Using ToolTrack as a guide, the user quickly
realizes that while they explored all the relevant commands, they
have not yet explored all the options for each command, judging by
the progress bar when hovering commands (Figure 11, Step 2). They
stop exploring diferent commands and instead focus on exploring
options of the “2-Point Rectangle” command: by reviewing the
yellow ToolTrack corners, the user sees that options such as “Look
at” have not been tried yet. After experimenting with the diferent
options, the user manages to create the sketch that they wanted
next to the original pen holder. Once fnished, the user sees that

Step 1

Step 2

Step 3

Result

Figure 11: Exploring an alternative approach using
ToolTaste to work on a copy, and ToolTrack to prag-
matically explore relevant commands and options.

one of the likely next commands after using “2-Point Rectangle” is
“Extrude” (Figure 11, Step 3). They experiment with this command
and manage to create the handle for the cup (Figure 11, Result).
However, they are not satisfed with this version and discard the
changes, reverting to their prior version of the pen holder.

8 DISCUSSION
Despite years of progress in improving ease-of-use and facilitating
learning, complex software applications still ofer relatively poor
support for key aspects of trial-and-error, instead mostly relying
on explicit help approaches such as tutorials. Using our framework,
we proposed three tools to increase complex software’s support
for trial-and-error behaviours: ToolTrack, ToolTrip and ToolTaste.
With our conceptual model and design space, we hope to inspire re-
searchers to design novel techniques for trial-and-error and conduct
empirical studies, ultimately further expanding on our framework.

8.1 Limitations
Our framework of trial-and-error constitutes the main contribution
of our work and we designed ToolTrack, ToolTrip and ToolTaste as
a way to test the generative power of our framework. However, a
limitation of our work is that we did not directly assess the efective-
ness of these tools. A user study could help obtain more conclusive
evidence supporting ToolTrack, ToolTrip and ToolTaste as efective
solutions against the challenges of trial-and-error. However, while
a lab-based usability study may be relatively straightforward to
conduct, it may only provide limited additional insights and will
have low ecological validity. A longitudinal study in which users
could integrate our three techniques into their daily workfows with
Fusion 360 would be the most useful for assessing the efectiveness
and utility of our techniques in real-world situations, but would
also be the most resource-intensive to run. Meanwhile, ToolTrack,
ToolTrip and ToolTaste can serve as inspiration for how to use our
framework in a generative way and how to design and implement
trial-and-error techniques for complex software. Our techniques
demonstrate how common mechanisms of WIMP interactions (e.g.,
tooltips, information-on-hover, menus, icons) in combination with
community-sourced data such as video tutorials can be leveraged to
develop novel cross-software techniques targeting trial-and-error.

8.2 Future Work
Our work opens up several avenues for future research. While
ToolTrack, ToolTrip and ToolTaste improve support for trial-and-
error, other aspects still remain poorly supported, as highlighted
in our design space (Figure 5). For example, experimenting and
recovering from modifcations that target the user interface (such
as closing a panel) are rarely supported, which might make users
reluctant to customize the interface out of fear of not being able
to recover from it. Mahmud et al. [24] also identifed this gap and
proposed to distinguish between “Undo” actions that afect the
document from the actions that afect the interface. However, this
remains to be tested in practice as it may also disrupt users’ mental
model of the undo stack.

An interesting direction for future research is to explore how
tools for trial-and-error would work in and could support collab-
orative use. Software increasingly provides support for real-time

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Masson et al.

collaboration (e.g. Google Docs, Ofce 365, Figma). It remains an
open question how techniques such as ToolTrack, ToolTrip, ToolTaste
would work when groups of people are working together collab-
oratively. While we already leverage community workfows in
ToolTrips (as do other approaches such as Patina [26]), it would be
interesting to explore how the expertise and command history of
collaborators can be leveraged in real-time to help teams achieve
their goals and learn to use new functionality in the software. Could
we identify who in the team has the needed expertise to accomplish
a goal? Can we use a divide-and-conquer approach for collabora-
tive trial-and-error? Would everyone have their own individual
ToolTracks in addition to team ToolTracks?

People also often accomplish their work with workfows that
extend beyond a single application. Workfows can span across
multiple applications, even applications from diferent vendors.
For example, an individual may create illustrations for a YouTube
video in Adobe Illustrator, integrate the resulting graphics with
the video in DaVinci Resolve, and reduce noise in the audio using
Audacity. How might we support trial-and-error for such cross-
application workfows that go beyond a single application? How
can we highlight possible hand-of opportunities between diferent
applications? Cross-application support could be considered an
additional level of Support in our design space (Figure 5) and could
be used to further generalize the conceptual model (Section 5.1.2).

Our three techniques are rooted in the common mechanics of
desktop WIMP interfaces (as is most complex and feature-rich soft-
ware). For example, we rely on hover interactions, which may not
always be available on other platforms. Given the popularity of
“professional” tablets for use on the go, it would be interesting to
explore how our techniques would work on a tablet interface that
relies mainly on pen and touch interaction. In these situations, it
may be necessary to have a separate mode for trial-and-error that
enables the interface augmentations that we proposed (like the
progress bars in ToolTrack). Another interesting extension might
be to use additional non-visual cues to reveal whether a command
has been explored, such as audio cues (i.e., earcons [3]). Addition-
ally, our techniques are currently geared towards commands that
are activated with click interactions. How might we support trial-
and-error for other interactions like drag operations (e.g., aligning
objects, resizing objects with handles, drag-and-dropping a colour)?
This also points to a larger research direction to consider trial-and-
error for Post-WIMP interactions [42] and other modalities such as
touch and mid-air gestures, voice interfaces, or Augmented, Mixed,
and Virtual Reality.

Lastly, an evaluation of our techniques with designers and/or
end-users would help assess their efectiveness at answering the
challenges identifed in our framework. As mentioned in Section 8.1,
a long-term deployment of our modifed version of Fusion 360 with
a sizeable group of users would shed light on how people would use
and integrate the three techniques in their everyday use of the ap-
plication. This may also help us understand the right granularity of
tracking a user’s exploration with ToolTrack. Open questions that re-
main include what the appropriate “half-life” is of a command’s past
usage and when that usage should be discounted (e.g., if a command
has not been used in the past three months). A deployment would
also help to answer to what extent people prefer to have control
over marking their own exploration of the software (i.e., having the

ability to explicitly mark a tool as “unexplored”, similar to marking
an email as “unread” to capture that it should be revisited). Alterna-
tive design choices could also be evaluated, e.g., to determine the
most efective recommendation algorithm for ToolTrip (should trips
that include novel commands be preferred?). Similarly, interviews
with software designers and participatory design sessions with end-
users would help refne the designs of our techniques. While we
designed the techniques to be software-independent before imple-
menting them in Fusion 360, some software and users have unique
challenges or use cases that our designs might not yet support (e.g.,
when a specifc interactions like “hover" are already overloaded).

9 CONCLUSION
Early graphical interfaces developed in the 80s paved the way for
learning without manuals through trial-and-error. Since then, soft-
ware applications have grown in complexity, often making existing
solutions for trial-and-error fall short. This paper is an attempt
at improving our understanding of trial-and-error, and to identify
the key aspects of trial-and-error that require more support with
regard to complex and feature-rich software applications. We de-
rived a framework based on observational studies of trial-and-error,
identifed challenges present in current approaches to support trial-
and-error, and discussed the design and implementation of three
techniques: ToolTrack, ToolTrip and ToolTaste. Through these tech-
niques and our framework, we hope to provide a solution to help
users trial-and-error in complex software applications as well as
stimulate more research on systems that target trial-and-error.

REFERENCES
[1] Oscar D. Andrade, Nathaniel Bean, and David G. Novick. 2009. The Macro-

Structure of Use of Help. In Proceedings of the 27th ACM International Conference
on Design of Communication - SIGDOC ’09. ACM Press, Bloomington, Indiana,
USA, 143. https://doi.org/10.1145/1621995.1622022

[2] Autodesk. 2021. Autodesk Screencast. https://knowledge.autodesk.com/
community/screencast Retrieved September 5, 2021.

[3] Meera M. Blattner, Denise A. Sumikawa, and Robert M. Greenberg. 1989. Earcons
and Icons: Their Structure and Common Design Principles (Abstract Only).
SIGCHI Bull. 21, 1 (Aug. 1989), 123–124. https://doi.org/10.1145/67880.1046599

[4] John M. Carroll and Caroline Carrithers. 1984. Training Wheels in a User Interface.
Commun. ACM 27, 8 (Aug. 1984), 800–806. https://doi.org/10.1145/358198.358218

[5] John M. Carroll and Mary Beth Rosson. 1987. Paradox of the Active User. In
Interfacing Thought: Cognitive Aspects of Human-Computer Interaction. MIT Press,
Cambridge, MA, USA, 80–111.

[6] Andy Cockburn, Carl Gutwin, Joey Scarr, and Sylvain Malacria. 2014. Supporting
Novice to Expert Transitions in User Interfaces. ACM Comput. Surv. 47, 2, Article
31 (Nov. 2014), 36 pages. https://doi.org/10.1145/2659796

[7] Sjaak de Mul and Herre van Oostendorp. 1996. Learning User Interfaces by
Exploration. Acta Psychologica 91, 3 (April 1996), 325–344. https://doi.org/10.
1016/0001-6918(95)00060-7

[8] Stephen W. Draper and Stephen B. Barton. 1993. Learning by Exploration and
Afordance Bugs. In INTERACT ’93 and CHI ’93 Conference Companion on Human
Factors in Computing Systems (CHI ’93). Association for Computing Machinery,
New York, NY, USA, 75–76. https://doi.org/10.1145/259964.260084

[9] Leah Findlater and Joanna McGrenere. 2004. A Comparison of Static, Adaptive,
and Adaptable Menus. In Proceedings of the 2004 Conference on Human Factors
in Computing Systems - CHI ’04. ACM Press, Vienna, Austria, 89–96. https:
//doi.org/10.1145/985692.985704

[10] Leah Findlater, Karyn Mofatt, Joanna McGrenere, and Jessica Dawson. 2009.
Ephemeral Adaptation: The Use of Gradual Onset to Improve Menu Selection
Performance. In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems. ACM, Boston MA USA, 1655–1664. https://doi.org/10.1145/
1518701.1518956

[11] C. Ailie Fraser, Mira Dontcheva, Holger Winnemöller, Sheryl Ehrlich, and Scott
Klemmer. 2016. DiscoverySpace: Suggesting Actions in Complex Software. In
Proceedings of the 2016 ACM Conference on Designing Interactive Systems. ACM,
Brisbane QLD Australia, 1221–1232. https://doi.org/10.1145/2901790.2901849

https://doi.org/10.1145/1621995.1622022
https://knowledge.autodesk.com/community/screencast
https://knowledge.autodesk.com/community/screencast
https://doi.org/10.1145/67880.1046599
https://doi.org/10.1145/358198.358218
https://doi.org/10.1145/2659796
https://doi.org/10.1016/0001-6918(95)00060-7
https://doi.org/10.1016/0001-6918(95)00060-7
https://doi.org/10.1145/259964.260084
https://doi.org/10.1145/985692.985704
https://doi.org/10.1145/985692.985704
https://doi.org/10.1145/1518701.1518956
https://doi.org/10.1145/1518701.1518956
https://doi.org/10.1145/2901790.2901849

Supercharging Trial-and-Error for Learning Complex Sofware Applications

[12] C. Ailie Fraser, Julia M. Markel, N. James Basa, Mira Dontcheva, and Scott Klem-
mer. 2020. ReMap: Lowering the Barrier to Help-Seeking with Multimodal Search.
In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and
Technology (Virtual Event, USA) (UIST ’20). Association for Computing Machin-
ery, New York, NY, USA, 979–986. https://doi.org/10.1145/3379337.3415592

[13] Tovi Grossman and George Fitzmaurice. 2010. ToolClips: An Investigation of
Contextual Video Assistance for Functionality Understanding. In Proceedings of
the 28th International Conference on Human Factors in Computing Systems - CHI
’10. ACM Press, Atlanta, Georgia, USA, 1515. https://doi.org/10.1145/1753326.
1753552

[14] Tovi Grossman, George Fitzmaurice, and Ramtin Attar. 2009. A Survey of Soft-
ware Learnability: Metrics, Methodologies and Guidelines. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. Association for
Computing Machinery, New York, NY, USA, 649–658. https://doi.org/10.1145/
1518701.1518803

[15] Pushkar N. Kaul. 1998. Drug discovery: Past, present and future. Birkhäuser Basel,
Basel, 9–105. https://doi.org/10.1007/978-3-0348-8833-2_1

[16] Caitlin Kelleher and Randy Pausch. 2005. Stencils-Based Tutorials: Design
and Evaluation. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems - CHI ’05. ACM Press, Portland, Oregon, USA, 541.
https://doi.org/10.1145/1054972.1055047

[17] Kimia Kiani, George Cui, Andrea Bunt, Joanna McGrenere, and Parmit K. Chilana.
2019. Beyond "One-Size-Fits-All": Understanding the Diversity in How Software
Newcomers Discover and Make Use of Help Resources. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems. ACM, Glasgow Scotland
UK, 1–14. https://doi.org/10.1145/3290605.3300570

[18] Benjamin Lafreniere, Andrea Bunt, and Michael Terry. 2014. Task-Centric Inter-
faces for Feature-Rich Software. In Proceedings of the 26th Australian Computer-
Human Interaction Conference on Designing Futures: The Future of Design (Sydney,
New South Wales, Australia) (OzCHI ’14). Association for Computing Machinery,
New York, NY, USA, 49–58. https://doi.org/10.1145/2686612.2686620

[19] Benjamin Lafreniere, Parmit K. Chilana, Adam Fourney, and Michael A. Terry.
2015. These Aren’t the Commands You’re Looking For : Addressing False Feedfor-
ward in Feature-Rich Software. In Proceedings of the 28th Annual ACM Sympo-
sium on User Interface Software & Technology. ACM, Charlotte NC USA, 619–628.
https://doi.org/10.1145/2807442.2807482

[20] Frank Linton, Andy Charron, and Debbie Joy. 1998. OWL: A Recommender System
for Organization-Wide Learning. Technical Report WS-98-08. The AAAI Press,
Menlo Park, California.

[21] Frank Linton and Hans-Peter Schaefer. 2000. Recommender Systems for Learning:
Building User and Expert Models through Long-Term Observation of Application
Use. User Modeling and User-Adapted Interaction 10, 2 (June 2000), 181–208.
https://doi.org/10.1023/A:1026521931194

[22] Aran Lunzer. 1998. Towards The Subjunctive Interface: General Support For Pa-
rameter Exploration By Overlaying Alternative Application States. Late Breaking
Hot Topics Proceedings of IEEE Visualization 98 (1998), 45–48.

[23] Aran Lunzer and Kasper Hornbæk. 2008. Subjunctive Interfaces: Extending
Applications to Support Parallel Setup, Viewing and Control of Alternative Sce-
narios. ACM Trans. Comput.-Hum. Interact. 14, 4, Article 17 (Jan. 2008), 44 pages.
https://doi.org/10.1145/1314683.1314685

[24] Shareen Mahmud, Jessalyn Alvina, Parmit K. Chilana, Andrea Bunt, and Joanna
McGrenere. 2020. Learning Through Exploration: How Children, Adults, and
Older Adults Interact with a New Feature-Rich Application. In Proceedings of the
2020 CHI Conference on Human Factors in Computing Systems. ACM, Honolulu
HI USA, 1–14. https://doi.org/10.1145/3313831.3376414

[25] Justin Matejka, Tovi Grossman, and George Fitzmaurice. 2011. Ambient Help. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
Association for Computing Machinery, New York, NY, USA, 2751–2760. https:
//doi.org/10.1145/1978942.1979349

[26] Justin Matejka, Tovi Grossman, and George Fitzmaurice. 2013. Patina: Dynamic
Heatmaps for Visualizing Application Usage. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems. ACM, Paris France, 3227–3236.
https://doi.org/10.1145/2470654.2466442

[27] Justin Matejka, Wei Li, Tovi Grossman, and George Fitzmaurice. 2009. Com-
munityCommands: Command Recommendations for Software Applications. In
Proceedings of the 22nd Annual ACM Symposium on User Interface Software
and Technology - UIST ’09. ACM Press, Victoria, BC, Canada, 193. https:
//doi.org/10.1145/1622176.1622214

[28] Mathieu Nancel and Andy Cockburn. 2014. Causality: A Conceptual Model of
Interaction History. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM, Toronto Ontario Canada, 1777–1786. https://doi.org/
10.1145/2556288.2556990

[29] Don Norman. 2013. The Design of Everyday Things: Revised and Expanded Edition.
Basic Books, New York, New York, USA.

[30] David G. Novick, Oscar D. Andrade, and Nathaniel Bean. 2009. The Micro-
Structure of Use of Help. In Proceedings of the 27th ACM International Conference
on Design of Communication - SIGDOC ’09. ACM Press, Bloomington, Indiana,
USA, 97. https://doi.org/10.1145/1621995.1622014

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

[31] Peter Pirolli and Stuart Card. 1999. Information Foraging. Psychological Review
106 (10 1999), 643–675. https://doi.org/10.1037/0033-295X.106.4.643

[32] Peter G. Polson and Clayton H. Lewis. 1990. Theory-Based Design for Easily
Learned Interfaces. Human–Computer Interaction 5, 2-3 (June 1990), 191–220.
https://doi.org/10.1080/07370024.1990.9667154

[33] Suporn Pongnumkul, Mira Dontcheva, Wilmot Li, Jue Wang, Lubomir Bourdev,
Shai Avidan, and Michael F. Cohen. 2011. Pause-and-Play: Automatically Linking
Screencast Video Tutorials with Applications. In Proceedings of the 24th Annual
ACM Symposium on User Interface Software and Technology (Santa Barbara, Cali-
fornia, USA) (UIST ’11). Association for Computing Machinery, New York, NY,
USA, 135–144. https://doi.org/10.1145/2047196.2047213

[34] Atul Prakash and Michael J. Knister. 1994. A Framework for Undoing Actions
in Collaborative Systems. ACM Trans. Comput.-Hum. Interact. 1, 4 (Dec. 1994),
295–330. https://doi.org/10.1145/198425.198427

[35] Atul Prakash and Michael J Knister. 1994. A framework for undoing actions
in collaborative systems. ACM Transactions on Computer-Human Interaction
(TOCHI) 1, 4 (1994), 295–330.

[36] John Rieman. 1996. A Field Study of Exploratory Learning Strategies. ACM
Transactions on Computer-Human Interaction 3, 3 (Sept. 1996), 189–218. https:
//doi.org/10.1145/234526.234527

[37] Andrew Sears and Ben Shneiderman. 1994. Split Menus: Efectively Using Se-
lection Frequency to Organize Menus. ACM Transactions on Computer-Human
Interaction 1, 1 (March 1994), 27–51. https://doi.org/10.1145/174630.174632

[38] Shneiderman. 1983. Direct Manipulation: A Step Beyond Programming Lan-
guages. Computer 16, 8 (Aug. 1983), 57–69. https://doi.org/10.1109/MC.1983.
1654471

[39] Herbert A. Simon and Peter A. Simon. 1962. Trial and error search
in solving difcult problems: Evidence from the game of chess. Behav-
ioral Science 7, 4 (1962), 425–429. https://doi.org/10.1002/bs.3830070402
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/bs.3830070402

[40] Michael Terry and Elizabeth D. Mynatt. 2002. Side Views: Persistent, on-
Demand Previews for Open-Ended Tasks. In Proceedings of the 15th Annual
ACM Symposium on User Interface Software and Technology (Paris, France)
(UIST ’02). Association for Computing Machinery, New York, NY, USA, 71–80.
https://doi.org/10.1145/571985.571996

[41] Michael Terry, Elizabeth D. Mynatt, Kumiyo Nakakoji, and Yasuhiro Yamamoto.
2004. Variation in Element and Action: Supporting Simultaneous Development of
Alternative Solutions. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. Association for Computing Machinery, New York, NY,
USA, 711–718. https://doi.org/10.1145/985692.985782

[42] Andries van Dam. 1997. Post-WIMP User Interfaces. Commun. ACM 40, 2 (Feb.
1997), 63–67. https://doi.org/10.1145/253671.253708

[43] Wesley Willett, Jefrey Heer, and Maneesh Agrawala. 2007. Scented Widgets:
Improving Navigation Cues with Embedded Visualizations. IEEE transactions
on visualization and computer graphics 13 (12 2007), 1129–36. https://doi.org/10.
1109/TVCG.2007.70589

https://doi.org/10.1145/3379337.3415592
https://doi.org/10.1145/1753326.1753552
https://doi.org/10.1145/1753326.1753552
https://doi.org/10.1145/1518701.1518803
https://doi.org/10.1145/1518701.1518803
https://doi.org/10.1007/978-3-0348-8833-2_1
https://doi.org/10.1145/1054972.1055047
https://doi.org/10.1145/3290605.3300570
https://doi.org/10.1145/2686612.2686620
https://doi.org/10.1145/2807442.2807482
https://doi.org/10.1023/A:1026521931194
https://doi.org/10.1145/1314683.1314685
https://doi.org/10.1145/3313831.3376414
https://doi.org/10.1145/1978942.1979349
https://doi.org/10.1145/1978942.1979349
https://doi.org/10.1145/2470654.2466442
https://doi.org/10.1145/1622176.1622214
https://doi.org/10.1145/1622176.1622214
https://doi.org/10.1145/2556288.2556990
https://doi.org/10.1145/2556288.2556990
https://doi.org/10.1145/1621995.1622014
https://doi.org/10.1037/0033-295X.106.4.643
https://doi.org/10.1080/07370024.1990.9667154
https://doi.org/10.1145/2047196.2047213
https://doi.org/10.1145/198425.198427
https://doi.org/10.1145/234526.234527
https://doi.org/10.1145/234526.234527
https://doi.org/10.1145/174630.174632
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1002/bs.3830070402
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/bs.3830070402
https://doi.org/10.1145/571985.571996
https://doi.org/10.1145/985692.985782
https://doi.org/10.1145/253671.253708
https://doi.org/10.1109/TVCG.2007.70589
https://doi.org/10.1109/TVCG.2007.70589

	Abstract
	1 Introduction
	2 Background
	2.1 What is Trial-and-Error?
	2.2 Why Do People Prefer Trial-and-Error?
	2.3 How Software Facilitates Trial-and-Error

	3 Related Work
	3.1 Guiding Exploration
	3.2 Recommending Actions
	3.3 Experimenting and Exploring Alternatives

	4 Properties of Trial-and-Error
	4.1 Benefits
	4.2 Challenges

	5 Framework
	5.1 Conceptual Model of Trial-and-Error
	5.2 Design Space of Support for Trial-and-Error

	6 Supercharging Trial-and-Error
	6.1 ToolTrack: Show Coverage and Track Progress
	6.2 ToolTrip: Exploration at Task-Level
	6.3 ToolTaste: Rapid Testing of Commands

	7 Proof-of-Concept Implementation in Fusion 360
	7.1 Interaction and Visualization
	7.2 Automatically Generating ToolTrips
	7.3 Suggesting ToolTrips
	7.4 Example Scenarios

	8 Discussion
	8.1 Limitations
	8.2 Future Work

	9 Conclusion
	References

