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ABSTRACT
Successful material selection is critical in designing and

manufacturing products for design automation. Designers lever-
age their knowledge and experience to create high-quality de-
signs by selecting the most appropriate materials through per-
formance, manufacturability, and sustainability evaluation. In-
telligent tools can help designers with varying expertise by pro-
viding recommendations learned from prior designs. To enable
this, we introduce a graph representation learning framework
that supports the material prediction of bodies in assemblies.
We formulate the material selection task as a node-level predic-
tion task over the assembly graph representation of CAD models
and tackle it using Graph Neural Networks (GNNs). Evaluations
over three experimental protocols performed on the Fusion 360
Gallery dataset indicate the feasibility of our approach, achiev-
ing a 0.75 top-3 micro-F1 score. The proposed framework can
scale to large datasets and incorporate designers’ knowledge
into the learning process. These capabilities allow the frame-
work to serve as a recommendation system for design automa-

∗Address all correspondence to this author.

tion and a baseline for future work, narrowing the gap between
human designers and intelligent design agents.

1 INTRODUCTION
Material selection is a critical step in designing and manu-

facturing a product. Materials are integral to a product’s success,
safety, and efficiency [1]. Engineers and designers spend a con-
siderable amount of time evaluating trade-offs between materi-
als, such as cost, performance, manufacturability, and sustain-
ability [2]. Each material needs to support the product’s primary
function while also withstanding uncertain environmental condi-
tions that the product undergoes. Selecting an improper material
can lead to extra expense, low structural integrity, and a short-
ened product life cycle [3]. Designers mainly rely on their ex-
perience and existing guidelines to evaluate trade-offs between
different materials. Designing intelligent tools based on knowl-
edge graphs and large design data could help facilitate this pro-
cess. In product design, efforts to consolidate design knowledge
in knowledge graphs have resulted in robust graph representa-
tions of domain-specific semantic relationships [4, 5]. Engineer-
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FIGURE 1. PROPOSED FRAMEWORK FOR PREDICTING MATERIALS OF ASSEMBLY BODIES USING GRAPH REPRESENTATION LEARNING.

ing design knowledge graphs are useful for concept generation
and evaluation [6]. However, there is an opportunity to expand
on prior work towards later phases of the design process by ex-
tracting design knowledge from computer-aided design (CAD)
models to complement existing semantic networks.

CAD tools are used to create 2D and 3D models of the prod-
ucts and document various aspects of the design, including the
geometries, dimensions, tolerances, degrees of freedom, and rel-
ative motions of parts, as well as the material of each component
in the assembly [7]. The material information stored in CAD
tools is typically used for simulation or rendering workflows.
Both activities help designers assess and visualize trade-offs be-
tween different materials and identify the best materials for the
design.

In recent years, several large datasets of curated CAD mod-
els have been released that support machine learning methods
for various data-driven design applications [8, 9, 10]. Simul-
taneously, graphs have been leveraged to represent design data
and to capture various relationships, including joint relationships
between parts in assemblies [11, 12], semantic relationships be-
tween engineering and design concepts [4], and geometric rela-
tionships between faces of BREPs [13, 14].

In product design, efforts to consolidate design knowledge
in knowledge graphs have resulted in robust graph representa-
tions of domain-specific semantic relationships. Engineering de-
sign knowledge graphs have been shown to be useful for concept
generation and evaluation [5].Leveraging the expressive power
of graphs in capturing multi-modal information, we propose a
framework (Figure 1) in which material prediction is posed as a
node prediction task and is tackled through learning representa-
tions using graph neural networks (GNNs). Motivated by the im-
portance of material selection to support design automation, this
unified framework can help designers select appropriate materi-
als by providing part-level material suggestions given a product
assembly.

The method is validated through three experiments simulat-
ing different applications using the Fusion 360 Gallery Assem-

bly Dataset [11]. Also, through an ablation study of features and
GNN layers, additional insights are provided into factors that in-
fluenced the performance, which may serve as a preliminary dis-
cussion and a baseline for future studies.

To summarize, our work makes the following contributions
to the areas of design automation and engineering:

1. We study the material selection task for design automation
and devise a systematic procedure to represent CAD models
as graphs by extracting and encoding multi-modal features.

2. We leverage GNNs to learn expressive representations from
existing CAD assemblies and use them for predicting mate-
rials on new assemblies.

3. We provide insights into the importance of features com-
monly found in CAD with respect to material prediction and
evaluate the framework within three design scenarios.

To enable further research and reproducibility, we share the
code for feature extraction, training, and experiments 1.

2 RELATED WORK
We review the prior work related to material selection, graph

representation learning in design automation, and graph neural
networks. Reflecting on these past works, we provide deeper
insights into the motivation and vision of our work.

2.1 Material Selection Design
In product design, material selection can be broken down

into a five-step procedure: (1) establishing design requirements,
(2) screening materials, (3) ranking materials, (4) researching
material candidates, and (5) applying constraints to the selection
process [1]. Many properties influence material selection, and
the needs of a project determine the most important factors to be
considered. This step is heavily reliant on performance indices
and material property charts (Ashby charts) [1] which plot one

1https://github.com/danielegrandi-adsk/material-gnn
2 Copyright © 2022 by ASME

https://github.com/danielegrandi-adsk/material-gnn


material property against another, resulting in clusters of material
classes. Then, the material search can be further narrowed down
by setting axis limits [15]. In practice, tools such as Granta CES
Edupack software can be used to compare over 4,000 materi-
als based on user-input design requirements and constraints [16].
Product design aims to meet customer needs of technical require-
ments [17]. The material selection factors become more ambigu-
ous because of the wide range of consumer products and mul-
tiple ways of designing each product. Material aspects such as
quality, cost, and function must be considered in the design of
user products because they interact and contribute to the final de-
sign [18]. Another important approach focuses on sustainability
as a consideration of the economic, environmental, and societal
impacts during the whole life-cycle from cradle to stage [19].
When working with complex assemblies, the material selection
process is further complicated, as the material of individual parts
affects the assembly integration process [20]. Thus, assembly
data should be considered during the material selection process.

2.2 Graph Neural Networks (GNNs)
GNNs are a class of deep neural networks to perform infer-

ence on data decribed by graphs in a non-Euclidean space. GNNs
learn node representations over order-invariant and variable-size
data, structured as graphs, through an iterative process of trans-
ferring, transforming, and aggregating the representations from
topological neighbors. The learned representations are then sum-
marized into a graph-level representation [21, 22, 23, 24, 25, 26].
Utilizing the process of representation learning, GNNs can per-
form tasks such as graph, node, and edge classifications, and
are applied to real-world applications such as point cloud seg-
mentation [27], robot designs [28], physical simulations [29,30],
quantum chemistry [31], material design [32], semantic role la-
beling [33], and product relationship predictions [34].

2.3 Graph Representation of CAD Models
The design process as a whole is iterative and generates large

amounts of data that can be organized and parsed for additional
information that may be used to improve the design [35]. This in-
formation, collected from all aspects of the product life-cycle, is
multi-modal and can be in the form of semantic names, customer
requirements, 3D geometry, material properties, manufacturing
tolerances, cost information, etc. This data may then be used to
modify the design itself, enabling some automation of the design
process by learning from prior examples [36, 37]. Prior work
looked at organizing and learning from design knowledge ac-
quired from sources such as taxonomy-based design repositories
[5, 38], product teardowns [39], patent data [4], and geometry-
based design repositories [40, 41, 42]. When working with geo-
metric data, graphs have been leveraged to represent CAD mod-
els with goals ranging from representation of complex relations
to solving design problems [43, 44, 45, 13, 14]. The current work

expands the representation of design into multi-modal represen-
tation, capturing geometric and semantic information in addition
to the hierarchical structure of parts in assemblies.

3 METHODOLOGY
This section provides an overview of the framework, the pro-

cess and motivation for data selection, and the detailed method-
ology for predicting materials of assembly bodies using graph
representation learning.

As illustrated in Figure 1, the proposed framework con-
sists of three main modules: (1) the feature encoding module
extracts useful features from assembly files (such as semantic
and physical properties of bodies, assembly connections between
each body, and global features shared across bodies) and en-
codes them into embedding vectors; (2) the graph construction
module structures assemblies, along with their bodies and the
encoded features, into assembly graphs; (3) the learning frame-
work trains GNNs upon the graph representations to learn robust
embeddings that are used for predicting materials.

3.1 Dataset
The proposed framework is developed to work with the pub-

licly available Fusion 360 Gallery Assembly Dataset [11]. As
illustrated in Figure 2, each assembly in the dataset contains sev-
eral bodies with a set of design features. Users organize bodies
by placing them in a hierarchy of occurrences, which are the
building blocks that make up assemblies. The dataset contains
CAD data from 154,468 bodies, grouped into 8,251 assemblies,
from different industries and with various levels of detail. It was
chosen because of its size, diversity of designs and features, ease
of processing, and presence of per-body material labels. We use
the train/test split provided with the dataset for all experiments.
For details on features and the encoding methods refer to Table 4
in Appendix A.1. We applied several pre-processing steps to the
dataset as follows.

Data Filtering Many bodies in the dataset are labeled with the
default material assigned at the time of creation with the CAD
tool. Suppose all the bodies of an assembly are made of the de-
fault material, then it might be assumed that the user did not per-
form intentional material selection, rendering the data unusable
for learning. Therefore, a filtering step was taken to remove the
assemblies that have all bodies labeled with the default material
and default appearance. 5388 out of 8251 assemblies were left
after this step.

Material ID Transformation Each body in the dataset has two
material labels: a physical material label that defines the mechan-
ical and physical properties of the body, and an appearance label
used for rendering. While each label serves a different purpose, it
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Assembly Body 2

Body 1 Features

  1. Semantic Name: "Screw" 
  2. Material: "Steel - Satin" 
  3. Physical Properties: area + volume 
  4. Geometry: polygon mesh
  5. Global Features

Features

  1. Semantic Name: "Bolt" 
  2. Material: "Steel - Satin" 
  3. Physical Properties: area + volume 
  4. Geometry: polygon mesh
  5. Global Features

Connection: Contact Shared Global Features

FIGURE 2. AN EXAMPLE OF AN ASSEMBLY WITH TWO BODIES
AND THEIR FEATURES.

can be assumed that the designer intends each body to be defined
by only one material. Therefore, for bodies with default phys-
ical material but non-default appearance labels, the non-default
appearance was used as the ground truth. This was done to im-
prove the quality and number of ground-truth labels.

Material Grouping The user-defined body materials are sig-
nificantly diverse, skewed, and sparse in distribution, as shown
in Table 5 in Appendix A.2. Considering that the materials with
infrequent occurrences are unlikely to appear in future test cases
and may not generalize well to other design use cases, only the
top 20 material categories were preserved. Other materials were
grouped into a single category.

3.2 Feature Encoding
This section describes the definition and encoding of valu-

able features from the dataset. These encoded features are later
used to generate relational assembly graphs in Section 3.3 to feed
into the learning architecture.

Semantic Names Each body has a body name and an
occurrence name. Users can manually set these semantic
names or leave them as default. TechNet [4], a semantic network
with support for processing technology-focused texts, was used
to pre-process and vectorize the semantic names. The cleaned se-
mantic names were passed to TechNet to extract and retrieve key-
words and corresponding 600-dimensional embeddings of key-
words. The unmatched names were assigned a feature vector
imputed according to the distribution of the TechNet database,
while bodies with the default name were assigned a vector of ze-
ros. The average embedding of all the keywords was assigned to
the semantic name for semantic names with multiple keywords.
The process is shown in Figure 3.

Physical Properties Each body has three physical properties:
body area (in square meters), body volume (in cubic me-
ters), and body center of mass (represented in the x, y, z

"fish bottom fin  a  "

similar

[-0.11895822, -0.01115167, ... , -0.26246607]"fish"

"bottom"

"FishBottom-Fin (A1)"

Semantic Name

Cleaning

"fin"

TechNet

[-0.13591647, 0.06455179, ... , 0.1948726]

Keyword(s) Embedding Vector(s) 
(Dimension: 1 x 600)

[0.03579328,  -0.20362604, ... , 0.09525189]

dissimilar

dissimilar

[-0.07302714,  -0.05007531, ... , 0.00919473]

mean-pooling

FIGURE 3. AN EXAMPLE OF FEATURE ENCODING FOR THE
SEMANTIC NAMES OF AN ASSEMBLY.

coordinates). All physical properties are generated by Autodesk
Fusion 360 during the user’s design process. The physical prop-
erties are normalized to the standard scale.

Geometric Information The 3D geometry of every body is
used to render 2D depth images from 12 different views equally
spaced around the object. A Multi-View Convolutional Neural
Network (MVCNN) [46] is trained by feeding it the 2D images
and enforcing it to classify the geometric shapes into 21 classes
selected for the experiments. Once trained, the model’s weights
are frozen, and the classification layer is truncated. The model is
then used as a pre-trained encoder to compute 512-dimensional
visual embeddings of all the available geometric data. The visual
embeddings are used to represent the body geometry. The
MVCNN is trained using the same train-test split as the GNN.

Connection Types Each assembly in the dataset comprises
multiple interconnected bodies via various assembly relation-
ships. Specifically, we consider three predominant types of con-
nections. Contacts define the relationship between two bod-
ies whose faces are in contact with each other. Joints define
the relationship between two bodies whose relative pose and de-
grees of freedom are constrained. Hierarchical edges repre-
sent the user-assigned relative hierarchy of the bodies, indicating
whether multiple bodies share the same occurrence. The connec-
tion types are encoded using the one-hot method as a categorical
feature.

Global Features Each assembly has features that are
shared globally among the bodies of the same assem-
bly. These features include the assembly physical
properties, assembly geometric properties,
design category, industry, and products used to
create the design. For more details see Appendix A.1.

3.3 Graph Construction
Each assembly is represented as a directed and attributed

assembly multi-graph, where bodies that correspond to individ-
ual parts are represented as nodes. Connections that represent
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assembly relationships are represented as edges. The graph is
directed since each edge contains a source node, a destination
node, and a direction. The graph is attributed since each node
and edge contains encoded features. Furthermore, the graph al-
lows multiple edges between any pair of nodes.

Graph Nodes Each body is represented as a node containing
semantic name embeddings, visual embeddings, and physical
properties. The encoded global features of the graph are concate-
nated with the node feature and shared across the nodes of the
same graph. The ground-truth material names encoded as one-
hot vectors are also considered graph node attributes and used in
the partial algorithm-guided experiment.

Graph Edges The body nodes are connected through edges
that represent assembly relationships between the bodies (Sec-
tion 3.2). Specifically, Assembly Edge contains the one-hot
encoding of connection type. Note that there can be multiple
edges between a pair of nodes, corresponding to the multiple
contact points between two bodies’ surfaces. If multiple bod-
ies share the same occurrence in the assembly hierarchy, they are
given a pair-wise Hierarchical edge.

Once the graphs are constructed, graphs with less than three
nodes or less than two edges are discarded, resulting in 4210
valid assembly graphs with 85,089 nodes and 118,668 edges.
The encoded semantic embedding, the physical properties, and
the geometric information are concatenated into a node feature
matrix for each graph. Similarly, the one-hot encoded connec-
tion types are concatenated into an edge feature matrix. The
node and edge feature matrices and the connectivity information
represented in coordinate (COO) format are organized into Py-
Torch Geometric [47] graph objects and are later fed into the
GNN model.

3.4 Learning Framework
Given a set of graphs G = {Gk}N

k=1 where each graph Gk =
(V,E,X) consists of |V | nodes, |E| edges (E ⊆ V ×V ), initial
node features X ∈ R|V |×dx and edge attributes euv for (u,v) ∈ E,
and the corresponding node labels

{
y1

1, ...,y
1
|V |, ...,y

N
1 , ...,y

N
|V |

}
,

the task of supervised node classification is to learn a represen-
tation hv,∀v ∈ V such that the node labels can be predicted us-
ing the representations. GNNs use a neighborhood aggregation
approach, where representation of node v is iteratively updated
by aggregating representations of neighboring nodes and edges.
After k iterations of aggregation, the representation captures the
information within its k-hop neighborhood [22, 48]. Formally,
the k-th layer of a GNN is defines as:

h(k)v = f (k)
θ

(
h(k−1)

v ,g(k)
φ

({
h(k−1)

v ,h(k−1)
u ,euv : u ∈ N(v)

})
(1)

where h(k)v is the representation of node v at the k-th layer and
N(v) denote neighbors of v. fθ (.) and gφ (.) denote paramet-
ric combination and aggregation functions. The choice of these
functions can dramatically affect the expressiveness power of a
GNN and different instantiations of them produce variants of
GNNs such as GraphSAGE [49], Graph Convolution Network
(GCN) [23], Graph Attention Network (GAT) [24], and Graph
Isomorphism Network (GIN) [25].

The learning framework consists of a GNN encoder fol-
lowed by a Multi-Layer Perceptron (MLP) network acting as
a classifier head (Figure 1). The GNN encoder consists of a
message-passing block in each layer followed by a Leaky Rec-
tified Linear Unit [50] as the non-linearity. The final node em-
beddings are computed similar to Jumping Knowledge Networks
[51] in which node embeddings computed in all the GNN lay-
ers are aggregated by summation. The final node embeddings
are then passed through the MLP with batch normalization lay-
ers [52], Parametric Rectified Linear Unit (PReLU [53]) for gen-
eralized and learnable non-linearity activation, and a softmax ac-
tivation for predicting class distributions. The weighted cross-
entropy loss is adopted as the training objective to prevent the
neural network from overlooking rare classes. The weights for
each class are initialized as inversely proportional to the ground-
truth class frequencies. The type of GNN layers is considered as
a hyperparameter (see 4.1).

4 EXPERIMENTS
We evaluate and analyze the effectiveness of our framework

with the Fusion 360 Gallery dataset. We designed three experi-
ments through a variation of our base framework to address en-
gineers’ diverse expertise, needs, and goals. We first introduce
a general setup, including the results of hyperparameter tuning.
Then we discuss the feature importance in material prediction
through ablation experiments. Finally, we provide the detailed
motivation, description, results, and discussion for each experi-
ment. We then address the following questions: (1) Which fea-
tures have the largest influence on material prediction? (2) How
well can our method predict the ground-truth material when ob-
serving the top-1, top-2, and top-3 predictions? (3) How does
our method perform when the material of some of the bodies in
the assembly is known? (4) Can the user restrict the search space
by guiding the network towards a specific material category for
each body?

4.1 General Setup
In preparation for the training process, we split the con-

structed assembly graphs into a train set for model training, a
validation set for parameter tuning, and a test set for performance
evaluation based on the proportions of 56%, 24%, 20% respec-
tively through a random sampling process. The assembly graphs
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allocated to the test set are pre-defined by the Fusion 360 Gallery
dataset and remain fixed across the dataset-splitting process of
different experiments. We run each experiment for 10 iterations
to account for variations and evaluate the performance based on
the mean and standard deviation of the results. To evaluate the
multi-class classification task of material prediction, consider-
ing the highly-skewed distribution of material labels (as shown
in Appendix A.2), we report the micro F1 score calculated by
weighting each prediction instance equally.

To find the best set of hyper-parameters for the GNN, we ran
a grid search on the number of GNN layers {1,2,3,4,5,6,7,8},
the size of hidden dimensions {64,128,256,512}, and the type of
GNN layer {SAGE,GAT,GIN,GCN} (as introduced in Section
2.2). After running each experiment configured with a combina-
tion of hyper-parameters for 10 iterations, we observed the best
average performance and stability using 7 layers of GraphSAGE
GNN with 256 hidden dimensions, where the formulation and
advantage for the GraphSAGE GNN are described in Appendix
B.3. Therefore, we adopted this configuration for the following
experiments unless stated otherwise.

4.2 Feature Importance
Description To evaluate the importance of the features intro-
duced to the graph construction and learning process, we per-
form an ablation study by systematically analyzing the variation
of prediction performance by dropping sets of node and edge
features. Specifically, we investigate the importance of node fea-
tures by excluding only one node feature at a time during graph
generation and learning. Subsequently, we re-run the node fea-
ture ablation experiments under the scenarios of no edge ablation
and Hierarchical edge ablation to investigate the impact of
edge features on the overall performance. Finally, we provide a
set of baselines by including all node features.

TABLE 1. FEATURE ABLATION RESULTS, MICRO-F1 SCORE

NODE ABLATION EDGE ABLATION

NODE NONE HIERARCHICAL

BODY NAME 0.384 ± 0.02 0.416 ± 0.03

OCCURRENCE NAME 0.399 ± 0.01 0.423 ± 0.01

SEMANTIC NAMES 0.317 ± 0.05 0.373 ± 0.07

BODY PHYSICAL PROPERTIES 0.413 ± 0.02 0.425 ± 0.01

OCCURRENCE PHYSICAL PROPERTIES 0.415 ± 0.02 0.392 ± 0.06

BODY GEOMETRY 0.394 ± 0.02 0.420 ± 0.00

GLOBAL FEATURES 0.393 ± 0.04 0.429 ± 0.01

NONE 0.404 ± 0.02 0.425 ± 0.01

Results and Discussion Shown in Table 1 is the feature abla-
tion results, where SEMANTIC NAMES indicates the body and
occurrence names of the node, NONE and ALL indicate no feature
and all features being ablated, respectively.

Focusing on the scenario in which no ablation of edges
is performed, we observe that the most important node feature
is the semantic names of the body since the exclusion of
it significantly reduced the averaged performance (from 0.404
to 0.317) and increased the standard deviation (from 0.02 to
0.05). Dissecting the semantic names feature, we observe that
both body name and occurrence name impact the accu-
racy when ablated, where the body name’s importance sur-
passes that of the occurrence name. Furthermore, exclud-
ing physical properties reflects an increase in averaged
performance, which indicates that they are hindering the learn-
ing process. This phenomenon is unexpected since the physical
properties of an assembly body should be correlated with its ma-
terial choice. Therefore, we choose to re-run the ablation exper-
iments without considering the hierarchical edges to investigate
this adversarial effect.

When ablating hierarchical edges, we observe that the
semantic names node feature shows the most significance,
which is in accordance with the previous result. Consequently,
we suggest that the user-defined semantic names of bodies in
CAD models are the single most useful feature for material pre-
diction. Further research should be performed to investigate
more effective ways to extract and encode this feature. In addi-
tion, the physical properties of the body and occurrence demon-
strate significance, which is contrary to the result when no edge
ablation is performed. One possible explanation would be that
the user-defined hierarchical edges are connecting bodies that
may not be correlated with each other in terms of structural and
physical properties. Accordingly, the introduction of hierarchi-
cal edges may misguide the neural network to learn representa-
tions of physical properties based on incorrect structural context.
Therefore, we drop the hierarchical edges during subsequent ex-
periments to mitigate this effect and minimize the computation
overhead.

4.3 Fully Algorithm-guided Prediction
Description A long-term goal of design automation is to fully
automate the material selection process without user input. This
experiment evaluates how our network performs in a fully
algorithm-guided scenario, where the ground-truth labels of ma-
terial features for all nodes are left out during training and are re-
introduced only during the validation and testing phases. There-
fore, the GNN learns the node representations of the body nodes
without access to ground-truth materials, aggregates the single-
node representations obtained through message passing directly
into a joint set of representations, and performs material predic-
tion on all graph nodes at the same time. During the evaluation,
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we treat the unseen assembly graphs as newly produced user de-
signs and allow the trained model to output the top-1, top-2, and
top-3 material class labels for all bodies based on the predicted
probability. We denote this approach as the fully algorithm-
guided prediction since the entire learning process is done by
the learning framework independently without any supporting
input from the user. The predictions may provide a set of sug-
gestions for the user to select for further analysis or use.

Top-1 Top-2 Top-3
Top-k Predictions

0.0

0.2

0.4

0.6

0.8

1.0

M
icr

o 
F1

 S
co

re

Ours
MVCNN
Linear

FIGURE 4. FULLY ALGORITHM-GUIDED PREDICTION RESULTS,
COMPARED WITH SEVERAL BASELINES.

Results and Discussion As shown in Figure 4, we compare the
material prediction performance of our proposed method with the
baselines of MVCNN (which performs prediction based only on
the geometry of bodies) and a linear regression model. When
applying this work, the top-k method offers the flexibility to use
a human-in-the-loop approach. In practice, this would stream-
line the decision process while leaving some creative decision-
making to the experienced designer. Our method achieves a
mean micro-F1 score of 0.417±0.04, 0.677±0.01, 0.754±0.01
for top-1, top-2, and top-3 predictions respectively, and outper-
forms the baselines in all top-k situations. This supports our hy-
pothesis that material selection depends on factors other than the
geometric features of the design. Designers choose the materials
of one body in an assembly also based on the context of the rest
of the assembly.

As more labels are considered in the prediction, the
MVCNN approach appears to converge with our method, which
is expected as two main classes dominate our dataset. Nonethe-
less, the application limits the MVCNN as it only learns from
the geometry of prior designs, not from other multi-modal design
data. In the remaining two experiments, we consider more input
from the user, which can be easily introduced into the model.

4.4 Partial Algorithm-guided Prediction
Description Designers may have access to material labels for
part of their assembly or design only one body in an existing
assembly. To simulate this, this experiment introduces ground-
truth material labels as node features into a portion of assembly
graph nodes (context nodes), and the goal is to learn the labels
for the rest (target nodes). During the message-passing process,
the context nodes pass their embeddings through the edges to the
target nodes, thereby updating their embeddings. This allows
the GNN to perform material prediction on the target nodes by
jointly learning from the topology of the graph and the ground-
truth labels contained within the context nodes. During the eval-
uation, we limit the number of context nodes to a set of ratios
and analyze the change in prediction performance jointly with
a different number of GNN layers. We denote this as partial
algorithm-guided prediction since the ground-truth labels pro-
vided by the user can influence, to a certain degree, the learning
process and bias the final predictions. While the fully algorithm-
guided prediction has the ground truth information of all nodes
removed during training, the partial algorithm-guided prediction
allows for a portion of context nodes to contain the ground truth
labels during training but does not consider them during valida-
tion.

TABLE 2. PARTIAL-ALGORITHM PREDICTION RESULTS
(MICRO-F1SCORE).

Number of Layers

1 2 3 4 5 6 7 8

0.1 0.402 0.397 0.398 0.403 0.442 0.425 0.404 0.400

0.2 0.386 0.421 0.414 0.435 0.416 0.450 0.389 0.385

0.3 0.381 0.393 0.415 0.460 0.476 0.469 0.466 0.431

0.4 0.402 0.399 0.435 0.462 0.475 0.477 0.474 0.459

C
on

te
xt

N
od

es
%

0.5 0.393 0.407 0.436 0.452 0.482 0.464 0.482 0.475

Results and Discussion Table 2 summarizes the results of the
experiment, showing the averaged micro-F1 score for the top-
1 prediction. We observe that the performance increases as we
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increase the ratio of augmented nodes and the number of GNN
layers. The positive correlation between the ratio and the per-
formance indicates that the model can constructively learn from
augmented nodes’ topology and features during training and gen-
eralize at inference time. Similarly, the positive correlation be-
tween the number of GNN layers and the performance implies
that the model learns better representations by considering the
messages passed from distant nodes and edges in each graph. We
observe a slight decrease in performance when layers exceed 7
due to over-parametrization. In summary, the partial algorithm-
guided prediction achieves the best performance in top-1 predic-
tion of 0.482±0.02 when considering 50% augmented nodes and
5 GNN layers, indicating the method’s effectiveness in making
predictions based on partial inputs from the user.

4.5 User-guided Prediction
Description The designer might want to restrict the search
space to a specific material category for each body, such as
“metal”, “ceramic”, “aluminum alloy”, or “thermoplastics”.
With a user-guided prediction approach, the user provides the
network with ground-truth material categories for all bodies, thus
guiding the network towards groups of materials based on their
expertise, ideas, and design goals. The motivation of this ex-
periment, together with the prior partial algorithm-guided exper-
iment, is to avoid the limitation of innovation by allowing the
user to input their design information into the learning frame-
work, thereby leading the design process. Due to the lack of
newly generated data by designers, we simulate the user inputs
via masking and involving ground truth information in the graph
generation process. The configuration of this experiment follows
from the format of the fully algorithm-guided prediction. How-
ever, to aid the learning process, we introduce the hierarchical
material category label of the ground-truth material as a feature
of each node.

The material categories are borrowed from the material li-
brary in Autodesk Fusion 360 and consist of up to three tiers
in the hierarchy, where a deeper depth indicates a more detailed
classification. For example, a body made of mild steel has a Tier
1 material category “Metal”, Tier 2 category “Ferrous”, and Tier
3 category “Carbon Steel”. During the evaluation of this experi-
ment, we limit the hierarchy of ground-truth material categories
to a set of depths and analyze the change in performance based
on the top-1, top-2, and top-3 prediction accuracy.

Results and Discussion Summarized in Table 3 are the user-
guided prediction results. We observe the general trend of in-
creasing performance with hierarchical material category input,
which validates our hypothesis that the user-input material class
information can effectively guide the model in making predic-
tions. One phenomenon to notice is the convergence of perfor-
mance when increasing the hierarchy of material class informa-

TABLE 3. USER-GUIDED PREDICTION RESULTS.

TOP-K MATERIAL CLASS F1 SCORE

TIER 1 TIER 2 TIER 3 MICRO-(Fm) WEIGHTED (Fw)

1

✗ ✗ ✗ 0.417 ± 0.04 0.392 ± 0.03

✓ ✗ ✗ 0.546 ± 0.01 0.527 ± 0.01

✓ ✓ ✗ 0.736 ± 0.03 0.746 ± 0.03

✓ ✓ ✓ 0.731 ± 0.04 0.757 ± 0.03

2

✗ ✗ ✗ 0.677 ± 0.01 0.630 ± 0.01

✓ ✗ ✗ 0.684 ± 0.10 0.677 ± 0.07

✓ ✓ ✗ 0.841 ± 0.11 0.851 ± 0.09

✓ ✓ ✓ 0.897 ± 0.01 0.903 ± 0.01

3

✗ ✗ ✗ 0.754 ± 0.01 0.704 ± 0.01

✓ ✗ ✗ 0.781 ± 0.12 0.763 ± 0.10

✓ ✓ ✗ 0.889 ± 0.12 0.891 ± 0.12

✓ ✓ ✓ 0.953 ± 0.01 0.954 ± 0.01

tion with the number of prediction selections fixed. This indi-
cates that the model can efficiently adapt to the user-input infor-
mation, even if the information provided is minimal. Therefore,
in practice, our framework can provide users with an accurate
and compendious set of material selections guided by a limited
amount of user-input material class information.

5 DISCUSSION
5.1 Limitations and Improvement
Class Imbalance As shown in Table 5 of Appendix A.2,
the distribution of the ground-truth materials is highly skewed.
Specifically, the default material (Steel) significantly dominates
over the less common ones (i.e., Brass). The lack of represen-
tative examples from the minority class and the overwhelming
amount of default cases less relevant to the task will misguide
the model to make predictions biased towards the majority class.
Despite the efforts made to mitigate the impact of imbalanced
material labels, such as down-sampling the data, grouping rare
labels, and adopting weighted loss calculation, the issue persists.

We seek to collect additional data with a more varied distri-
bution of features and ground-truth materials for improvement.
This could be achieved either by expanding the currently adopted
Fusion 360 Gallery Assembly Dataset via inviting more design-
ers to contribute or by using publicly available datasets such as
ABC [9]. Furthermore, data augmentation through manipulat-
ing existing graphs, such as creating sub-graphs or synthesized
graphs from past designs, may be a viable direction for improv-
ing the distribution of material classes. Existing tools designed
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to support automated reasoning, such as Open-NARS [54], could
also be applied to the graph representation learning process to
support the inference and imputation of rare material classes.
Furthermore, we are working on re-categorizing the hierarchi-
cal categories of material labels to produce a more reasonable
distribution while preserving the soundness of the designs.

Functional and Behavioral Features Our current work
mainly focuses on the structural aspect of material selection,
such as the geometric and physical properties of bodies, as well
as the assembly relationships that correlate them. While struc-
tural analysis has proven to be successful in the derivation and
tabulation of material performance indices for standard mechan-
ical design cases [55], the functional and behavioral aspects of
the design are also highly influential to material selection [56,1].
Therefore, one promising improvement would be to incorporate
the functional information (i.e., the purpose) and the behavioral
information (i.e., the attributes) of bodies as node features to nar-
row down the search space. While the TechNet embeddings of
the semantic names might be implicitly representing some func-
tional and behavioral aspects, introducing new features allows
for a refined feature encoding process that can more effectively
reflect the multifaceted information relevant to material selection
in design automation, thereby enhancing the overall performance
and robustness of the proposed framework when dealing with
multi-modal real-world inputs.

5.2 Future Plans
Regression for Material Properties One of the limitations of
the proposed framework is the dependency on a specific material
library found in Autodesk Fusion 360. This dependency comes
from framing the problem as a node classification task, where the
number of possible classes is equal to the number of materials in
the library, which for this dataset is 576. The categorical classi-
fication is challenging due to the number of possible classes. It
also limits the application of the trained model to only materi-
als found in the original dataset, which is incomplete and might
not suit the needs of designers in different industries. A possible
improvement might be to frame the problem as a regression task
and develop a model to predict relevant physical and mechani-
cal properties involved in the selection of materials, building on
prior work that leveraged neural networks to predict the density
and Young’s modulus of materials given their chemical composi-
tions [57]. By mapping relevant material properties of the mate-
rial library of the training data onto an Ashby chart, clustering of
the material properties on the chart would enable a more flexible
material selection method.

Graph Predictions Given the proposed framework’s ability to
capture structural characteristics of CAD models via graph con-
struction and learning relational information of design features

through graph representation learning, we envision the potential
expansion of our work in producing diverse predictions for de-
sign automation that is not limited to material selection. Specif-
ically, we plan to incorporate graph node prediction, graph edge
prediction, and global context prediction experiments through
a variation of our current graph representation learning pro-
cess. For graph node prediction task, we aim to automate
the user-design process of assembly bodies by providing sug-
gestions regarding the structural, functional, and behavioral fea-
tures through a joint representation learning of node, edge, and
global graph features. The current material prediction task falls
into node prediction and may serve as a relevant foundation.
For graph edge prediction task, we aim to support the user-
design process of organizing and correlating assembly bodies by
providing insights into their hierarchical and relational informa-
tion through representation learning based on their properties and
that of the assembly. For global context prediction, we aim to
provide users with an informative overview of the entire assem-
bly design through representation learning tailored to the global
graph features shared across individual bodies. The overview of
the assembly design we provide may adapt to the introduction
of newly designed bodies, thereby serving as a flexible auxiliary
unit to address the needs of different users.

6 CONCLUSION
In this paper, we propose a unified framework that con-

tributes to design automation by predicting the material of bod-
ies in assemblies through graph representation learning, given
user design knowledge input. Furthermore, we develop a system-
atic workflow for the feature extraction, encoding, and assembly
graph construction of CAD models from the Fusion 360 Gallery
Assembly Dataset.

During the experimental evaluation, we present three ex-
periments through a variation of our base framework tailored
to the diverse needs of designers. For the fully algorithm-
guided experiment, in which predictions of all body materials are
performed simultaneously without any ground-truth input, our
model achieved a micro-F1 score of 0.417, 0.677, 0.754 for top-
1, top-2, and top-3 predictions, respectively, surpassing those of
the MVCNN baseline. For the partial algorithm-guided experi-
ment, in which predictions of target nodes are based on a joint
representation learning of graph topology and the ground truths
of neighbor nodes, our model achieved 0.482 top-1 micro-F1. For
the user-guided experiment, in which the user’s input of ground-
truth material categories take part in the learning process, our
model achieved an averaged micro-F1 score of 0.731 for top-1
prediction and up to 0.953 for top-3 predictions.

While our results demonstrate the feasibility of leverag-
ing graph representation learning for feature predictions on
graphically represented CAD models, the configuration of the
three experiments shows promise in supporting human-in-the-
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loop design automation applications. Specifically, we believe
the proposed framework’s capacity to accommodate large-scale
databases and flexibility in incorporating the designer’s knowl-
edge can be used to create a recommendation system for users
by learning best practices from existing designs. Furthermore,
the framework may serve as a baseline for future works leverag-
ing graph neural networks for design automation.

We view material selection as one step towards a fully auto-
mated data-driven design tool capable of synthesizing assemblies
from design requirements. We hope to support further research
to bridge the gap between the understanding of human designers
and that of intelligent design agents.
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A Appendix A: Dataset and Feature Distributions

A.1 List of Features Extracted from the Dataset

TABLE 4. LIST OF EXTRACTED FEATURES AND ENCODING METHODS.

Category Design Feature Description Encoding
Method

Feature
Type

Semantic Body name Semantic name of the body. TechNet Node

Occurrence
name

Semantic name of the occurrence of the body. TechNet Node

Geometric Body geometry Geometry of the body in OBJ format. MVCNN Node

Body physical
properties

Properties of the body (center of mass, surface area, volume). Float Node

Occurrence
physical
properties

Properties of the occurrence (surface area, volume). Float Node

Material Material The material of the body, treated as ground-truth label. One-hot Node

Material
class

The hierarchical classification of the material, treated as a user-
introduced feature only in the user-guided experiment. From
tier 1 (broad) to tier 3 (specific).

One-hot Node

Global Assembly
physical
properties

The physical properties of the overall assembly (center of mass,
volume).

Float Global

Assembly
geometric
properties

The geometric properties of the overall assembly (total number
of edges, faces, loops, shells, vertices).

Integer Global

Design
category

The category specified by the user (automotive, art, electronics,
engineering, game, machine design, interior design, product de-
sign, robotics, toys, etc.).

One-hot Global

Industry The industry specified by the user to describe the assembly (ar-
chitecture, engineering & construction; civil infrastructure; me-
dia & entertainment; product design & manufacturing; other
industries).

One-hot Global

Products The products used to create the design. One-hot Global

Hierarchical Hierarchical The designer-defined hierarchy, between bodies that share an
occurrence.

One-hot Edge

Joints Constraints defining the relative pose and degrees of freedom
between a pair of occurrences.

One-hot Edge

Contacts Faces that are in contact between different bodies. One-hot Edge
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A.2 Statistics of Material Categories

TABLE 5. LIST OF THE TOP-20 MATERIAL CATEGORIES, THEIR COMMON NAMES, AND COUNTS.

Material id Material name Count

PrismMaterial-018 Steel 40054

PrismMaterial-022 ABS Plastic 2657

PrismMaterial-002 Aluminum 2622

Prism-112 Plastic - Glossy (Black) 2435

Prism-052 Gold - Polished 2286

MaterialInv 029 Steel, Mild 1985

Prism-027 Aluminum - Polished 1954

Prism-089 Paint - Enamel Glossy (Black) 1593

Prism-094 Paint - Enamel Glossy (White) 1361

Prism-047 Chrome 1262

Prism-029 Aluminum - Anodized Glossy (Blue) 1235

Prism-113 Plastic - Matte (Black) 1226

Prism-322 Bamboo Light - Semigloss 1206

PrismMaterial-017 Stainless Steel 1110

Prism-042 Brass - Polished 1050

Prism-126 Plastic - Glossy (White) 1042

Prism-256 Steel - Satin 1019

PrismMaterial-003 Brass 997

Prism-127 Plastic - Matte (White) 987

Prism-230 Iron - Polished 967

- Other materials 62254

Total 131302
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A.3 Statistics of Constructed Graphs
The statistics of the constructed graphs are as follows. Each graph has an average of 24 nodes, a maximum of 821, and a standard

deviation of 43.1. Each graph has an average of 40 edges, a maximum of 2336, and a standard deviation of 79.9.

FIGURE 5. Distribution of Graph Nodes and Edges.
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B Appendix B: Additional Explanation of Methods
B.1 Feature Extraction

As introduced in Section 3.1, most features of the assemblies are encapsulated inside their corresponding JSON files and ordered in
the format of nested dictionaries. Therefore, we devised the following process to extract the features of each body and their corresponding
correlations in the assembly. These extracted features were further encoded following the methodology in Section 3.2 and used for graph
construction in Section 3.3.

Hierarchical bodies For each occurrence in the dictionary’s tree, we search the bodies within and extract their body features by
tracking their UUIDs. After filtering out the bodies that are indicated as invisible, we combine each remaining body feature and their
corresponding occurrence features as its final features. Note that the occurrences in “tree” may have a nested structure (i.e., each
occurrence may have sub-occurrences) and are therefore hierarchical. To reflect this, we recurrently perform the searching process and
assign each body with a hierarchical depth parameter. These features are used later for node creation.

Assembly relationship For each connection type (joints, as-built joints, contacts) in the JSON file, we search the
entities within that contain a body and a corresponding occurrence that are visible. We match these bodies via their UUID to the root
and hierarchical bodies we extracted prior to this step and pair them up with their connection type. These features are used later for edge
creation.

B.2 GNN and MVCNN Training Configurations
For the GNN training process, we adopted the Adam optimizer [58] with the learning rate initialized to be 0.001 and a cosine

annealing scheduler [59] with the maximum iteration set to the number of epochs to tune the learning rate for minimizing the loss. After
obtaining the embedding from each GNN layer, we apply the Leaky Rectified Linear Unit with a negative slope of 0.2 for non-linear
activation.

The MVCNN is trained using a PyTorch implementation and uses the ResNet architecture with a supervised learning regime. A
patience factor is used to stop the training process after 20 epochs that see an increase in the validation accuracy, resulting in around 30
training epochs. The models are trained with a batch size of 8, 512 embedding dimensions, 12 views, and 1e−4 learning rate.

B.3 GNN Layer Formulations
As discussed in Section 3.4 and Section 4.1, we experimented with the GNN layer from the set of {SAGE,GAT,GIN,GCN} through

a variation of the combination and aggregation functions. After tuning the hyperparameters, we adopted the GraphSAGE neural network,
which is particularly suitable for the embedding generation of un-seen nodes on large and diversely structured graphs through sampling
and aggregating neighborhood information. The formulation of the parametric combination function fθ (.) and the aggregation function
gφ (.) for the GraphSAGE network at layer k are as follows.

GraphSAGE [49] The aggregation and combination processes for GraphSAGE are formulated in Equation 2. For the first equation
that formulates the aggregation process, a(k)v indicates the aggregated feature for node v at layer k, LST M indicates a Long Short-Term
Memory aggregator [60], hk−1

u indicates the node feature for node u at layer (k− 1), and N(v) indicates the set of nodes neighboring
to node v. For the second equation that formulates the combination process, ReLu indicates a Rectified Linear Unit, || indicates matrix
concatenation operation, and W k represents a weight matrix for layer k that is learnable. GraphSAGE allows for the efficient generation
of embeddings for un-seen nodes through sampling and aggregating neighborhood information and is suitable for representation learning
on large graphs.

a(k)v = LST M({h(k−1)
u ,u ∈ N(v)}), h(k)v = ReLU(W (k)[h(k−1)

v ||a(k)v ]) (2)

16 Copyright © 2022 by ASME


	INTRODUCTION
	RELATED WORK
	Material Selection Design
	Graph Neural Networks (GNNs)
	Graph Representation of CAD Models

	METHODOLOGY
	Dataset
	Feature Encoding
	Graph Construction
	Learning Framework

	EXPERIMENTS
	General Setup
	Feature Importance
	Fully Algorithm-guided Prediction
	Partial Algorithm-guided Prediction
	User-guided Prediction

	DISCUSSION
	Limitations and Improvement
	Future Plans

	CONCLUSION
	Appendix A: Dataset and Feature Distributions
	List of Features Extracted from the Dataset
	Statistics of Material Categories
	Statistics of Constructed Graphs

	Appendix B: Additional Explanation of Methods
	Feature Extraction
	GNN and MVCNN Training Configurations
	GNN Layer Formulations


