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(a) Letter R to G (c) Letter H to A (e) Italic to Regular (g) Regular to Bold (i) Solid to Dotted

(b) Table to Chair (d) Chair to Table (f) w Armrest to w/o Armrest (h) Tall to Short

Figure 1. We present UNIST, a model built on neural implicit representation that is able to learn both style-preserving content alteration

(a-d) and content-preserving style transfer (e-i) between two unpaired domains of shapes, using the same network architecture.

Abstract

We introduce UNIST, the first deep neural implicit model

for general-purpose, unpaired shape-to-shape translation,

in both 2D and 3D domains. Our model is built on au-

toencoding implicit fields, rather than point clouds which

represents the state of the art. Furthermore, our translation

network is trained to perform the task over a latent grid rep-

resentation which combines the merits of both latent-space

processing and position awareness, to not only enable dras-

tic shape transforms but also well preserve spatial features

and fine local details for natural shape translations. With

the same network architecture and only dictated by the in-

put domain pairs, our model can learn both style-preserving

content alteration and content-preserving style transfer. We

demonstrate the generality and quality of the translation re-

sults, and compare them to well-known baselines. Code is

available at https://qiminchen.github.io/unist/.

1. Introduction

Unpaired image-to-image translation has become one of

the most extensively studied problems in computer vision

since the advent of CycleGAN [29], DualGAN [26], and

UNIT [16] in 2017. Somewhat surprisingly, there have been

much fewer works on the same problem for shapes, i.e.,

unpaired shape-to-shape translation. To date, most image

translation networks have been designed for style transfers

that are localized, without large structural alterations. For

shape translations, however, one may naturally expect more

of the latter, e.g., to change the shape of a letter ‘R’ to that

of a ‘G’, or a table to a chair; see Figures 1(a-d).

Recently, Yin et al. [27] proposed LOGAN, an unpaired

shape translation network that can be trained to execute

both style and content, i.e., shape- and structure-level, trans-

forms. However, their network was designed to operate on

low-resolution point clouds (up to 2,048 points), which can

severely limit the quality of the reconstructed and translated

shapes, especially in the 3D case. In addition, the transla-

tion network is trained to operate on ªholisticº latent codes

which encode global information that is multi-scale but not

position-aware. A consequence of such a lack of positional

information in the encoding is losing control of spatial fea-

tures, as well as local details, during shape translation. For

example, when the translation is supposed to only italicize

a letter shape, which is a pose change, the local details of a

source shape (e.g., thickness/sharpness of certain tips of the

shape) may be unexpectedly altered as well, as shown in the

second row of Figure 4 on the letter A translation.

In this paper, we present a method for unpaired shape-

to-shape translation that is built on autoencoding neural im-

plicit fields [3, 18, 20], rather than point clouds [27]. In re-

cent years, advantages of learning continuous implicit func-

tions over discrete representations such as voxels, mesh



Figure 2. Overview of our framework for unpaired neural implicit shape-to-shape translation, which consists of two separately trained

networks. The autoencoding network (top) learns to encode and decode binary voxel occupancies for shapes from both the source and

target domains, where the encoder maps an input shape to a latent grid representation Z . In the 2D case, Z ∈ R
k×k×m, where the k × k

grid is obtained via spatial convolution over the n× n input image, and m is the length of the latent code. The latent feature at any query

point p is obtained via bilinear interpolation over the latent codes stored in Z . In the 3D case, the grid is three-dimensional and obtained via

volumetric convolution and trilinear interpolation is performed to extract latent features for the decoder. The translation network (bottom)

employs the pre-trained autoencoder network above to transform the translation problem into a latent space. In that space, a generator

learns two tasks: 1) translating source-domain codes (Zχ1
) into target-domain codes (Zχ1→2

); 2) preserving target-domain codes, from

Zχ2
to Zχ2→2

. Zχ1→2
is passed to the pre-trained implicit decoder to obtain the final target shape resulting from the generator network.

patches, and point clouds have been demonstrated predom-

inantly for reconstructive tasks including neural rendering,

shape completion, and single-view 3D reconstruction. Our

work shall show that the same advantages of neural implicit

models can be carried over to domain translation.

Furthermore, our translation network is trained to per-

form the task over a latent grid representation whose

grid structure is spatially correlated with that of the input

shapes, via convolution, while its remaining dimension en-

codes the latent features. Hence, our approach combines the

merits of both latent-space processing and position aware-

ness, with the former facilitating more drastic shape transla-

tions [16,27] and the latter resulting in better preservation of

spatial features and details [4, 5, 22] during the translation.

Our model, coined UNIST for unpaired neural implicit

shape translation, consists of two separately trained net-

works, as illustrated in Figure 2. Given two unpaired do-

mains of shapes, e.g., chairs and tables or various letters in

different fonts (see Figure 1 for several examples of domain

pairs), the autoencoding network learns to encode and de-

code shapes (in the form of binary voxel occupancies) from

both domains, using latent grids. The network training is

self-supervised with the typical reconstruction loss.

The translation network is based on the LOGAN [27] ar-

chitecture which consists of a latent generator that is trained

to perform two tasks: one is to translate the code of a source

shape to that of a target shape under the adversarial set-

ting, and the other is to turn the code of a target shape to

itself based on a feature preservation loss. Differently from

the original LOGAN, inputs to the UNIST generator are

no longer the holistic and overcomplete latent codes; they

are replaced by the latent grid features produced by the en-

coder of the pre-trained autoencoder network (top in Fig-

ure 2). The translation network is trained with the same set

of losses as LOGAN, while the outputs from the generator

would go through the pre-trained decoder (top in Figure 2)

to produce the final shapes in the target domain.

Our work represents the first deep implicit model for

general-purpose, unpaired shape-to-shape translation. With

the same network architecture and only dictated by the in-

put domain pairs, our model can learn both style-preserving

content alteration and content-preserving style transfer, as

shown in Figure 1. We demonstrate the generality and

quality of the translation results, and compare them to LO-

GAN [27] and other baselines. We show that clear qual-

ity improvements on both shape reconstruction and trans-
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lation are obtained merely by autoencoding implicit fields

rather than point clouds. Further, adding position awareness

through latent grids leads to more natural shape translation,

with better preservation of spatial features and fine details.

2. Related work

Image translation. Image-to-image translation can be done

under a paired or unpaired setting. An example of a paired

translation is pix2pix [10] that employs a conditional GAN

with a reconstruction loss. Unpaired translation is more

complex and usually requires additional loss functions such

as cycle consistency [26, 29]. While most methods [26, 29]

operate in image space, works such as [16] have utilized

a shared latent space to transfer more structural changes

across two domains. However, such methods tend to pro-

duce less spatially aware local changes. Our work performs

unpaired translation in latent space by using a latent grid

with an implicit decoder, instead of a single holistic vector,

to allow both structural and spatially aware local changes.

Shape translation. Paired shape-to-shape translation has

been studied by P2P-Net [28], while Gao et al. [7] have ex-

plored unpaired deformation transfer. UNIST is inspired

by LOGAN [27], a general-purpose network for unpaired

shape translation. However, our work differs from LO-

GAN in several significant ways. First, instead of point

clouds, we employ implicit representations that can gen-

erate topology-varying shape translations. Second, we use

position-aware latent grids rather than holistic latent codes

that only encode global features. Finally, through extensive

experiments, UNIST is shown to produce higher-quality re-

construction and more natural shape translation.

Deep implicit functions. Implicit representations have

gained immense popularity in the machine learning commu-

nity and have recently been applied to 3D vision [3,18,20],

images [19, 23, 24] and dynamic scenes [13, 21, 25]. Deep

implicit representations can be broadly divided into three

categories: global, local and hierarchical methods. Global

methods use a single latent code for all location-based query

points to decode objects and have been explored in works

such as [3, 6, 12, 18, 20]. Whereas local implicit methods

obtain a different latent code for each location-based query

point by either tri-linearly interpolating on the encoder fea-

ture grid at a given point [5,22] or just assigning a different

latent code to each local part [1,8,11]. Recently, hierarchy-

based methods have also been proposed [4, 15] that incor-

porate level of detail to decode 3D shapes.

Instead of global latent codes, we use latent grids as they

have been successful in preserving details in autoencod-

ing [5, 22]. Since our main goal is to perform translation

and translation at each query point is computationally ex-

pensive, we instead query latent grids for the decoder and

perform the translation directly on latent grids.

Latent Vector vs. Latent Grid

Encoder

Position-aware Encoding

Encoder

Regular Encoding

Query point p through concatenation

Implicit 
Decoder
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Decoder

m
Query point p through bilinear interpolation

...

(a) Regular encoding.
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...

(b) Position-aware encoding.

Figure 3. Regular vs. position-aware encoding. (a) The regular

latent encoding is directly concatenated with point coordinate p

to predict inside/outside value. (b) The position-aware latent en-

coding is bilinear-interpolated from the latent grid centered at the

point coordinate p to predict inside/outside value.

3. Methods

In this section, we detail our design of UNIST, an im-

plicit model for general-purpose, unpaired shape-to-shape

translation in both 2D and 3D domains. As shown in Figure

2, the network encodes input shapes from source and target

domains with position-aware encoding and performs trans-

lation in a latent grid space, as guided by a set of losses to

ensure domain translation as well as feature preservation.

3.1. Neural implicit shapes

Our network employs a neural implicit representation of

shapes, by learning inside/outside or occupancy informa-

tion [3, 18]. To reconstruct such shapes, the volumetric

space around shapes is sampled. Denoting the input shape

as s and a query point as p ∈ R
3, the implicit field f is de-

fined as: f(p) = D(E(s), p) → [0, 1], where query point p
along with the latent code of the input shape that is obtained

from an encoder E are passed to a decoder D to predict 0/1

indicating inside/outside values. Then a mesh surface can

be extracted via Marching Cubes [17].

3.2. Positionaware encoding

We adopt the idea of position-aware encoding from prior

works, e.g., [4, 22], where the input shape is encoded into a

latent grid Z that offers a latent code for each sample point

in the space according to its position via linear interpola-

tions. Instead of using a regular latent vector that is agnostic

to spatial information, latent grids capture structural infor-

mation about the input shape; see Figure 3.

More specifically, as illustrated in Figure 2 (top), given

an input shape as a 2D binary image with size of n × n, we

first map it into a latent grid Z with size of k × k × m using

an encoder E that consists of several 2D strided convolu-

tions, and m is the feature dimension. This latent grid Z en-

codes a compressed representation of the input shape with

high-level spatial information. We then use bilinear inter-

polation to extract a latent code with size of m × 1 from the

latent grid Z for query point p according to its spatial posi-

tion. This differs from [3, 18, 20] where all the query points



share the same latent vector, which results in networks pay-

ing more attention to global information and overlooking

local details. A consequence of the absence of structural in-

formation in such an encoding is that when translating the

latent space, a minor change in the latent vector could re-

sult in an unreasonable transform since all the information

about the input shape is encoded in a single latent code.

We choose IM-NET [3] as our implicit decoder D to de-

code the latent code interpolated from latent grid Z and pre-

dict inside/outside value for each point p. We optimize the

position-aware encoding model for the reconstruction task

using a weighted mean squared error between the ground

truth SDF s̄p and predicted SDF for query point p. Let S
be the training shapes and P be a set of points sampled on

each shape, we then define the reconstruction loss as:

Lrecon =
1

|S|

1

|P|

∑

s∈S

∑

p∈P

|(D(δ(E(s), p)) − s̄p) · wp|
2

(1)

where δ(·) denotes trilinear interpolation in the 3D case and

bilinear interpolation in the 2D case, and wp denotes the

weight assigned to point p during sampling. More specifi-

cally, we set weights of points sampled near the boundary

to 2 whereas weights of other points are set to 1. After

training the autoencoder, we use its encoder and decoder as

pre-trained networks for the translation task.

3.3. Positionaware translation

Unlike LOGAN, our generator takes the latent grid fea-

ture Z and translates it to match the target domain distri-

bution while the discriminator learns the real distribution of

the target domain over the entire grid space; see Figure 2.

That is, given latent grids Zχ1
and Zχ2

with size k × k × m
from domains χ1 and χ2, the generator G learns to translate

Zχ1
to Zχ1→2

in the adversarial setting and Zχ2
to Zχ2→2

with feature preservation loss. Unlike LOGAN [27] whose

discriminator works with a global latent vector and outputs

a single scalar value, our discriminator D takes in Zχ1→2

and outputs a scalar value for each latent vector in our k ×k
grid indicating whether features of each grid position are

real or not. This results in more regulated translated feature

vectors capable of carrying local and spatial information.

We optimize the translation network via losses over the

latent grid space:

Ltrans = Lχ1→χ2
+ Lχ2→χ1

+ γLcycle (2)

The loss function Lχ1→χ2
for translating domain χ1 →

χ2 is defined as follows, Lχ2→χ1
can be easily defined by

switching the domains:

Lχ1→χ2
= LW GAN

χ1→χ2
+ αLGP

χ1→χ2
+ βLF P

χ1→χ2
(3)

where LW GAN
χ1→χ2

along with LGP
χ1→χ2

are included in the

usual WGAN loss with gradient penalty [9] and LF P
χ1→χ2

is the feature preservation loss:

LW GAN
χ1→χ2

= E
z1∼P(Zχ1

)
[D(G(z1))] − E

z2∼P(Zχ2
)
[D(z2)] (4)

LF P
χ1→χ2

= E
z2∼P(Zχ2

)
[||G(z2) − z2||1] (5)

We enforce the network to naturally translate between

two domains via cycle consistency loss defined as:

Lcycle = E
z1∼P(Zχ1

)
[||G2→1(G1→2(z1)) − z1||1]

+ E
z2∼P(Zχ2

)
[||G1→2(G2→1(z2)) − z2||1] (6)

where G1→2 and G2→1 are used for χ1 → χ2 and χ2 → χ1

translations, respectively.

3.4. Implementation and training details

In 2D experiments, we use n = 256 pixels, k = 2, and

m = 64. For training our autoencoding network, we use

a simple 2D conv-encoder where each layer downsamples

images by half, and doubles the number of feature channels.

For training the translation network, we use a generator with

five 2D convolutional layers and a discriminator with four

2D convolutional layers. For autoencoding, we train all the

2D experiments for 800 epochs with batch size 24, and use

Adam optimizer and initial learning rate 0.00005. We decay

the learning rate by half after 400 epochs. For translation,

we train the generators and discriminators for 1,200 epochs

with batch size 128, we again use Adam optimizer with ini-

tial learning rate 0.002 and we halve the learning rate every

100 epochs until it reaches to 0.0005. We empirically set

α = 10, β = 20 and γ = 20 for Equation (2) and (3).

We run all tests on a machine with two Nvidia GeForce

GTX 1080 Ti GPUs. Training the autoencoder and trans-

lator networks takes 10 hours and 30 minutes, respectively,

on 2D data. For 3D data, the times are 24 hours and 56 min-

utes, averaged over the object categories. Inference is fast:

0.2s per 2D shape; 2.7s and 4.2s for 3D outputs at 643 and

2563 resolutions. More details on the network architecture

and training can be found in the supplementary material.

4. Experiments and results

We first validate our network design by investigating the

behavior of the regular encoding and position-aware encod-

ing in Section 4.1. We then demonstrate the superior per-

formance of UNIST on 2D shape translation in Section 4.2

and 3D shape translation in Section 4.3.

4.1. Ablation study

To verify the efficacy of position-aware encoding in

translating shapes and preserving local details, we compare

with our baseline, the regular encoding model, that is built

on implicit autoencoding without position awareness.
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(a) Input (c) Regular 
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shape to (a) by 
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aware encoding

Figure 4. Qualitative comparison of position-aware encoding, regular encoding and retrieval results on different font shape datasets. First

row (left): Solid→Dotted, (right): Dotted→Solid. Second row (left): Regular→Italic, (right): Italic→Regular. Third row (left):

Regular→Bold, (right): Bold→Regular. Fourth row (left): Sharp→Smooth, (right): Smooth→Sharp. (a) Test input image. (b)

Translation results by position-aware encoding. (c) Translation results by regular encoding. (d) Retrieved training shapes from the target

domain that are closest to test inputs (a) based on IOU measurement. Retrieved training shapes from the target domain that are closest to

position-aware encoding translation (b) based on (e) IOU measurement and (f) MSE measurement.

Regular encoding. Our baseline model utilizes regular en-

coding (Figure 3a) as opposed to position-aware encoding

(Figure 3b). The input shape is encoded into four sub-

vectors with size of m/4 × 1 from different convolutional

layers in the encoder. These sub-vectors are concatenated

to form an overcomplete latent code with size of m × 1 that

is passed to the implicit decoder along with the coordinates

of query point p to predict its inside/outside value.

Regular vs. position-aware encoding. We compare trans-

lation results of the regular and position-aware encoding on

four 2D cross-domain datasets: Solid ↔ Dotted, Regular
↔ Italic, Regular ↔ Bold and Sharp ↔ Smooth. In

these datasets, local geometric features, e.g., sharp/round

corner and local curvature, are more prominent, resulting in

content-preserving style transfer, which is suitable for vali-

dating the importance of position awareness in translation.

We follow the same train and test split as in [27]. As shown

in Figure 4 (b) and (c), it is evident that regular encoding

manages to translate the input shapes into the target domain

with fairly clean boundaries and is able to generate com-

pact shapes. However, regular encoding is less capable of

preserving the local geometric characteristics of each font

(e.g., missing local curvature and irregular dots). We make

use of three 3D cross-domain datasets: Chair ↔ T able,

chair with Armrest ↔ without Armrest and T all table
↔ Short table with same train and test split as [27] to fur-

ther validate the position awareness. Similar observations

are valid for 3D translation results illustrated in Figure 5 (b)

and (c) where our network benefiting from position-aware

encoding can produce results whose geometric and struc-

tural features have been better preserved.

Retrieval. We show that UNIST is indeed aware of struc-

tural information embedded in the latent grid. That is, it

generates a shape that is as similar to the input shape as

possible and alters the shape to match the most distinctive

features of the target domain. It is evident from Figures 4 (e-

f), that translations with position-aware encoding are quite

different from retrieved training shapes in the target domain.

We also show retrieval results from the target domain that

best match the test inputs and the translations with position-

aware encoding on the 3D datasets in Figures 5 (d-f). One

may notice that results in row 3, column (b) are similar to

those in column (f), and the same in row 5. However, we

can still observe differences in local details.

4.2. Translation on 2D shapes

For 2D shape translation, we compare UNIST to sev-

eral unpaired cross-domain image-to-image translation net-

works: LOGAN [27], CycleGAN [29] and GANHopper

[14] on four datasets: Solid ↔ Dotted, A ↔ H , G ↔
R, and M ↔ N . Note that LOGAN uses point cloud rep-

resentation for translation, hence, we fill the convex hull of

the point clouds and convert to images for fair comparison.

Figure 6 shows the qualitative comparison of translation

results. We observe that CycleGAN and GANHopper are

less capable of learning both content-preserving style trans-
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Figure 5. Qualitative comparison of position-aware encoding, regular encoding and retrieval results on different 3D shape datasets. Row

1-2 (left): Chair → Table, (right): Table→ Chair. Row 3-4 (left): with Armrest→ without Armrest, (right): without Armrest→

with Armrest. Row 5-6 (left): Tall table → Short table, (right): Short table → Tall table. (a) Test input. (b) Translation results by

position-aware encoding. (c) Translation results by regular encoding. (d) Retrieved training shapes from the target domain that are closest

to test inputs (a) based on IOU measurement. Retrieved training shapes from the target domain that are closest to position-aware encoding

translation (b) based on (e) IOU measurement and (f) MSE measurement.

(a) Input (c) LOGAN 
 (point cloud)

(d) LOGAN 
  (image)

(e) CycleGAN(b) UNIST 
(ours)

UNIST vs. other translation methods

(f) GANHopper

Solid Ÿ Dotted Dotted Ÿ Solid

A Ÿ H H Ÿ A

G Ÿ R R Ÿ G

M Ÿ N N Ÿ M

(a) Input (c) LOGAN 
 (point cloud)

(d) LOGAN 
  (image)

(e) CycleGAN(b) UNIST
(ours)

(f) GANHopper

Figure 6. Comparison of translation results by UNIST (ours), LOGAN, CycleGAN and GANHopper on different 2D shapes. First row

(left): Solid→Dotted, (right): Dotted→Solid. Second row (left): A→H , (right): H→A. Third row (left): G→R, (right): R→G.

Fourth row (left): M→N , (right): N→M . (a) Test input. Translations by (b) UNIST, (c) LOGAN in point cloud representation, (d)

LOGAN in image, (e) CycleGAN and (f) GANHopper.

fer (Solid ↔ Dotted) and style-preserving content transfer

(A ↔ H , G ↔ R and M ↔ N ) while LOGAN manages to

preserve and transfer features, it sometimes produces scat-

tered point clouds, resulting in less compact shapes. Our

proposed UNIST, on the other hand, is capable of produc-

ing shapes with significantly better visual quality, as it can

reproduce small scale stylistic features as well as preserve

topological features such as the dots in the dotted fonts.



A ↔ H G ↔ R M ↔ N

MSE ↓ IoU ↑ MSE ↓ IoU ↑ MSE ↓ IoU ↑

CycleGAN 0.246 0.385 0.229 0.412 0.266 0.383

UNIT 0.253 0.376 0.264 0.377 0.295 0.348

MUNIT 0.280 0.286 0.358 0.171 0.363 0.292

LOGAN 0.195 0.490 0.213 0.472 0.207 0.506

GANHopper 0.258 0.384 0.268 0.380 0.296 0.356

Regular

encoding (ours)
0.184 0.507 0.197 0.493 0.201 0.508

Position-aware
encoding (ours) 0.215 0.441 0.211 0.452 0.233 0.433

Table 1. Quantitative comparisons between unpaired translation

networks on A-H , G-R and M -N where one possible ground-

truth (GT) target is available. For each domain pair, Mean Squared

Error (MSE) and Intersection over Union (IoU) are measured

against that GT target letter and averaged over the translation in

both directions (e.g. average over A→H and H→A). ↓ means

the lower the better and ↑ means the higher the better.

Quantitative comparison. We need ground-truth (GT) for

a quantitative study. For A ↔ H , G ↔ R, and M ↔ N , a

natural GT target would be letters from the same font fam-

ily. Measured against that GT, using Mean Squared Error

(MSE) and Intersection over Union (IoU), we show quan-

titative comparisons between various unpaired translation

networks in Table 1. As we can see, UNIST with regular

encoding beats all competitors, including LOGAN, owing

to the use of neural implicit shapes. On the other hand, the

use of position-aware encoding underperforms against LO-

GAN, but still improves over other baselines.

By a qualitative comparison shown in Figure 7, we ob-

serve that position-aware encoding tends to preserve spatial

and stylistic characteristics of the input as much as possi-

ble, only altering it in ways that are deemed most ªcriticalº

to reach the target domain. For the A ↔ H example, only

a small breaking was introduced at the top. Note that in

Figure 7, the regular encoding results may look closer to

the targets. However, approaching the target is not what

the translators are trained to do as UNIST is fully unsu-

pervised and the translation results should be qualitatively

judged by how well they preserve input features. Overall,

we find position-aware encoding to produce more natural

translation than regular encoding and LOGAN, e.g, see the

G ↔ R and M ↔ N examples in Figure 7. Its underper-

formance in Table 1 may be attributed to the strong feature

preservation or the inadequacies of MSE and IoU as viable

perceptual metrics as they only measure spatial distortions.

4.3. Translation on 3D shapes

We conduct 3D experiments on Chair ↔ T able, chair

with Armrest ↔ without Armrest and T all table ↔
Short table from ShapeNet [2], and compare our method

to LOGAN [27], as it is the state-of-the-art unpaired shape-

to-shape translation network. We use Marching Cubes [17]

Figure 7. Visual comparisons between LOGAN and UNIST (reg-

ular vs. position-aware encodings). The target letters (e) are of

the same font as the respective inputs (a). While position-aware

encoding appears to produce more natural translations, with bet-

ter spatial feature and style preservation, it is outperformed by the

other two on MSE and IOU, measured against the targets.

to obtain a mesh from the output, sampled at 2563 resolu-

tion. Note that we employ the sampling strategy from [3] to

obtain 2,048 points from the surfaces of the meshes to fairly

compare with LOGAN, as it only produces point clouds at

2,048 resolution. Figure 8 shows the qualitative results.

Quantitative evaluations present challenges again, since

shape translation is inherently a domain-specific task. What

a correct translation is can be highly varied, depending on

the shape semantics from the two chosen domains and the

nature of the translation itself. As a result, we provide dif-

ferent ways to evaluate 3D translations as follows.

When translating between chairs with and without arm-

rests (third and fourth rows of Figure 8), our natural ex-

pectation is that the network should only add/remove the

armrests while preserving the input. We treat this as the

GT scenario and measure the quality of a translation using

the one-sided Chamfer Distance (CD) from the armrest-less

chair to its corresponding chair with armrests, regardless of

the direction of the translation. The numbers given in Table

3 show that UNIST outperforms both our baseline and LO-

GAN on this metric, demonstrating that it better learns the

essential difference between both domains.

In the case of T able ↔ Chair translations, the network

is tasked to not only modify the geometry of the input shape,

but also change its semantics. Owing to this, it is hard

to quantify a good result, motivating a user study to mea-

sure the quality of the translation. In our user study, we

asked 72 participants via Amazon Mechanical Turk to rank

the quality of translations performed by LOGAN [27] and

UNIST, using regular or position-aware encoding. We re-

port the study results in Table 2, which show that the par-



Chair Ÿ Table Table Ÿ Chair

w Armrest Ÿ w/o Armrest w/o Armrest Ÿ w Armrest

Tall table Ÿ Short table Short table Ÿ Tall table

(a) Input (b) UNIST
 (ours mesh)

(e) LOGAN 
 (point cloud)

(d) LOGAN input
(point cloud)

(c) UNIST
(ours point cloud)

(a) Input (b) UNIST
 (ours mesh)

(e) LOGAN 
 (point cloud)

(d) LOGAN input
(point cloud)

(c) UNIST
(ours point cloud)

Figure 8. Comparison of translation results by UNIST (ours) and LOGAN on different 3D shapes. Row 1-2 (left): Chair→ Table (right):

Table → Chair. Row 3-4 (left): w Armrest → w/o Armrest (right): w/o Armrest → w Armrest. Row 5-6 (left): Tall table →

Short table, (right): Short table→ Tall table. (a) Test input mesh from voxel. (b) Translation by UNIST (ours) in mesh representation.

(c) Translation by UNIST (ours) in point cloud representation. (d) LOGAN test input point cloud. (e) Translation by LOGAN.

Chair → Table Table → Chair

1st 2nd 3rd 1st 2nd 3rd

LOGAN 30.55% 35.68% 33.25% 35.94% 30.47% 33.51%

Regular 31.34% 30.38% 37.67% 27.78% 36.37% 36.02%

Position-aware 38.11% 33.94% 29.08% 36.28% 33.16% 30.47%

Table 2. User study on Chair ↔ Table via Amazon Mechanical

Turk. Turkers were asked to rank translation results generated by

different methods. % are relative to the total votes given per rank.

ticipants were most likely to choose UNIST with position-

aware encoding as the best translation method over both di-

rections. At the same time, position-aware UNIST was also

least likely to be ranked as the worst of the three compared

methods. Still, the gains are somewhat marginal, which is

not entirely surprising given the ambiguity and subjectivity

over how to judge what a good translation is.

5. Conclusion, limitation, and future work

We show that the popular neural implicit representations

are well suited to the task of unpaired shape-to-shape trans-

lation, under the general framework of latent overcomplete

GANs (LOGAN) [27]. Improvements of UNIST over its

point cloud counterpart are evident, especially when the

translation or reconstruction involves finer details and topo-

logical changes. In addition, incorporating position-aware

w Arm → w/o Arm w/o Arm → w Arm

LOGAN 0.0249 0.0273

Regular 0.0255 0.0267

Position-aware 0.0234 0.0235

Table 3. One-sided CD for translations between shapes with and

without armrests to measure how well the common parts between

both shapes are preserved. In the first result column, the one-sided

distance was calculated as Output → Input and the second column

represents Input → Output. In all calculations, we sample 2,048

points from the meshes to ensure a fair comparison to LOGAN.

encoding into the design further strengthens the translation

network in terms of feature preservation.

On the other hand, implicit functions are not as apt at

representing geometric structures such as skeletons or pro-

file curves, as point cloud LOGAN would. A more criti-

cal limitation however is related to controllability, or lack

thereof. Hence the main path for future work is to explore

few-shot learning and conditional generative modeling with

UNIST to guide or constrain the translation network.
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