
BeNTO: Beam Network Topology Optimization

Abstract

We present an optimization framework that allows designers and engineers to
develop conceptual designs for structures that can be manufactured using a
network of connected beams. We leverage level set-based topology optimization
along with a graph representation extracted from the skeleton of the level set.
This graph is used to create an idealized beam network of the structure and the
level set and the beam networks co-evolve during the course of the optimiza-
tion. We propose a constraint that moves the level set geometry closer to this
beam network and ultimately drives the two representations to converge. The
graph representation also enables us to enforce manufacturability in the beam
network, including minimum and maximum cross-section size, angle snapping
and cross-section continuity. By applying the beam constraint during topol-
ogy optimization we are able to generate designs that satisfy the structural
requirements and can also be fabricated as beam networks. We present several
example sets that illustrate the beam networks that can be generated, how they
compare to results without the beam constraint as well as the impact of the
manufacturability methods.
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1. Introduction

Structural topology optimization is a powerful tool for conceptual design,
allowing users to specify mechanical loads and fixed surfaces on an initial do-
main, and then by minimizing a given objective such as compliance, automat-
ically generate a physically plausible geometry that can support these loads.
One school of thought is to initialize the domain with primitives such as beams
or trusses that are locally connected, often referred to as the ground structure
method [1], and then to optimize for the cross-section sizing and nodal posi-
tions of the beams. Topology changes are typically applied intermittently as
heuristic decisions based on local geometric features, local connectivity, strain
energy, or nodal forces [2, 3, 4, 5]. The advantage of these methods is that the
resulting geometry is guaranteed to be composed of the desired primitives and
it is relatively simple to enforce constraints on the primitives and their connec-
tions. However, topological changes are non-differentiable making the choice of
heuristics and initial domain crucial for obtaining a good solution.

Another popular form of topology optimization we refer to as continuum
topology optimization. Such methods work by discretizing a domain into a reg-
ular grid or mesh and allocating each grid cell to be either empty, partial or solid.
There are two primary methods for converging to a final shape—density-based
methods iteratively modify the material density in each cell until it converges
to either empty or solid [6, 7], while boundary-based methods track a boundary
between solid and empty cells and use shape derivatives to iteratively refine

Figure 1: Left: Näıve topology optimization result for a footbridge. Right: CAD
visualization of our beam network constrained topology optimization result for
the same footbridge.
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Figure 2: Shape co-evolution of the level set boundary in light gray and the
idealized beam network in dark gray.

the boundary to convergence [8, 9]. One of the major advantages of continuum
topology optimization methods is in their geometric initialization: a simple
uniform allocation of material across the domain is usually sufficient to begin
an optimization that will produce a meaningful design. In addition, topology
changes are built-in and occur as cells in the grid are reduced to empty. Since
material can be placed anywhere in the grid, continuum topology optimiza-
tion implementations can generate optimal but also highly free-form geometry
(Figure 1 Left).

The kind of geometric output produced by continuum topology optimiza-
tion methods is often used as inspiration for a manual redesign or must be
heavily processed before it is useful to the designer. One of the main rea-
sons for this is to account for the method of manufacture of the final design.
There have been many previous approaches to manufacturing-aware topology
optimization for different manufacturing methods such as additive, milling, or
casting [10, 11, 12, 13, 14, 15]. While these methods have greatly enhanced the
practical applicability of continuum topology optimization, they have a num-
ber of limitations especially when designing for large-scale structures. Additive
parts are limited in size by their print volume and speed [16], milled parts have
a relatively high cost and their size is also limited by the milling machine [17]
and cast parts are limited by their mold tool size and cost [18]. Additionally,
most large structures are actually composed of a set of parts, typically extruded
beams connected to each other by joints. There are a number of advantages
to such structures: they can be arbitrarily large and most infrastructure is de-
signed in this format; the beams can be composed of standard cross-sections
and use standard or custom joint connections.

1.1. Our Approach

As we have seen, the ground structure method has the advantage of produc-
ing a connected beam structure that is readily manufacturable, however it has
the disadvantage of non-smooth topology changes, and non-trivial initialization.
Continuum methods are easy to initialize and have built-in topology changes,
but in their näive form produce complex geometry that must be post-processed
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to manufacture. We now present a new method that utilizes the advantages of
a continuum method but that also generates a connected beam structure that
is easy to manufacture (Figure 1 Right).

Our work builds on the boundary-based continuum method called level set-
based topology optimization (LSTO) where we constrain the shape boundary
such that the resulting geometry can be modeled with a set of connected, uni-
form beams (note: we expect similar results can be achieved using density-based
methods where the boundary is estimated using an iso-contour of the densities).
This is achieved by extracting a graph of topological connectivity from the skele-
ton of the free-form level set geometry during topology optimization. The graph
is used to construct an idealized beam network where cylindrical primitives are
created along the graph edges and whose radii are matched to the level-set
geometry. We then apply a shape-differentiable constraint that penalizes the
difference between the shape of the idealized beam structure and the level set
geometry. Initially this constraint has a light weight but it gets stronger as the
optimization progresses. We also periodically update the graph and idealized
beam structure during the optimization, thus allowing for topological changes
and a co-evolution of both the level set geometry and the idealized beam struc-
ture. Figure 2 shows how the level set shape and the idealized beam network
co-evolve during the optimization. Note that no special initialization of the
beam network is needed and its topology and connectivity evolves along with
the level set geometry, taking advantage of the best features of this contin-
uum topology optimization method. At the same time, the shape is eventually
forced to conform to the beam network and any non-beam like structures are
suppressed.

Since we explicitly track the beam network during the optimization, we are
also able to incorporate additional manufacturing constraints into the optimiza-
tion, such as minimum and maximum cross-section sizing as well as conditions
on the angles between beams connected at joints and enforce continuity along
cross-sections. As an added benefit of explicitly representing the beam network,
we can export it as a set of primitives that can easily be edited in a CAD tool,
rather than having to edit or convert a dense mesh.

To summarize, our work introduces the following:

• A shape-differentiable framework for generating connected beam networks.

• A methodology for incorporating several requirements for manufactura-
bility into the final beam networks.

1.2. Related Approaches

Our approach is closely related to the method of ‘Moving Morphable Com-
ponents’ (MMC) [19, 20], where the design space is initially seeded with a set
of primitives components that connect the loads to the fixed boundary condi-
tions. During optimization the parameters of these components such as rotation,
translation and scaling along each axis are optimized to satisfy the objective.
The resulting shape, as in our method is a set of primitives, however there is
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no explicit connection between the primitives and the final shape is a Boolean
union of the primitives which may overlap arbitrarily. These overlapping primi-
tives may generate complex geometry that would be challenging to manufacture
or for our purposes, replace with a network of beams even when only cylinder
primitives are used. Additionally, the maximum number of primitives must be
determined up front and their layout decided by the user during initialization,
whereas in our method the graph conforms to the geometric complexity as it
unfolds during the optimization and no special initialization is required.

In order to minimize the manual work required to process topology op-
timization results, Yin et al [21], Yi et al. [22] and Xia et al. [23] proposed
methods to fit this geometry to a set of connected beams, trusses or primitives,
which were used to construct parametric models of the geometry. However, in
these methods there was no explicit control over the geometry generated by
the topology optimization, and the beam and primitive generation was done
as a post-processing stage. This can be problematic since traditional topology
optimization results often result in complex, free-form shapes. These shapes op-
timally resist the loading conditions while minimizing a structural property such
as compliance while being constrained to a particular mass or volume. Thus,
they frequently have an organic structure, similar to bones or tree branches and
can be very difficult to cleanly model with a set of connected beams, especially
of uniform cross-section. Cleaning up the results of topology optimization to
build the beam network and setting up boundary conditions correctly for post-
process simulation can also be tedious [24], especially when the optimized shape
is bulky near to the boundary conditions, which is quite common. Even if such
a result can be obtained in post-process, it is difficult to preserve the properties
of the optimized shape. Our method does not suffer from this limitation as it is
integrated within the framework of topology optimization. While these meth-
ods do perform a post extraction optimization on the beams, the geometry may
radically change if nodal positions are allowed to vary and thus constraints such
as regions that should be free from geometry (keep-out regions) must be handled
separately. Moreover the topology of the network cannot change. Again, our
method avoids these issues since we generate the beam network geometry in a
holistic manner within the topology optimization framework.

2. Level Set-Based Topology Optimization

In this work, we formulate a topology optimization problem as the search
for an optimal shape Ω∗ that minimizes the objective F(Ω) subject to a set of
equality constraints Gi(Ω):

min
Ω

F(Ω)

s.t. Gi(Ω) = 0 ∀ i = 1, . . . , k
(1)

where we are satisfied with a feasible (i.e. constraint-satisfying) local minimum
of Equation 1. In structural topology optimization problems, at least one of
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these functions is formulated in terms of the solutions of the linear elasto-static
partial differential equations with respect to one or more load cases, namely
a surface traction (Neumann boundary condition) applied to a region of the
domain boundary ∂Ω and a prescribed displacement (Dirichlet boundary con-
dition) applied to another region of the boundary.

We use level set-based topology optimization [8, 9] with the augmented
Lagrangian algorithm [25] to solve the problem in Equation 1. In this itera-
tive strategy, a shape Ω is represented as the zero-sublevel set of a piecewise
smooth level set function φ defined implicitly on the background grid. Thus
Ω := {x : φ(x) ≤ 0}. The function φ is updated in each iteration in order
to improve the optimization objective and reduce the constraint violation until
a feasible, locally optimal shape is achieved. This is done by alternating be-
tween two procedures. The first procedure is to perform shape gradient descent
on the augmented Lagrangian shape function, which is the following algebraic
combination of the objective and constraint functions:

L(Ω) := F(Ω) +
∑
i

µiGi(Ω) +
∑
i

ci
2

(
Gi(Ω)

)2
.

Here µi are the Lagrange multipliers and ci are the penalty parameters. Note
that unlike [25], we have separate penalty parameters for each constraint. The
second procedure is to adaptively update these parameters as described in [25]
(with a modification described in Section 4.3 below). After alternating between
these two procedures, the shape converges to within tolerance to a locally opti-
mal, feasible solution of Equation 1.

Here is more detail on the update of the level set function of the shape.
In each iteration, we solve the standard level set Hamilton-Jacobi equation for
a well-chosen normal speed function v and pseudo-time ε, and initialized at
the current level set function φ. This has the effect of displacing the zero-
contour in the normal direction by the given speed over the given pseudo-time
interval. The normal speed function is chosen to be a descent direction for the
augmented Lagrangian, which is done as follows. First, we set the values of the
normal speed function on the boundary of the shape in the current iteration
equal to the negative shape gradient −dL of the augmented Lagrangian. Then
we set the speed function to be zero on any part of the boundary of Ω we wish
to hold fixed, such as the surface patches where the non-zero surface loads and
prescribed displacements of each load case are applied (denoted keep-in regions).
Finally, we extend the speed function to a narrow band around the boundary
by insisting that the extension be constant along the normal direction (achieved
by solving another Hamilton-Jacobi equation). Let φε denote the solution of
the level set Hamilton-Jacobi equation, and let Ωε := {x : φε(x) ≤ 0} be its
zero-sublevel set. Then according to the first-order Taylor formula (see [26]),
we have:

L(Ωε) = L(Ω) + ε

∫
∂Ω

v dL+O(ε2) = L(Ω)− ε
∫

Γ

(
dL
)2

+O(ε2) , (2)

where Γ is the subset of ∂Ω that is allowed to move. This formula implies that
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L(Ωε) < L(Ω) for sufficiently small ε. We thus choose the new level set function
for the next iteration to be φε, with a suitable ε found in practice by means of
a line search.

3. Beam Network Constraint

(a) LSTO geometry (b) Skeleton (c) Graph (d) Idealized beams

Figure 3: Stages of beam network extraction. Parts of the shape where boundary
conditions are defined are to be kept in the final result and are shown in green.

3.1. Definition

In this section, we formulate a constraint function that can be added to any
level set-based topology optimization problem that penalizes shapes that do not
conform to an idealized beam network—that is, a shape consisting of a collection
of beams connected to each other at junctions, along with some user-specified
geometry. Each beam is represented as a regular geometric primitive with a
uniform standard cross-section (e.g., cylinders). By driving the value of this
shape constraint function to zero (subject to a tolerance) during the course of
the optimization means that the converged shape Ω∗ will conform to a beam
network. Moreover, it should be emphasized that this beam network emerges
during the optimization. The resulting shape then can be edited in a standard
CAD system and can be easily manufactured using standard methods, such as
welding or bolting extrusions together.

We can summarize the definition of the constraint function as follows. Here,
we denote the signed distance function of the boundary of a shape Ω by φΩ

to highlight its shape-dependence. The first step is to extract a beam network
from Ω: this means to find a collection of regular primitives (and user-specified
geometry) whose union best approximates Ω. We then optionally modify this
beam network to account for the manufacturability of the beam network. We
denote the resulting beam network by beam(Ω) where we again highlight the
dependence on Ω.

We will fill in the details of the construction of the beam network in the next
section. For now, let φbeam(Ω) be the signed distance function of the boundary
of the beam network. We form the constraint shape function by penalizing the
discrepancy between φΩ and φbeam(Ω). Specifically, we define

Gbeam(Ω) :=
1

ND

∫
D

Hbeam(Ω)(x)
(
φΩ(x)− φbeam(Ω)(x)

)2
dx
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where D is a fixed “universal” domain containing all geometry of interest, ND =
Volume(D)L2 is a normalization factor and L is a characteristic size for the
problem. This normalization is important since it makes the above problem
unit-less and size independent and we can use a universal tolerance for the
constraint in the optimization algorithm. Hbeam(Ω)(x) is a smoothed Heaviside
function that limits the influence of the constraint (see section Section 3.4 for
details).

3.2. Extracting the Graph of the Beam Network

The construction of the beam network beam(Ω) proceeds in two steps. First,
we derive from Ω a representation of the beam network as a graph. The nodes
of the graph correspond to the junctions of the beam network, while the edges
represent the individual beams. This graph can be obtained by applying a
medial axis transform on Ω to obtain the skeleton which is the centerline that
runs through the interior of the shape.

We use the robust skeleton method from [27] that has the important prop-
erty of preserving topology, while extracting the skeleton voxels lying along the
medial axis. Note that while medial sheets are common in 3D, this method is
guaranteed to produce a chain of medial axis voxels by design. Since we allow
the user to specify arbirarily shaped regions of Ω that will be excluded from the
beam representation, we ensure that the skeleton is connected to each of these
regions forming endpoints. The result is a connected set of single-width voxels
between junctions and endpoints (Figure 3b) that can easily be configured to
fit with other user geometry.

We then classify the skeleton voxels into three categories based on the 3×3×3
neighborhood: junctions are defined as skeleton voxels with more than two
neighbors, endpoints are defined as skeleton voxels with a single neighbor, and
slabs are skeleton voxels with exactly two neighbors. We then use the center
voxel of each junction as well as any endpoint voxels to form the nodes of our
graph representation. Edges are placed along the connecting lines of voxels
(Figure 3c) by traversing from each node through the slab skeleton voxels using
a breadth-first traversal until we hit other junctions or endpoints. This graph
matches the topology of the geometry but the junction voxels sometimes do not
precisely lie along linear fits to the edge voxels since the skeletonization algo-
rithm only yields an approximate medial axis. In order to match the edges, we
perform a refinement step here where the coordinates of the junctions are up-
dated using a few iterations of gradient descent. We use the following objective
that minimizes the distance of each edge converging at a junction to its respec-
tive skeleton voxels, while being robust to outliers using the Geman-McClure
M-estimator [28]:

m∑
j=1

1

n

n∑
i=1

||xi − pj(xi)||2

σ2 − ||xi − pj(xi)||2
. (3)

Here m is the number of edges at the junction, n is the number of skeleton
voxels corresponding to the jth edge, and pj(xi) is the projection of xi onto the
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line through edge j and σ is a constant that controls the contribution of voxels
that are far from the edge. We found that σ = 1 worked well in our examples.

3.3. Defining the Geometry of the Beam Network

While in principle we could fit the geometry of the edges with curved or other
complex geometry, for simplicity and ease of manufacture we model each edge
as a straight cylindrical beam of uniform radius. For every edge in our graph,
we set the end-points of the beam to lie at the appropriate graph junctions, and
then for each voxel associated with the edge, we sample its value in the signed
distance field of Ω. The radius of the beam, r is then set to:

r =
1

n

n∑
i=1

−φΩ(xi) + z, (4)

where xi is one of the n voxels associated with the beam and z = 0.8dx is a
constant offset that we determined experimentally since the voxels do not lie
exactly on the medial axis (dx denotes the length of a voxel). The idealized
beam network associated with Ω is then simply the union of all the individual
beams identified above. We have denoted this beam network by beam(Ω).

To conclude, we construct a signed distance field of beam(Ω). Given a beam
j in the beam network graph, we use the endpoints and radius to generate a
signed distance field φjb of a hemisphere-capped cylinder that represents the
beam. We then use the Boolean union of the individual beams for the signed
distance function of the beam network:

φbeam(Ω)(x) := min{φeb(x) : e ∈ E} (5)

where E is the set of edges in the beam network graph (Figure 3d). Note that
this approach applies no explicit modeling of the junctions, which simply form
naturally from the union of all the intersecting beams.

3.4. Beam constraint influence

Recall that we restrict the influence of the beam constraint with the function
Hbeam(Ω)(x). This is a smoothed Heaviside function that applies the beam
constraint up to a distance k away from φbeam(Ω) = 0:

Hbeam(Ω)(x) =


0 if k − φbeam(Ω)(x) < 0

1 if k − φbeam(Ω)(x) > 2
k−φbeam(Ω)(x)

2 otherwise.

This plays an important role when the constraint is applied to a thin ‘sheet-
like’ structure. In this case, the skeleton will detect a single path through the
sheet, resulting in a beam network with just one beam connection to replace the
sheet. This beam is often far weaker than the sheet it replaces. However, when
Hbeam(Ω)(x) is included, the beam constraint does not act on the remaining
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geometry of the sheet, allowing additional beams to form. The end result is
often that the sheet is replaced by a small network of beams instead of a single
beam and is much better at resisting the loads. See Figure 4 for an illustration
of the Heaviside influence function and its effect on the beam constraint. The
distance k affects how densely beams can be formed within the sheet and in our
examples, we select it to be equal to the maximum desired beam thickness.

(a) Initial geometry (b) Graph (c) beam(Ω) (d) Hbeam(Ω)

(e) Optimized with-
out Hbeam(Ω)

(f) Optimized with
Hbeam(Ω)

Figure 4: Illustration of the effect of Heaviside function Hbeam(Ω). Initial ‘sheet-
like’ geometry is shown in (a) along with its extracted graph (b) and idealized
beam geometry (c). The Heaviside influence function Hbeam(Ω) is shown with its
dashed extents in (d). When optimized without Hbeam(Ω), the whole geometry
moves to match the idealized beam shape (e). When the beam constraint is
limited by Hbeam(Ω), only the geometry close to the idealized beam will match
it by forming new holes and the rest will be free to support the given loading
with unconstrained material (f).

3.5. Modifying the Beam Network to Account for Manufacturability

In this section, we present a methodology for incorporating manufacturabil-
ity requirements into the beam network. This amounts to various modifications
that can be made to the beams making up beam(Ω), and thus leading to modi-
fications of φbeam(Ω).

Since our method builds a graph out of the beam network during topology
optimization, this allows us great flexibility to control and limit the geometry
of the beam network ultimately reached by our algorithm. This is in contrast
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to approaches such as MMC where individual elements are adjusted to form
the structure and no explicit connectivity is enforced. We discuss three meth-
ods to leverage the graph to enforce desired geometrical properties: controlling
sizing/thickness of the cross-sections, snapping the angle between neighboring
beams to a target angle, and encouraging near-collinear beams to have the same
cross-section size.

Sizing. When manufacturing a beam-based structure there are typically limits
on the cross-section sizes available. Previous work in topology optimization in
this area has typically attempted to enforce minimum and maximum thickness
control as an explicit constraint, with some success but some caveats, often
producing undesirable behaviour such as pinching at junctions [29]. Within
our framework, such constraints become trivial since we can simply limit the
maximum and minimum radii of the idealized beams that we use to construct
φbeam(Ω) (see Section 3.3).

Angle snapping (AS). Typically the most expensive and challenging part of a
beam structure are the junctions and so a highly desirable feature of any beam
generating algorithm needs to be control over manufacturability of the junctions
themselves and not just the arrangement of beams.

We have built in additional functionality to manage the complexity of the
beam structures generated by snapping angles between neighboring beams at
a junction when they are close to a specified angle such as multiples of 45◦ or
90◦. Having junctions with regular angles allows off-the-shelf parts to be used
or repeated use of a custom cast junction, saving budget [30].

We perform angle snapping by solving an optimization problem that itera-
tively updates the nodal positions of the graph. Given a target snapping angle
θt ∈ [1, π], the objective function measures the difference between the current
angle and the closest angle to snap to for every connected pair of edges. The
energy is defined as:

min
∑
ei∈E

∑
ej∈N (ei)

(〈
ei
‖ei‖

,
ej
‖ej‖

〉
− cos(θ̂ij)

)2

, (6)

where E is the set of all edges in the graph, and θ̂ij is a multiple kθt (where
k is an integer) closest to the current angle ∠(ei, ej) if it is within a threshold
(set to 0.1 × θt), and ∠(ei, ej) otherwise. Equation 6 is nonlinear in the nodal
positions of the graph, and minimized using gradient descent. The angle snap-
ping is performed in every outer loop of our optimization before constructing
the idealized beams φbeam(Ω) (see Section 3.3).

Cross-section continuity (CC). We are also able to enforce continuity in cross-
section sizes for edges that share a node, and where the angle between the
edges approaches 180 degrees. When combined with the angle snapping, it
enables ‘T-junction’ structures, where the two edges can be replaced with a
single beam in construction. As a result, this can significantly reduce material
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and construction costs. This method also produces geometry that appears more
natural and clean, which can be an important aesthetic consideration.

We treat the cross-section continuity as an iterative smoothing problem con-
sidering the target radii of the idealized beams (Equation 4). Let ri denote the
radius of the beam corresponding to the edge ei ∈ E in the graph. We iter-
atively update ri while considering the angle between the edge ei and all its
neighbors {ej ∈ N (ei)} as follows:

ri ← ri + η

−Wiri +
1

Wi

∑
ej∈N (ei)

rj σ

(〈
ei
‖ei‖

,
ej
‖ej‖

〉) . (7)

This update equation is reminiscent of Laplacian smoothing, except that we
choose the weights Wi such that the most influence comes from neighboring
edges that are almost collinear to the current edge. The logistic sigmoid function
is used the compute the weights in range [0, 1]:

σ(x) =
m

1 + ek(x−x0)
,

and is parametrized by m that denotes the maximum value of the function, k
which controls the steepness of the function, and x0 that controls where the
midpoint of the function lies at. We set m = 0.5, k = 50, and x0 = −0.9 so that
the function output rapidly drops as the dot product of the neighboring edges
goes above −0.9 (< 155◦ approximately).

Wi =
∑

ej∈N (ei)

σ

(〈
ei
‖ei‖

,
ej
‖ej‖

〉)

is the sum of weights computed from all the neighboring edges of ei. At each
outer loop iteration, we update edge radius iteratively with a step size η until
convergence before constructing the idealized beams φbeam(Ω) (see Section 3.3).

4. Beam Network Topology Optimization

4.1. Problem Formulation

While the beam constraint function is very general and can be applied in
many topology optimization problems, we will focus on applying it to structural
optimizations where we combine it with a structural compliance objective and
a volume constraint. In other words, we will solve the following version of
Equation 1:

min
Ω

F(Ω)

s.t. Gvol(Ω) = 0

Gbeam(Ω) = 0

(8)

where the objective and constraint functions are defined as follows.
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• The structural compliance of Ω with respect to a given load case is

F(Ω) :=

∫
Ω

σ(uΩ) : e(uΩ)

where σ(uΩ) and e(uΩ) are respectively the stress and strain tensors of
the displacement uΩ. This satisfies the linear elasto-static problem

−div(σ(uΩ)) = f in Ω

uΩ = 0 on ΓD

n · σ(uΩ) = g on ΓN

n · σ(uΩ) = 0 on ∂Ω \ (ΓD ∪ ΓN ) ,

where f is the prescribed body load, g is the prescribed surface traction
on ΓN , and fixity is prescribed on ΓD. We denote Γ := ΓD ∪ ΓN .

• The volume constraint function is simply

Gvol(Ω) :=

∫
Ω

1− Vtarg

where Vtarg is the target volume fraction.

• The beam network constraint function is as defined in the previous section,
and may include the modifications to account for the manufacturability
of the beam network.

Since we will use the augmented Lagrangian algorithm to find a locally opti-
mal and feasible solution of (8), we need the shape gradients of the objective and
constraint functions. It is well-known (see e.g., [8, 9]) that the shape gradient
of the compliance at the shape Ω is

dF = −σ(uΩ) : e(uΩ)

on the boundary ∂Ω, while the shape gradient of the volume is

dGvol = 1

on the boundary ∂Ω. It remains to derive a formula for the shape gradient of
the beam network constraint. Since it turns out to be very difficult to derive an
exact formula, we settle for a good approximation in practice.

4.2. Approximate Shape Gradient of the Beam Network Constraint

Recall that we have defined the beam network constraint as

Gbeam(Ω) =
1

ND

∫
D

Hbeam(Ω)(x)[φΩ(x)− φbeam(Ω)(x)]2dx,

where φΩ and φbeam(Ω) are the signed distance functions of Ω and of the idealized
beam network beam(Ω) respectively. We have highlighted the dependence on Ω
in this shape function.
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We observe that the shape derivative of φΩ can be found by straightfor-
ward though somewhat involved geometric calculations (see e.g., [26, 31]) but
that the shape derivative of φbeam(Ω) will be much more difficult to calculate
or may not even exist. This is because we have not phrased the relationship
between Ω and beam(Ω) in a shape-differentiable manner, and perhaps we can
expect topological changes to occur in the graph underlying beam(Ω) even when
Ω changes smoothly. Rather than try to resolve these issues, we instead find
a shape-differentiable approximation of Gbeam whose shape derivative we will
use in the shape gradient descent phase of the augmented Lagrangian algo-
rithm. This approximation is constructed adaptively and improves throughout
the course of the augmented Lagrangian algorithm. Of course, there is no theo-
retical guarantee that we end up with a descent direction for the Lagrangian in
this way. However, in practice, we always observe a decrease of the Lagrangian
for sufficiently small pseudo-time (i.e., the line search to choose the pseudo-time
is always successful, except when the shape has converged to within a tolerance
to the locally optimal, feasible solution).

Our approximation is defined as follows. In each “inner” iteration of the aug-
mented Lagrangian algorithm (i.e., when the Lagrange multipliers and penalty
parameters are kept fixed) we freeze the beam network to be the beam network
corresponding to the shape at the first inner iteration, which we denote here by
Ωinit . Now we define the approximate beam network constraint for this inner
iteration as

G̃beam(Ω) :=
1

ND

∫
D

Hbeam(Ωinit )(x)[φΩ(x)− φbeam(Ωinit )(x)]2dx (9)

Then when this inner iteration is complete, we update G̃beam by replacing Ωinit

with the shape reached at the end of this inner iteration.
The approximate beam network constraint G̃beam is shape-differentiable since

it only depends on Ω through the signed distance function φΩ. Also, observe
that G̃beam has the mathematical form

G̃beam(Ω) := J(φΩ)

where J is the functional defined on any function φ : D → R by

J(φ) :=
1

ND

∫
D

Hbeam(Ωinit )(x)
[
φ(x)− φbeam(Ωinit )(x)

]2
dx .

Therefore, we can use the methodology presented in [32] to compute the shape

derivative of G̃beam .
In [32], the authors derive an elegant formula linking the derivative of J(φΩ)

with respect to variations of Ω to the derivative of J with respect to arbitrary
variations of φ. We denote this latter derivative by dφJ and in our case we have

dφJ :=
2Hbeam(Ωinit )

ND

[
φ− φbeam(Ωinit )

]
.
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To do this, they view the derivative of J(φΩ) with respect to variations of Ω
as the derivative of J(φ) with respect to the constrained set of variations of
φ maintaining the signed distance property of φ. The formula they derive is
essentially a projection of dφJ onto the tangent space of this constrained set of
variations. Applied to our case, their formula (or rather its three-dimensional
counterpart) yields

dG̃beam(x) = −
∫
l(x)

dφJ(x(r))
∣∣1− rK∂Ω(x0) + r2G∂Ω(x0)

∣∣ dr ∀x ∈ D

where l(x) is the line segment passing through x and the nearest point to x
on ∂Ω which we have denoted x0 above. This line segment extends from the
medial axis of ∂Ω to the boundary of D and we have denoted its arc-length
parameterization by x(r) above. Finally, K∂Ω(x0) and G∂Ω(x0) are the mean
and Gauss curvatures of ∂Ω at x0, respectively. Note that the formula for
dG̃beam is valid in all of D and is in fact constant along lines normal to ∂Ω.
Therefore the normal extension step described in Section 2 for constructing the
speed function used in the level set Hamilton-Jacobi equation is not needed
for dG̃beam . The reference [32] also provides a computationally efficient way to
evaluate this integral, which extends straightforwardly to three dimensions.

4.3. Implementation Details of the Augmented Lagrangian Algorithm

The augmented Lagrangian function can be minimized by performing a se-
ries of gradient descent loops (“outer” loops) to convergence while holding the
Lagrange multipliers and penalty values constant for each loop and updating
them before the start of the next loop [25]. This approach still requires initial
values for the parameters and tuning these parameters is often cited as a weak-
ness of the algorithm. As mentioned in Section 2, one of the contributions of
this work is a reliable parameter initialization for Augmented Lagrangian op-
timization in the context of Topology Optimization. We propose the following
initialization for the penalty parameter associated to the constraint function G:

cinit =
w|dF(Ω)|
|dG(Ω)|dG(Ω)

, (10)

where w is a constraint-specific weighting. This penalty parameter initialization
has the effect of normalizing the shape gradients of the constraints to the shape
gradient of the objective such that all the constraints and the objective have an
effect on the initial shape change equivalent to their weighting w. We initialize
the Lagrange multipliers to zero and from there the optimization progresses and
during parameter updates, the strength of the constraint penalties are increased
as needed and the Lagrange multipliers are updated according to [25].

In the Augmented Lagrangian method, each constraint has a user-defined ini-
tial tolerance t0 and a final tolerance t∗. The constraint tolerances are tightened
up to the final tolerance at the end of each inner loop whenever a constraint is
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determined to be within the current tolerance using a tightening factor κ = 0.5:
At the end of each inner loop, t is updated as follows:

ti+1 =

{
max (t∗, κti), if G(Ω) ≤ ti
ti, if G(Ω) > ti

We detect convergence in an inner loop when the Lagrangian is reducing by
less than 2% between consecutive iterations. Convergence in the outer loop is
determined by a converged inner loop and feasibility with respect to all con-
straints (G(Ω) < t∗).

4.4. Topology Optimization Algorithm

In this section we put together all of the pieces described above and summa-
rize the final algorithm for beam network topology optimization (Algorithm 1).

We perform an Augmented Lagrangian Optimization of our structural prob-
lem using a compliance objective with a volume constraint and the beam con-
straint. At the start of the optimization we extract the idealized beam network
(Equation 5), then evaluate the objectives and constraints in order to set the
penalty parameters using (Equation 10). By default we initialize the weight for
the volume constraint wvol = 1 and the beam constraint weight wbeam = 0.3
in order to prevent the initial beam network from significantly affecting the
convergence. This is important because the geometry tends to be bulky and
not beam-like in the early stages, so our extracted beam network is not reli-
able. Then we begin an “inner” loop where we compute the shape derivatives,
update the shape, re-evaluate the Lagrangian. This inner loop repeats until
convergence and then we check to see if the constraints have been satisfied.
If they are not satisfied, we update the Lagrange multipliers and penalty pa-
rameters, extract the beam network and begin a new inner loop. This process
repeats until we converge with satisfied constraints. As the optimization pro-
gresses, the geometry becomes more beam-like and the extracted beam network
becomes more reliable. In turn the penalty parameter for the beam constraint
cbeam increases, and the geometry is gradually forced to align to the idealized
beam network while still minimizing the overall compliance and maintaining the
desired volume.

5. Results

We now demonstrate our method on five structural topology optimization
problems and compare them against the results obtained without our beam
constraint. In all cases, we initialize the geometry with a large block with
regularly spaced holes to facilitate quicker convergence. We found that just as
with standard continuum topology optimization approaches, variation of the
initial geometry may lead to convergence at different local optima.
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Algorithm 1: Beam Network Topology Optimization

do
Extract idealized beam network;
Apply optional modifications to account for manufacturability;
if first iteration then

Evaluate objective and constraints;
Initialize Lagrange multipliers and penalty parameters (10);

end
do

Compute shape derivatives and speed field;
Update shape by solving Hamilton-Jacobi equation;
Evaluate objective and constraints;
Check for convergence;

while not converged ;
Check constraints;
if constraints not satisfied then

Update Lagrange multipliers and penalty parameters;
end

while constraints not satisfied ;

5.1. Perpendicular Truss

In Figure 5 we can see a näıve topology optimization of a perpendicularly
loaded truss configuration with a target volume of 20%. The loads are each
10N and the material has Young’s modulus 193000 MPa, and a Poisson ratio
of 0.3. The result is actually far more ‘beam-like’ than many topology opti-
mized results, however it still presents several challenges for manufacture (see
highlighted regions in Figure 5). If the part is to be made from a set of beams,
often there is a limitation on the shape and minimum and maximum size of the
cross sections and the näıve optimization has no control over these features. Our
beam constraint directly addresses this by forcing the topology optimized geom-
etry to conform to a network of beams upon which we enforce these limitations,
namely uniform cross section and a minimum and maximum cross section size.
By applying the angle snapping constraint to the beam network we can simplify
the resulting beam network such that regular angles are enforced between pairs
of beams that are close to the snapping angle. Given this snapping, beams are
more likely to continue through junctions (when snapping is a multiple of 180◦);
and when we enforce the cross section continuity, this effect is further enhanced.
The result is that fewer, longer beams can be used when manufacturing, saving
cost and construction time.

Figure 6 (c)–(f) shows a comparison of results from our method against the
näıve topology optimization in Figure 6 (b). Each of these results is optimized
with the same volume constraint and minimize compliance subject to the beam
constraint with different options. First we show the raw beam constrained
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(a)
(b)

(d)

(c)

Figure 5: A näıve topology optimized result of the perpendicularly loaded truss
with annotated regions that potentially make manufacture with a beam network
challenging: (a) This joint is close to a ‘T-junction’ but it requires three beams
joined together instead of two if it were an actual ‘T’. (b) This element is thin and
may be below the minimum thickness of available beams. (c) This region does
not easily match any uniform beam and an approximation may reduce stiffness
or increase overall weight. (d) This region has overgrown the connection point
so the actual manufactured approximation would likely be less stiff.

mesh result in (c) and note that a minimum beam size has been enforced and
the geometry has converged to truly beam-like linear segments with consistent
cross sections, and the exported CAD geometry for this result is shown in (d).
In Figure 6 (e) we introduced angle snapping to 45◦ and we see that the central
beam has been snapped, introducing more regularity to the result. Finally,
Figure 6 (f) shows the combined result with cross-section continuity. In this
case, several ‘T-junctions’ are evident and the cross sections have been matched
across the T’s, improving manufacturability.

We show the impact on the compliance of these constraints in Table 1. In
this case we can see that the application of the beam constraint increases the
compliance, which is a more fair reflection of the actual stiffness of the built
structure which is what ultimately matters.

Optimization method Compliance Volume fraction

Volume constraint only 0.00511 0.204
(+) Beam constraint 0.00547 0.209
(+) 45◦ Angle snapping 0.00619 0.205
(+) Cross-section continuity 0.00725 0.236

Table 1: Compliance values and volume fraction for the optimized Perpendic-
ular Truss beam geometry that produced the different solutions in Figure 6.

We also evaluated the performance impact of the graph extraction for this
use case in Table 2. We can see that even if we were to extract the graph at
every iteration, the computation time is a small fraction of the solve and overall
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(a) Setup (b) Näıve TO (levelset) (c) BeNTO (levelset)

(d) BeNTO (CAD) (e) BeNTO+45◦AS (CAD) (f) BeNTO+90◦AS, CC
(CAD)

Figure 6: Perpendicular Truss: (a) initial shape (gray) seeded with holes, and
perpendicular loads defined on the top two green boxes, while the bottom two
green boxes are fixed. Optimized mesh geometry with (b) only volume con-
straint, (c) also with beam constraint enforcing thickness control, (d) CAD op-
timized geometry from (c), (e) CAD optimized geometry with beam constraint
enforcing thickness control and 45◦ angle snapping, and (e) CAD optimized ge-
ometry with beam constraint enforcing thickness control, 90◦ angle snapping
and cross-section continuity.

iteration time. As it is, we only perform the graph extraction at each outer loop
(on average once every six iterations). Even when considering angle snapping
and cross-section continuity the overhead for graph extraction is still quite small
compared to one whole iteration.

5.2. Pylon

In this section we compare results for a pylon structure, often modeled in the
ground structure method literature. The structure is fixed to the ground and
has two load cases with loads applied perpendicularly to the tip of the structure
(see Figure 7 (a)). The loads are each 1N and the material has Young’s modulus
193000 MPa, and a Poisson ratio of 0.3. We show the topology optimization
result with only the volume constraint (set to 24%) in Figure 7 (b) and note that
there is a smooth blending between beam structures and even those regions that
appear beam-like have highly non-uniform cross-sections. Our beam constraint
result enforces regular cross-sections as expected, however the beam layout and
angles are quite irregular (Figure 7 (c)–(d)). When angle snapping and cross-
section continuity are enforced we get a very regular structure in Figure 7 (e)–(f).
In Table 3 we can see the trade-off between manufacturability and compliance.
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Optimization Mean graph Mean solve Mean iteration
Method extraction time time time

BeNTO 0.69s 15.83s 18.34s
BeNTO (+) AS (+) CC 1.25s 16.08s 19.17s

Table 2: Timings for the stages of the optimization of the perpendicular truss.

(a) Setup (b) Näıve
TO

(c) BeNTO
(levelset)

(d) BeNTO
(CAD)

(e) +45◦AS
(CAD)

(f) +90◦AS,
CC (CAD)

Figure 7: Pylon optimized geometry starting from (a) a cubical shape seeded
with holes, and two orthogonal loads defined at the top box while the bot-
tom plate is fixed. Optimized with (b) only volume constraint, (c) also beam
constraint, (d) the CAD exported beam network with additionally including
45◦ angle snapping and (e) the CAD exported beam network with 90◦ angle
snapping and cross-section continuity.

5.3. Torque

Here we modeled a torque-resistant structure that has four blocks, each with
traction loads rotated by 90◦ from their neighbors (Figure 8 (a)). The loads are
each 1000N and the material has Young’s modulus 193000 MPa, and a Poisson
ratio of 0.3. The structure is also fixed to the ground plane and we minimize
compliance subject to a target volume fraction of 25%. The optimized result in
Figure 8 (b) with only the volume constraint produces a structure with a com-
bination of ‘beam-like’ structures as well as highly free-form structures blended
together. This is actually a very challenging example since the converged result
does not have an obvious beam fit for many parts of the structure. However,
when applying our method we are able to extract a manufacturable beam net-
work that supports the loads (Figure 8 (c)–(d)). Rotational symmetry is not
enforced here and so the symmetry is lost as each side converges to a differ-
ent local minimum that still supports the loads. We also show the results in
Figure 8 (e)–(f) when optimizing without the Heaviside function Hbeam(x) in
Equation 9. We can see in (Table 4) that the beam network in Figure 8 (d),
using Hbeam(x) is much more stiff, compared to the beam network in Figure 8
(f) despite a similar volume.
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Optimization method Compliance Volume fraction

Volume constraint only 0.00261 0.233
(+) Beam constraint 0.00491 0.233
(+) 45◦ Angle snapping 0.00430 0.249
(+) 90◦ Angle snapping, cross-section continuity 0.00476 0.244

Table 3: Compliance values and volume fraction for the optimized Pylon ge-
ometry that produced the different solutions in Figure 7.

Optimization method Compliance Volume fraction

Volume constraint only 21.5 0.249
(+) Beam constraint, 45◦ angle snapping, 38.6 0.238
cross-section continuity
(+) Beam constraint, 45◦ angle snapping, 193 0.225
cross-section continuity, without Hbeam(x)

Table 4: Compliance values and volume fraction for the optimized torque ge-
ometry that produced the different solutions in Figure 8.

5.4. Bridge

Here we modeled a footbridge structure with a distributed vertical load
(10000N) over its surface and is fixed at bars at the two ends below the bridge
(Figure 9). The material has Young’s modulus 193000 MPa, and a Poisson ratio
of 0.3. Material is prevented from obstructing the walk-way and the domain
voxel size is 280×80×78. This is a challenging example due to its size and the
density of fine features needed to support the walkway. In Figure 1 we can see
the optimization result with only the volume constraint compared with the CAD
exported result from the beam constraint. Both results ensure that the material
does not interfere with the keep-out regions and the beam-constrained result
reduces the complexity of the support structure and produces a manufacturable
network of beams. Again there is a trade-off in the compliance (Table 5), but
the simplicity and manufacturability of the beam constrained result can allow
for easy editing and improvement on the way toward a final design.

Optimization method Compliance Volume fraction

Volume constraint only 0.295 0.123
(+) Beam constraint 1.054 0.115

Table 5: Compliance and volume fraction for the optimized bridge geometry
that produced the different solutions in Figure 1.
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(a) Setup (b) Näıve TO (c) BeNTO+45◦AS,CC
(levelset)

(d) CAD result of (c) (e) BeNTO+45◦AS,CC
w/o Hbeam(x)

(f) CAD result of (e)

Figure 8: Torque: (a) initial shape (gray) seeded with holes, and loads defined
on the top four green boxes, while the bottom plate is fixed. Optimized mesh
geometry with (b) only volume constraint, (c) also beam constraint with angle
snapping and cross-section continuity, (d) the CAD exported beam network, (e)
the same settings as (c) but without the Heaviside function Hbeam(x), (f) the
CAD exported beam network.

5.5. Pavilion

We show how our method can be applied to architectural scale structures
with a pavilion example in Figure 10. The pavilion is designed to be supported
by three fixed plates and to resist loading from two display screens, whose frames
are set as keep-ins, along with several points in space where additional loads
are applied. The loads are each 100N and the material has Young’s modulus
193000 MPa, and a Poisson ratio of 0.3. There is also a large keep-out region that
exposes the pavilion to viewers and those interacting with the display screens.

Due to the interaction with the keep-out region, the näıve topology opti-
mization result produces some large sheet-like structures that hug the bounds
of the keep-out as well as curved beams and complex junctions, making design
for manufacture challenging. After applying the beam constraint we are able to
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(a) Setup (b) Initial geometry

Figure 9: Bridge: (a) A distributed load is defined on the top surface and green
surfaces are all keep-in geometries. The red region defines a keep-out that the
optimized shape cannot overlap with. (b) Initial shape (gray) seeded with holes.
Results comparing näıve topology optimization and our beam network topology
optimization are shown in Figure 1.

generate a much cleaner beam-like result that can be sent for manufacturing.
Table 6 compares the final compliance and volume fractions obtained by our
method with topology optimization using only volume constraint.

Optimization method Compliance Volume fraction

Volume constraint only 0.190 0.0157
(+) Beam constraint 0.290 0.0158

Table 6: Compliance and volume fraction for the optimized pavilion geometry.

5.6. GE Bracket

To demonstrate how our method behaves on a real-world mechanical part,
we present beam-constrained optimization results in Figure 11 from the GE
aircraft bracket challenge. Additionally, we note that the user geometry can have
arbitrary shapes and the beam network is generated as the required additional
support structure. For these results, we used the four load cases specified in
[33] with Young’s modulus of 113800 MPa and a Poisson ratio of 0.342. We
achieved a volume fraction of 0.185 with a compliance value of 189358. We used
angle snapping of 90 degrees with cross-section continuity.

5.7. L-Bracket

To demonstrate the flexibility of our method we show that the beam con-
straint can be paired just as effectively with another objective function. In this
case, we replace F(Ω) with a p-norm stress objective from [34] such that:

F(Ω) :=

(∫
Ω

σpvmdΩ

) 1
p

,
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(a) Setup (b) Initial geometry (c) Näıve TO (levelset)

(d) BeNTO (levelset) (e) BeNTO (CAD)

Figure 10: Pavilion: (a) Loads applied to display screen frames as well as point
loads on keep-in regions shown in green. The keep-out region is shown in red
and marks the portion of the domain that the geometry cannot overlap with.
(b) Initial geometry in the portion of the domain that excludes the keep-out
regions seeded with holes. (c) Näıve topology optimization result with sheets
and bulky parts. (d) Our beam network topology optimization result. (e) CAD
result of (d).

where p is the p-norm parameter used to approximate the max(·) operator and
σvm is the von Mises stress. The L-bracket problem setup, material properties
and loading are the same as in [34], but we used a 3D domain size of 100×100×8
and we used a value of p = 6. Since the beam constraint acts as a regularizer we
found that the least-squares smoothing of the von Mises stress described in [34]
was not necessary for this experiment. In Figure 12 we can see that valid beam
networks are generated for both the compliance and p-norm stress objectives.
Also note that without the p-norm stress objective we get a stress concentration
at the inside corner of the L-bracket, just as in unconstrained compliance-based
topology optimization. However, it is pleasing to see that the p-norm stress
objective combined with the beam constraint produces a result without stress
concentrations, spreading the stress across several beams.
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(a) BeNTO (levelset) (b) BeNTO (CAD)

Figure 11: GE Bracket: (a) Our beam network topology optimization result.
(b) CAD result of (a).

6. Conclusion

We have proposed a new framework for beam network topology optimiza-
tion, that works by coupling level set-based topology optimization with a beam
constraint to drive the evolving geometry toward an idealized beam network.
By including the beam constraint within the optimization, rather than as a
post-process, we can take advantage of geometric constraints such as keep-in
and keep-out regions and allow the compliance minimization to compensate for
the limitations of the beam representation.

Since our beam constraint tracks the underlying graph of the evolving beam
network, we can enforce manufacturability requirements, for example by snap-
ping to user-defined angles between neighboring beams and by enforcing cross-
section continuity within the beam network. All these factors help to produce
more regular, optimized geometry that can be exported as a set of editable
primitives into CAD software. There, they can easily be incorporated into user
assemblies for manufacture.

We hope that this work will contribute to more practical usage of topology
optimization techniques and save designers’ time when it comes to building their
optimized structures.

Future work and limitations

Since we rely on the background grid for structural simulation, the grid
spacing should be 1

4 or less than the minimum beam diameter otherwise the
simulation of slender beams will be inaccurate.

We would like to enforce true symmetry in the graph structure when reflec-
tion or rotation symmetry is desired. This would require special treatment of
nodes lying on the reflection planes.

We also see the potential for supporting other cross-section types such as
I-beam, square, angled or hollow tubes. We could fit the cross-section to the
current geometry to infer the best local orientation of the cross-section, and
analyze the local bending of the beam. Curved extrusions could also be enabled
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(a) BeNTO w/compliance (b) BeNTO w/p-norm stress

(c) von Mises Stress distribution of
compliance optimized shape

(d) von Mises Stress distribution
of p-norm stress optimized shape

Figure 12: L-Bracket: (a) Our beam network topology optimization CAD result
with compliance. (b) Our beam network topology optimization CAD result with
p-norm stress. (c) Slice of von Mises stress for the compliance result in (a). (d)
Slice of von Mises stress for the p-norm stress result in (b).

by fitting a curve to the slab voxels along the edge, and sweeping the cross-
section along the fitted curve. Additionally, it would be useful to be able to
identify where welded plates or other primitives might enhance the stiffness of
the structure, especially at joints. We could detect regions that are not well fit
by the beam network and instead replace those regions with a parameterized
plate or combination of a plate and beams to form a gusset.

Currently, the angle snapping energy minimization (Equation 6) is solved by
gradient descent and may get trapped in local minima for large graphs such as
in the Bridge, Pavilion and GE Bracket. To alleviate this, we plan to explore
alternative optimization strategies such as simulated annealing or momentum-
based approaches.

The initial weight of the beam network constraint determines how soon the
constraint begins to control the optimization procedure. If the optimization
has not converged sufficiently before the beam network is enforced, sub-optimal
results are likely. While we did not observe this in our examples, a sufficiently
complex topology optimization problem may need a weight adjustment. We
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thus plan to investigate how to automate this balancing so that the user has no
need to tune the parameter.
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